白色念珠菌基因CaTCO89和CaPTC1的鉴定及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白色念珠菌是临床上一种最重要的条件致病真菌。目前,人们对白色念珠菌的研究主要集中在弄清其致病机理和发现新的药物作用靶点。通过用酿酒酵母基因编码的氨基酸序列对斯坦福大学白色念珠菌基因组数据库进行比对,我们得到白色念珠菌基因CaTCO89和CaPTC1的序列。基因CaTCO89的ORF长为2127 bp,编码708个氨基酸。CaTCO89与酿酒酵母ScTCO89所编码蛋白氨基酸序列的相似性为27.5%。我们发现CaTCO89基因可以互补ScTCO89在雷帕霉素和氯化锂抗性以及保持细胞壁完整性方面的功能。我们以白色念珠菌菌株RM1000为背景,构建了CaTCO89的双缺失菌株TJU4(tco89/tco89)。与RM1000相比,TJU4对雷帕霉素和氯化锂的敏感性增加。在TJU4细胞中异位表达CaTCO89基因能够恢复TJU4对雷帕霉素抗性到野生型水平,然而却显著增强TJU4细胞对氯化锂和过氧化氢的抗性以及对Cd2+的敏感性。此外,在Spider和SD-Ura液体培养基中,CaTCO89基因在TJU4中的异位表达能引起细胞凝集形成絮状沉淀。在Spider固体培养基上,TJU4的菌落形态与野生型菌株相同,为边缘不整齐扁平状、表面凸凹不平,且有周边菌丝形成,但是异位表达CaTCO89的TJU4菌落形态表现为表面光滑的面包状。
     基因CaPTC1的ORF长度为1128 bp,编码375个氨基酸,与酿酒酵母ScPtc1p的相似性为52%。CaPTC1的双缺失菌株SYY4(ptc1/ptc1)对Li+、Na+和K+离子敏感,异位表达CaPTC1能够抑制SYY4细胞的缺失表型。我们克隆并在细菌中表达了CaPtc1p的催化区域,发现纯化的重组蛋白具有去磷酸化活性,这种活性还依赖于Mn2+或Mg2+的存在,并且受到丝氨酸-苏氨酸去磷酸酯酶抑制剂NaF的抑制。这些结果表明CaPtc1p是一种PP2C类蛋白磷酸酯酶。
Candida albicans is the most important fungal pathogen in humans. Recent studies on C. albicans have been focused on understanding its pathogenesis and on identifying therapeutic targets for the development of novel antifungal drugs. From Stanford C. albicans genomic database, we identified CaTCO89 and CaPTC1 gene sequences. CaTCO89 has an ORF of 2127 bp, which encodes a protein of 708 amino acids sharing 17% identity and 28% similarity with ScTco89p at the amino acids level. We found that CaTCO89 could complement the functions of ScTCO89 in rapamycin and lithium tolerance as well as in cellular integrity in S. cerevisiae. We constructed the deletion mutant of CaTCO89 (TJU4) in RM1000 background. In comparison with RM1000, TJU4 cells showed rapamycin and lethium sensitivity. Ectopic expression of CaTCO89 recovered the tolerance of TJU4 cells to rapamycin to the level of the wild-type RM1000 cells, but significantly increased the tolerance of TJU4 cells to LiCl and H2O2 and the sentivity to CdCl2 above the levels of RM1000 cells. Deletion of CaTCO89 did not affect the morphological development. However, ectopic expression of CaTCO89 caused cell aggregation of C. albicans in Spider and SD-Ura liquid medium as welll as formation of smooth and bread-shaped coloneys on solid spider medium.
     CaPTC1 has an ORF of 1128 bp in length, which encodes a protein of 375 amino acids sharing 41% identity and 52% similarity with ScPtc1p. We disrupted the two alleles of CaPTC1 from RM1000, which resulted in the strain SYY4. SYY4 cells showed sensitivity to LiCl, NaCl and KCl but not the osmolar agent sorbitol. Ectopic expression of CaPTC1 recovered the tolerance of SYY4 to these salt stresses. The DNA sequence encoding the catalytic domain of CaPtc1p was cloned and expressed in E. Coli cells. The purified protein exhibited dephosphorylation activity, which was dependent on the presence of Mg2+ or Mn2+ ion and inhibited by the protein Ser/Thr phosphatase inhibitor NaF. These results indicate CaPTC1 encodes a type 2C Ser/Thr phosphatase (PP2C).
