混凝-UASB-SBR组合工艺处理化学浆糊清洗废水的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文为了解决实际化学浆糊清洗废水的处理问题,使用上海市某企业工艺原料(化学浆糊)配水模拟清洗废水进行可生化性及其处理工艺研究。化学浆糊清洗废水及纺织印染退浆水是含有较高有机污染物的水质,主要成分是改性淀粉及PVA。PVA的生化降解性能比较低,在自然环境中,可降解PVA的微生物非常少,通常只出现在被PVA污染的环境中,因而该废水属于比较难处理的废水。针对这一特性,笔者考虑参考国内外成熟废水处理工艺,即选择混凝-UASB-SBR组合工艺对废水进行实验室小试,通过进行混凝沉淀预处理,以提高废水的可生化性,进行后续生化处理,达到《污水综合排放标准》(GB8978-1996)的二级排放标准。本试验处理效果好坏以测定的CODCr为主要指标。
     试验结果表明,混凝条件最佳pH为2,最好的药剂选择、投加顺序及投放量是硫酸钠2g,硼酸0.3g,氢氧化钙3g。物化的去除率较低(70%以下),出水上限无法做到达标排放,但混凝处理后B/C由处理前的0.26提高到0.34,提高了对清洗废水的可生化性,可以作为生化方法的预处理。文章研究重点放在生化方法上,并着重利用厌氧颗粒污泥优化UASB来提高
     对废水的处理能力及效率。分别通过采用颗粒污泥和普通厌氧消化污泥作为接种污泥来考察反应器的去除效果,说明颗粒污泥化对于UASB稳定处理清洗废水的效率显著提高,最大容积负荷VLR达到9.11kgCOD/m~3·d,COD去除率维持在90%以上,出水pH值为7.5,出水SS为135 mg/L,容积产气量为3.37m~3/m~3·d,出水水质有利于后续好氧生物处理。经过SBR处理,容积负荷最大达到9.6kgCOD/m~3·d,出水保持在100mg/L以下,出水水质达到二级排放标准。在UASB反应器污泥颗粒化处理化学浆糊清洗废水的试验中,考察了种污泥、水力负荷Vup、pH、温度、水力停留时间、反应器负荷对出水水质的影响。结果表明,运用混凝-UASB-SBR组合工艺处理化学浆糊清洗废水是实用、可行的方案。论文的研究结果对于厌氧工艺中采用颗粒污泥来提高处理效率,具有理论和实践意义。
The performances of laboratory simulation the chemistry adhesive cleaning wastewater which came from a factory in shanghai in biochemical treatment and treatment methodology of this wastewater were studied for solving the question of engineering project in fact.
     The chemistry adhesive cleaning wastewater and the desizing wastewater are difficult to solve because their removal of organic substance. There are two main kinds of ingredients in the sample. They are modified starch and PVA.PVA has poor biodegradability. There are less microorganisms in nature are useful in removal of PVA. They are found in the polluted water of PVA. Solving is so difficult. Basing on the characteristic of cleaning wastewater, a three-step method to treat cleaning wastewater was proposed, that is coagulate-UASB-SBR. The results from experiments indicated that CODcr containted in the cleaning wastewater can be eliminated with the help of deposit, the waste water in biochemical treatment had changed for the better. The treatment effect can reach the secondary standards of GB8978-1996.The CODcr is a good chemistry index to analysis the effects.
     The result of coagulate treatment showed that the best pH was 2.0,the best coagulant were sodium sulfate 2g、boracic acid 0.3g and potassium hydroxide 3g.As a result, the removal rate of CODcr reached 70.0%,the treatment effect can not reach the secondary standards of GB8978-1996. Through the result of coagulate treatment, B/C rose from 0.28 to 0.34. The waste water in biochemical treatment had changed for the better.
     The key place of this article is the biochemistry method, and uses the anaerobic granular sludge to optimize UASB emphatically to enhance to the waste water handling ability and the efficiency. Using the granular sludge through the 1st reactor to take the vaccination sludge separately,and the 2nd reactor vaccination sludge inspects reactor's elimination effect for the ordinary anaerobic digestion sludge, explained that granulation of anaerobic granular sludge obviously enhances regarding the UASB stabilizing treatment cleaning wastewater's efficiency.The greatest capacity carries VLR up to 9.11kgCOD/m~3·d, the removal rate of CODcr above 90%, pH is 7.5, water leakage SS is 135 mg/L, the volume of producing gases is 3.37m~3/m~3·d, the water leakage water quality belongs may the biochemistry good waste water. Research on the processing effect of the next treatment methodology-SBR reactor is conducted, the greatest capacity carries up to 9.6kgCOD/m3·d, the effluent CODcr concentration stabilized under 100mg/L,the effluent water quality had lowered the National Standard Level of China.
     In the experiment of using the anaerobic granular sludge to optimize UASB reactor, this paper studies inoculate sludge, V_(up), pH, the temperature reactor, HRT and VLR load to the water leakage water quality influence. In conclusion ,the three-step method used to deal with the chemistry adhesive cleaning wastewater, show it to be feasible in technique.The paper findings use the anaerobic granular sludge in UASB reactor to raise the processing efficiency, has the theory and the practice significance.
引文
[1] 侯伟忠,黄威,唐耀武.印刷生产废水处理[J].工业用水与废水,2006,37(4):80~82.
    [2] 郭丽,奚旦立,袁海源.含PVA退浆废水处理技术及应用的研究[J].今日科技,2007:45~47.
    [3] 孙琳,苗群,刘志强.混凝沉淀预处理包装印刷废水的试验研究[J].水资源保护,2005,21(1):75~78.
    [4] 厉成宣,范雪荣,王强等.退浆废水中PVA对环境的影响及其降解性能[J].印染助剂,2007,24(6):7~10.
    [5] 吴俊.印钞废水处理方法的实验研究[D].南京:南京工业大学化工学院,2001.
    [6] 尤春,张振方,童昕.PVA/明胶/淀粉水凝胶的制备及性能[J].塑料工业,2007,35(2):47~49.
    [7] 小明.聚乙烯醇在化纤中的应用及市场走势[J].化工中间体,2004,(8):22~23.
    [8] 何云,刘斌,梁明江.PVA 纤维在造纸业的应用浅析[J].四川防止科技 2004,(1):36~39.
    [9] 王婧,苑会林,马沛岚等.聚乙烯醇薄膜的生产及应用现状与展望[J].塑料,2005,34(2):12~17.
    [10] 郭大刚.聚乙烯醇在生物医学工程中的应用研究进展[J].生物医学工程学杂志,2005,22(3):602~605.
    [11] 董丽娟,雷武,夏明珠等.聚乙烯醇的生物降解[J].中国生物工程杂志,2005,25(7):28~33.
    [12] 孙丽琴.聚乙烯醇的生产及市场前景分析[J].石油化工技术经济,2002,18(3):33~36.
    [13] 曹扬,华兆哲,陈坚.Fenton预处理提高聚乙烯醇可生化性[J].食品与生物技术学报,2005,24(5):33~37.
    [14] 廖劲松,郭勇,庄桂.降解聚乙烯醇菌株原生质体的制备及融合[J].华南理工大学学报,2004,32(5):74~79.
    [15] 张惠珍,刘白玲,罗荣.PVA及其复合材料生物降解研究进展[J].中国科学院研究生院学报,2005,22(6):657~666.
    [16] 雷乐成,光助.Fenton氧化处理PVA退浆废水的研究[J].环境科学学报,2000,20(2):139~144.
    [17] 刘义新,李忻,丁荔萍.研究聚乙烯醇(PVA)对土壤理化性状的影响[J].中国农学通报,1996,12(5):14~16.
    [18] 刘义新,江玉平,于黎莎等.聚乙烯醇对香料烟产量、质量及土壤结构的影响[J].植物营养与肥料学报,1998,4(3):294~298.