引文
1. Sansiviero A. and Almeida N.Q. Bactericidal action of modified cavity varnishes-their action against microorganism found in the human oral cavity (in vitro study). Rev Fac Odontol Sao Jose Campos. 1976, 5: 43-47.
    2. Odds F. C. Candida infections: an overview. Crit Rev Microbiol. 1987, 15: 1-5.
    3. Odds F.C. Pathogenesis of Candida infections. J Am Acad Dermatol. 1994, 31: 2-5.
    4. Whiteway M and Oberholer U. Candida morphogenesis and host-pathogen interactions. Curr Opin Microbiol. 2004, 7: 350-357.
    5. Cutler J.E. Putative virulence factors of Candida albicans. Annu Rev Microbiol. 1991, 45: 187-218.
    6. Kobayashi S.D. and Cutler J.E. Candida albicans hyphal formation and virulence: is there a clearly defined role?. Trends Microbiol. 1998, 6: 92-94.
    7. Braun BR et al. A human-curated annotation of the Candida albicans genome. PLoS Genet. 2005, 1: 36-57.
    8. Kistler M. Summer K.H. and Eckardt F. Isolation of glutathione-deficient mutants of the yeast Saccharomyces cerevisiae. Mutation Res. 1986, 173: 117–120.
    9. Du Y. Walker L. Novick P. and Ferro-Novick S. Ptc1p regulates cortical ER inheritance via Slt2p. EMBO J. 2006, 25: 4413-4422.
    10. San Jose C. Monge R.A. Perez-Diaz R. Pla J. and Nombela C. The mitogen-activated protein kinase homolog HOG1 gene controls glycerol accumulation in the pathogenic fungus Candida albicans. J Bacteriol. 1996, 178: 5850-5852..
    11. Alonso-Monge R. Navarro-Garcia F. Molero G. Diez-Orejas R. Gustin M. Pla J. Sanchez M. and Nombela C. Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans. J Bacteriol. 1999, 181: 3058-3068.
    12. Alonso-Monge R. Navarro-Garcia F. Roman E. Negredo A.I. Eisman B. Nombela C. and Pla J. The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryot Cell. 2003, 2: 351-361.
    13. Calera J.A. Choi G.H. and Calderone R.A. Identification of a putative histidine kinase two-component phosphorelay gene (CaHK1) in Candida albicans. Yeast. 1998, 14: 665-674.
    14. Nagahashi S. Mio T. Ono N. Yamada-Okabe T. Arisawa M. Bussey H. and Yamada-Okabe H. Isolation of CaSLN1 and CaNIK1, the genes for osmosensing histidine kinase homologues, from the pathogenic fungus Candida albicans. Microbiology. 1998, 144: 425-432.
    15. Arana D.M. Nombela C. Alonso-Monge R. and Pla J. The Pbs2 MAP kinase kinase is essential for the oxidative-stress response in the fungal pathogen Candida albicans. Microbiology. 2005, 151: 1033-1049.
    16. Das A.K. Helps N.R. Cohen P.T. and Barford D. Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 A resolution. EMBO J. 1996, 15: 6798-6809.
    17. Bahn Y.S. And Sundstrom P. CAP1, an adenylate cyclase-associated protein gene, regulates bud-hypha transitions, filamentous growth, and cyclic AMP levels and is required for virulence of Candida albicans. J Bacteriol. 2001, 183: 3211-3223.
    18. Maidan M.M. De Rop L. Serneels J. Exler S. Rupp S. Tournu H. Thevelein J.M. and Van Dijck P. The G protein-coupled receptor Gpr1 and the Galpha protein Gpa2 act through the cAMP-protein kinase A pathway to induce morphogenesis in Candida albicans. Mol Biol Cell. 2005, 16: 1971-1986.
    19. Feng Q. Summers E. Guo B. and Fink G. Ras signaling is required for serum-induced hyphal differentiation in Candida albicans. J Bacteriol. 1999, 181: 6339-6346.