    [19] 李亦文,薛淼,宁丽.新型含药聚乙烯醇水凝胶创面的细胞毒性研究[J].口腔材料器械杂志,1996,5(4):167~168.
    [20] 张韵慧,李宁,许建辰.聚乙烯醇在中药新剂型中的应用[J].中国中药杂志,2004,29(2):101~103.
    [21] 王定国,郑华,胡颖嘉.聚乙烯醇体内植人和降解产物生物相容性研究[J].北京生物医药工程,1996,15(3):165~169.
    [22] 徐碧.新型混凝剂的制备及在印染废水处理中的应用:[ 南京工业大学硕士学位论文],2004.
    [23] 王闯.混凝法在淀粉废水回收中的应用:[兰州铁道学院硕士学位论文],2003.
    [24] 许昭和,卓鉴波等.淀粉工业废水的絮凝处理研究[J].解放军预防医学杂志,1991, 9(6): 415~418.
    [25] 许保玖,安鼎年著.给水处理理论与设计.1992,P10.
    [26] 王传欣.絮凝法处理混合型造纸废水试验研究:[哈尔滨工业大学硕士学位论文],2005:16~17.
    [27] 国家环保局.水和废水监测分析方法(第3版)[M].北京:中国环境科学出版社,1989.
    [28] 顾润南,林苗.退浆废水中聚乙烯醇(PVA)含量的测定[J].东华大学学报,2005,31(2):106~109.
    [29] 武道吉,徐衍忠,陈冬辰等.烧杯搅拌试验中需探讨的几个问题[J].水处理技术,1998,2(1):51~53.
    [30] 董秉直,曹达文,范瑾初.最佳混凝投加量和pH去除水中有机物的研究[J].工业水处理,2002,22(6):29~30.
    [31] 潘孝宇.化学混凝与曝气生物滤池组合工艺用于再生水净化处理试验研究:[北京化工大学硕士学位论文],2005.
    [32] 陈坚.环境生物技术[M].北京:中国轻工业出版社,1999.
    [33] 钱易.现代废水处理新技术[M].北京:科学出版社,1993.
    [34] 杨朝晖.高浓度有机废水(养猪场废水)处理技术的研究:[湖南大学硕士学位论文],2002.
    [35] 国家环保局.高浓度有机废水厌氧生物处理技术[J].中国环境科学出版社,1992:190~197.
    [36] Shapiro M, Switzenbaum M S. Kinetics of anaerobic treatment, Bio-technology, 1984,6:729~734.
    [37] Goncalves R F, de Araujo V L, Bof V S. Anaerobic wastewater treatmentfundamentals. Water Science Technology, 1999, 40(8):71~79.
    [38] 贺延龄.废水的厌氧生物处理[M].中国轻工业出版社,1998.
    [39] 马兴元,俞从正,李小星等.废水厌氧处理的研究进展[J].水处理信息报导,2006,(1):19~22.
    [40] 谢海宁,刘秀.UASB厌氧处理工艺的现状与发展[J].企业家天地,2007,(3):189~190.
    [41] 崔玲,牛凤奇.UASB在废水处理中的应用及其影响因素[J].广西轻工业,2007,(4):80~81.
    [42] 石宪奎.玉米淀粉废水的厌氧处理技术研究:[北京科技大学博士学位论文],2005.
    [43] 刘雅巍,张春青,池勇志.处理难生物降解有机物的厌氧颗粒污泥形成的技术进展[J].天津城市建设学院学报,2004,10(4):263~265.
    [44] 王进,张振家,张志峰.加速厌氧污泥颗粒化的研究进展[J].环境污染治理技术与设备,2006,7(6):19~23.
    [45] 刘国红.反硝化颗粒污泥形成过程研究:[上海师范大学硕士学位论文],2006.
    [46] Lettinga, Getal.Use of the Upflow Sludge Blanket(UASB) Reactor Concept for Biological Wastewater Treatment,Especially for Anaerobic Treatment Biotechnol.Bioengin,1980,22:699~734.
    [47] T Eimitwalli. Anaerobic treatment of domestic sewage at low temperature. Water Science Technology,2001,44(4):33~40.
    [48] Salih Rebac, Sybren Gerbens. Kinetics of fatty acid degradation by sychrophilically grown anaerobic granular sludge. Bioresource Technology, 1999, 69: 241~248.
    [49] Fang H H. Start-up thermophilic(55℃) UASB reactor using diferent mesophilic Seed sludges.Water Science Technology,1996,34(5):445~451.
    [50] Frankin R J. New development in the design of anaerobic sludge bed reactor, waterScience Technology,1992,25(7):378~340.
    [51] Hulshof Pol. Granulation in UASB reactor. Water ScienceTechnology,1983,15(8):291~304.
    [52] Yu Liu, Hai-Lou Xu. Anaerobic granulation technology for wastewater treatment,World Journal of Microbiology&Biotechnology,2002,18:99~113.
    [53] 唐一.碱度及水力负荷对 UASB 反应器中污泥颗粒化的影响:[清华大学硕士学位论文],1989.
    [54] 曹刚,徐向阳,冯孝善.碱度对厌氧污泥颗粒化的影响[J].中国给水排水,2002, 18:8~11.
    [55] Souza M E.Criteria for the utilization design and operation of UASB reactor.Water Science Technology,1986,18(12):55~65.
    [56] R.E.Speece.工业废水的厌氧生物技术[M].北京:建筑工业出版社,2001.
    [57] Chen J, Lun S Y. Study on mechanism of anaerobic sludge granulation in UASB reactors. Water Science and Technology,1993,28:171~178.
    [58] Alves M, Cavaleiro AJ. Characterization by image analysis of anaerobic sludge under shock conditions. Water Science Technology,2000,41:207~214.
    [59] 李亚新.激活甲烷菌的微量元素及其补充量的确定[J].环境污染与防治,2001,23(3):17~19.
    [60] Alphenaar P A, Visser A, Lettinga G. The efect of liquid upflow velocity and Hydraulic retention time on granulation in UASB reactors treating wastewater with ahighsulphate content. Bioresource Technology,1993,43:238~249.
    [61] 郭养浩.UASB反应器中影响污泥颗粒化的工程因素[J].生物工程学报,1997,13(1):76~82.
    [62] 任洪强.生产性 UASB 反应器快速启动过程研究[J].中国沼气,2000,18(3):17~20.
    [63] ZeikusJ G .Mcrobial populations in digestors anaerobic digestion,Applied Science,1980 ,28(6):61~87.
    [64] 吴唯民.升流式厌氧污泥床反应器颗粒污泥形成及其特性研究:[清华大学硕士论文], 1984.
    [65] 刘志杰.常温 UASB 反应器处理啤酒废水的生产性启动研究:[清华大学硕士论文],1984.
    [66] 李亮.UASB-SBR 工艺处理城市生活污水的试验研究:[武汉大学硕士学位论文],2005.
    [67] Ng WJ. Aerobic treatment of Piggery waste water with the sequencing batch reactor. Bio.Waste,1987,22:285~294.
    [68] Ng WJ,Chin K .Treatment of Piggery waste water by expanded bed anaerobic filters. Biol.Waste,1988,26:215~228.
    [69] 陈国喜.SBR生化系统的应用及其发展[J].环境科学进展,1998,6(2):35~39.
    [70] M Delgado. Organic and inorganic nutrients removed from pig slury by hyacinth.Enviorn Sci Health A ,1992,27(3):353~368.
    [71] 王东海.处理难降解有机物的新型SBR反应器的发展[J].环境科学进展,1999,7(6):38~43.
    [72] 余观喜.浅论SBR工艺及其发展类型[J].建设科技,2006:104~105.
    [73] 蒋袁曦.活性污泥膨胀成因理论分析[J].上海水务,2007,23:6~7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700