    20. Maidan MM. De Rop L. Serneels J. Exler S. Rupp S. Tournu H. Thevelein JM. Van Dijck P. The G protein-coupled receptor Gpr1 and the Galpha protein Gpa2 act through the cAMP-protein kinase A pathway to induce morphogenesis in Candida albicans. Mol Biol Cell. 2005,16:1971-1986.
    21. Stoldt V.R. Sonneborn A. Leuker C.E. and Ernst J.F. Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J. 1997, 16: 1982-1991.
    22. Sonneborn A. Bockmuhl D.P. Gerads M. Kurpanek K. Sanglard D. and Ernst J.F. Protein kinase A encoded by TPK2 regulates dimorphism of Candida albicans. Mol Microbiol. 2000, 35: 386-396.
    23. Leng P. Lee P.R. Wu H. and Brown A.J. Efg1, a morphogenetic regulator in Candida albicans, is a sequence-specific DNA binding protein. J Bacteriol. 2001, 183: 4090-4093.
    24. Lo H.J. Kohler J.R. DiDomenico B. Loebenberg D. Cacciapuoti A. and Fink G.R. Nonfilamentous C. albicans mutants are avirulent. Cell. 1997, 90: 939-949.
    25. Buffo J. Herman M.A. and Soll D.R. A characterization of pH-regulated dimorphism in Candida albicans. Mycopathologia. 1984, 85: 21-30.
    26. Davis D. Wilson R.B. and Mitchell A.P. RIM101-dependent and-independent pathways govern pH responses in Candida albicans. Mol Cell Biol. 2000, 20: 971-978.
    27. EI Barkani A. Kurzai O. Fonzi W.A. Ramon A. Porta A. Frosch M. and Muhlschlegel F.A. Dominant active alleles of RIM101 (PRR2) bypass the pH restriction on filamentation of Candida albicans. Mol Cell Biol. 2000, 20: 4635-4647.
    28. Muhlschlegel F.A. Fonzi W.A. PHR2 of Candida albicans encodes a functional homolog of the pH-regulated gene PHR1 with an inverted pattern of pH-dependent expression. Mol Cell Biol.1997, 17: 5960-5967.
    29. Fonzi W.A. PHR1 and PHR2 of Candida albicans encode putative glycosidases required for proper cross-linking of beta-1, 3- and beta-1, 6-glucans. J Bacteriol. 1999, 181: 7070-7079.
    30. Li M. Martin S.J. Bruno V.M. Mitchell A.P. and Davis D.A. Candida albicans Rim13p, a protease required for Rim101p processing at acidic and alkaline pHs. Eukaryot Cell. 2004, 3: 741-751.
    31. Salvador F. Blanco R. Colin A. Galan A. and Gil-Gibernau J.J. Cytomegalovirus retinitis in pediatric acquired immunodeficiency syndrome: report of two cases. J Pediatr Ophthalmol Strabismus. 1993, 30: 159-162.
    32. Singh P. Chauhan N. Ghosh A. Dixon F. and Calderone R. SKN7 of Candida albicans: mutant construction and phenotype analysis. Infect Immun. 2004, 72: 2390-2394.
    33. Singh K.K. The Saccharomyces cerevisiae Sln1p-Ssk1p two-component system mediates response to oxidative stress and in an oxidant-specific fashion. Free Radic Biol Med. 2000, 29: 1043-1050.
    34. Torosantucci A. Chiani P. De Bernardis F. Cassone A. Calera J.A. and Calderone R. Deletion of the two-component histidine kinase gene (CHK1) of Candida albicans contributes to enhanced growth inhibition and killing by human neutrophils in vitro. Infect Immun. 2002, 70: 985-987.
    35. Calera J.A. Herman D. and Calderone R. Identification of YPD1, a gene of Candida albicans which encodes a two-component phosphohistidine intermediate protein. Yeast. 2000, 16: 1053-1059.
    36. Braun B.R. and Johnson A.D. Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science. 1997, 277: 105-109.
    37. Braun B.R. and Johnson A.D. TUP1, CPH1 and EFG1 make independent contributions to filamentation in Candida albicans. Genetics. 2000, 155: 57-67.
    38. Braun B.R. Head W.S. Wang M.X. and Johnson A.D. Identification and characterization of TUP1-regulated genes in Candida albicans. Genetics. 2000, 156: 31-44.
    39. Kadosh D. and Johnson A.D. Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Mol Biol Cell. 2005, 16: 2903-2912.
    40. Sigal N.H. and Dumont F.J. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. Annu Rev Immunol. 1992, 10: 519-560.
    41. Vezina C. Kudelski A. and Sehgal S.N. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo). 1975, 28: 721-726.
    42. Cafferkey R. Young P.R. McLaughlin M.M. Bergsma D.J. Koltin Y. Sathe G.M. Faucette L. Eng W.K. Johnson R.K. and Livi G.P. Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity. Mol Cell Biol. 1993, 13: 6012-6023.
    43. Heitman J. Movva N.R. and Hall M.N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science. 1991, 253: 905-909.
    44. Helliwell S.B. Wagner P. Kunz J. Deuter-Reinhard M. Henriquez R. and Hall M.N. TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol Biol Cell. 1994, 5: 105-118.
    45. Weisman R. and Choder M. The fission yeast TOR homolog, tor1+, is required for the response to starvation and other stresses via a conserved serine. J Biol Chem. 2001, 276: 7027-7032.
    46. Chen Y. Chen H. Rhoad A.E. Warner L. Caggiano T.J. Failli A. Zhang H. Hsiao C.L. Nakanishi K. and Molnar-Kimber K.L. A putative sirolimus (rapamycin) effector protein. Biochem Biophys Res Commun. 1994, 203: 1-7.
    47. Brown E.J. Albers M.W. Shin T.B. Ichikawa K. Keith C.T. Lane W.S. and Schreiber S.L. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature. 1994, 369: 756-758.
    48. Sabatini D.M. Erdjument-Bromage H. Lui M. Tempst P. and Snyder S.H. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell. 1994, 78: 35-43.
    49. Errede B. and Ammerer G. STE12, a protein involved in cell-type-specific transcription and signal transduction in yeast, is part of protein-DNA complexes. Genes Dev. 1989, 3: 1349-1361.
    50. Scott P.H. Brunn G.J. Kohn A.D. Roth R.A. and Lawrence J.C. Jr. Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc Natl Acad Sci USA. 1998, 95: 7772-7777.
    51. Peterson R.T. Beal P.A. Comb M.J. and Schreiber S.L. FKBP12-rapamycin- associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J Biol Chem. 2000, 275: 7416-7423.
    52. Bosotti R. Isacchi A. and Sonnhammer E.L. FAT: a novel domain in PIK-related kinases. Trends Biochem Sci. 2000, 25: 225-227.
    53. Dames S.A. Mulet J.M. Rathgeb-Szabo K. Hall M.N. and Grzesiek S. The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability. J Biol Chem. 2005, 280: 20558-20564.
    54. Lorenz M.C. and Heitman J. TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin. J Biol Chem. 1995, 270: 27531-27537.
    55. Isotani S. Hara K. Tokunaga C. Inoue H. Avruch J. and Yonezawa K. Immunopurified mammalian target of rapamycin phosphorylates and activates p70 S6 kinase alpha in vitro. J Biol Chem. 1999, 274: 34493-34498.
    56. Loewith R. Jacinto E. Wullschleger S. Lorberg A. Crespo J.L. Bonenfant D. Oppliger W. Jenoe P. and Hall M.N. Two TOR Complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell. 2002, 10: 457-468.
    57. Reinke A. Anderson S. McCaffery J.M. Yates J. 3rd, Aronova S. Chu S. Fairclough S. Iverson C. Wedaman K.P. and Powers T. TOR complex 1 includes a novel component, TCO89p and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces cerevisiae. J Biol Chem. 2004, 279: 14752-14762.
    58. Cruz M.C. Cavallon L.M. Gorlach J.M. Cox G. Perfect J.R. Cardenas M.E. And Heitman J. Rapamycin antifungal action is mediated via conserved complexes with FKBP12 and TOR kinase homologs in Cryptococcus neoformans. Mol Cell Biol. 1999, 19: 4101-4112.
    59. Ferrara A. Cafferkey R. and Livi G.P. Cloning and sequence analysis of a rapamycin-binding protein-encoding gene (RBP1) from Candida albicans. Gene. 1992, 113: 125–127.
    60. Alexander M.R. Tyers M. Perret M. Craiq B.M. and Gustin M.C. Regulation of cell cycle progression by Swe1p and Hog1p following hypertonic stress. Mol Biol Cell. 2001, 12: 53-62.
    61. Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem. 1989, 58: 453-508.
    62. Cohen P. and Cohen P.T. Protein phosphatases come of age. J Biol Chem. 1989 264: 21435-21438.
    63. Stark M.J. Yeast protein serine/threonine phosphatases: multiple roles and diverse regulation. Yeast. 1996, 12: 1647-1675.
    64. Jiang L. Whiteway M. Ramos C. Rodriguea-medina J.R. and Shen S.H. The YHR076w gene encodes a type 2C protein phosphatase and represents the seventh PP2C gene in budding yeast. FEBS Lett. 2002, 527: 323-325.
    65. Ruan H. Yan Z. Sun H and Jiang L. The YCR079w gene confers a rapamycin-resistant function and encodes the sixth type 2C protein phosphatase in Saccharomyces cerevisiae. FEMS Yeast Res. 2006, 27: Epub ahead of print.
    66. Mapes J. and Ota I.M. Nbp2 targets the Ptc1-type 2C Ser/Thr phosphatase to the HOG MAPK pathway. EMBO J.2004, 23: 302–311.
    67. Rpbinson M.K. Van Zyl W.H. Phizicky E.M. and Broach J.R. TPD1 of Saccharomyces cerevisiae encodes a protein phosphatase 2C-like activity implicated in tRNA splicing and cell separation. Mol Cell Biol. 1994, 14: 3634-3645.
    68. Roeder A.D, Hermann G.J, Keegan B.R, Thatcher S.A and Shaw J.M. Mitochondrial inheritance is delayed in Saccharomyces cerevisiae cells lacking the serine/threonine phosphatase PTC1. Mol Biol Cell. 1998, 9: 917-930.
    69. Du Y. Walker L. Novick P. and Ferro-Novick S. Ptc1p regulates cortical ER inheritance via Slt2p. EMBO J. 2006, 25: 4413-4422.
    70. van Zyl W.H. Wills N. and Broach J.R. A general screen for mutant of Saccharomyces cerevisiae deficient in tRNA biosynthesis. Genetics. 1989, 123: 55-68.
    71. Berger K.H. Sogo L.F. and Yaffe M.P. Mdm12p, a component required for mitochondrial inheritance that is conserved between budding and fission yeast. J Cell Biol. 1997, 136: 545–553.
    72. Ruiz A. Gonzalez A. Garcia-Salcedo R. Ramos J. and Arino J. Role of protein phosphatases 2C on tolerance to lithium toxicity in the yeast Saccharomyces cerevisiae. Mol Microbiol. 2006, 62: 263-277.
    73. Jiang L. Whiteway M. and Shen SH. A novel type 2C protein phosphatase from the human fungal pathogen Candida albicans. FEBS Lett. 2001 509: 142-144.
    74. 吴绍熙,廖万清,郭宁如等.中国致病真菌十年动态流行病学研究.临床皮肤科杂志. 1999,28:1-5.
    75. Fonzi W.A. and Irwin M.Y. Isogenic strain construction and gene mapping in Candida albicans. Genetics. 1993, 134: 717-728.
    76. Negredo A. Monteoliva L. Gil C. Pla J. and Nombela C. Cloning, analysis and one-step disruption of the ARG5, 6 gene of Candida albicans. Microbiology. 1997, 143: 297-302.
    77. Liu H. Kohler J. and Fink G.R. Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science. 1994, 266: 1723-1726.
    78. Nath N. and Deb J.K. Partial characterization of small plasmids from Corynebacterium renale. Plasmid. 1995, 34: 229-233.
    79. Cannon R.D. Jenkinson H.F. and Shepherd M.G. Cloning and expression of Candida albicans ADE2 and proteinase genes on a replicative plasmid in C. albicans and in Saccharomyces cerevisiae. Mol Gen Genet. 1992, 235: 453-457.
    80. Ito H. Fukuda Y. Murata K. and Kimura A. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 1983, 153: 163-168.
    81. Albertyn J. Hohman S. Thevelein J.M. and Prior B.A. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high osmolarity glycerol response pathway. Mol. Cell. Biol.1994, 14: 4135–4144.
    82. de Nobel H. Ruiz C. Martin H. Morris W. Brul S. Molina M. and Klis F.M. Cell wall perturbation in yeast results in dual phosphorylation of the Slt2/Mpk1 MAP kinase and in a Slt2-mediated increase in FKS2-lacZ expression, glucanase resistance and thermotolerance. Microbiology. 2000, 146: 2121-2132.
    83. Kamada Y. Jung U.S. Piotrowski J. and Levin D.E. The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev. 1995, 9: 1559-1571.
    84. Crespo J.L. Daicho K. Ushimaru T. and Hall M.N. The GATA transcription factors GLN3 and GAT1 link TOR to salt stress in Saccharomyces cerevisiae. J Biol Chem. 2001, 276: 34441-34444.
    85. Brennan R.J. and Schiestl R.H. Cadmium is an inducer of oxidative stress in yeast. Mutation Res. 1996, 356: 171–178.
    86. Storz G. Christman M.F. Sies H. and Ames B.N. Spontaneous mutagenesis and oxidative damage to DNA in Salmonella typhimurium. Proc. Natl Acad. Sci. USA. 1987, 84: 8917–8921.
    87. Wolff S.P. Garner A. and Dean R.T. Free radicals, lipids and protein degradation. TIBS. 1986, 11: 27–31.
    88. Marquez J.A. and Serrano R. Multiple transduction pathways regulate the sodium-extrusion gene PMR2/ENA1 during salt stress in yeast. FEBS Lett. 1996, 382: 89–92.
    89. Li Z.S. Lu Y.P. Zhen R.G. Szczypka M. Thiele D.J. and Rea P.A. A new pathway for vacuolar cadmium sequestrian in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis (glutathionato) cadmium. Proc. Natl Acad. Sci USA.1997, 94: 42–47.
    90. Schmidt A. Beck T. Koller A. Kunz J. and Hall M.N. The TOR nutrient signalling pathway phosphorylates NPR1 and inhibits turnover of the tryptophan permease. EMBO J. 1998, 17: 6924-6931.
    91. Beck T. Schmidt A. and Hall M.N. Starvation induces vacuolar targeting and degradation of the tryptophan permease in yeast. J Cell Biol. 1999, 146: 1227-1238.
    92. Haro R. Ban?uelos M.A. Quintero F.J. Rubio F. and Rodriguez-Navarro A. Genetic basis for sodium exclusion and sodium tolerance in yeast. A model for plants. Physiol Plant. 1993, 89: 1–7.
    93. Chen G. and Courey A.J. Groucho/TLE family proteins and transcriptional repression. Gene. 2000, 249: 1-16.
    94. Posas F. and Saito H. Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: Scaffold role of Pbs2p MAPKK. Science. 1997, 276: 1702–1705.
    95. Crespo J.L. Daicho K. Ushimaru T. and Hall M.N. The GATA transcription factors GLN3 and GAT1 link TOR to salt stress in Saccharomyces cerevisiae. J Biol Chem. 2001, 276: 34441-34444.
    96. Warmka J. Hanneman J. Lee J. Amin D. and Ota I. Ptc1, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogen-activated protein kinase Hog1. Mol. Cell. Biol. 2001, 21: 51–60.
    97. Hardwick J.S. Kuruvilla F.G. Tong J.K. Shamji A.F. and Schreiber S.L. Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc Natl Acad Sci USA. 1999, 96: 14866-14870.
    98. Chauhan N. Inglist D. Roman E. Pla J. Li D. Calera JA and Calderone R. Candida albicans response regulator gene SSK1 regulates a subset of genes whose functions are associated with cell wall biosynthesis and adaptation to oxidative stress. Eukaryot Cell. 2003, 2: 1018-1024.
    99. Changlong Zheng, Zhihui Yan, Wei Liu, Linghuo Jiang. Identification and characterization of a functional Candida albicans homologue of Saccharomyces cerevisiae TCO89 gene. FEMS YEAST Research. (Epub ahead of print)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700