电离辐射后少突胶质细胞基因表达谱改变的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在大脑、头颈部肿瘤和一些颅内良性疾病的治疗中,大脑和脊髓等重要的剂量限制性器官往往会临近或位于射野范围之内,放射治疗后除了部分病人死于肿瘤局部未控之外,约有50%的长期生存患者会发生不同程度的放射性后遗症,其中以放射性脑或脊髓损伤的病情较为严重,患者的生活质量明显降低。基于以上原因,中枢神经系统(central nervous system, CNS)的电离辐射效应的研究已经全面展开。目前对于放射性脑损伤发病机理和早期诊断的研究还相对较少,至今仍无有效的早期诊断和治疗措施,所以这些研究工作对肿瘤放射治疗学的发展有着重要的理论意义和应用价值。
     病理学改变的研究表明,早期脑损伤以血管系统变化为主,没有特异性;晚期则出现较典型的脱髓鞘、胶质细胞增生与退行性改变、毛细血管阻塞和白质坏死等四大特征。由于血管损伤的广泛性和少突胶质细胞(oligodendrocyte, OL)是CNS中唯一能合成髓鞘的细胞,因此血管内皮细胞和OL被确立为放射性脑损伤的辐射靶细胞,OL成为发病机理研究的重点之一。随着研究的深入,目前认为主要有四种因素参与了放射性脑损伤的发生与发展,其分别是:血管损伤、少突胶质前体细胞及成熟OL耗竭、神经干细胞减少和细胞因子表达异常。
     近几年来,关于OL方面的研究大多集中于细胞和分子水平,主要内容包括电离辐射后OL的凋亡及其发生机制、少突胶质前体细胞和成熟OL的辐射反应性以及辐射剂量与分割方式影响等方面。然而,对于OL的研究没有与发生放射性脱髓鞘病变机制形成密切的相关性;早期和亚急性期细胞、分子反应的特性与晚期损伤病理学改变的关系仍不清楚。在神经病学和神经生物学领域的研究中,有许多关于“OL损伤”和“脱髓鞘病变”的文献报道,脱髓鞘是普遍的或特征性的病变,OL也被证实是多种致病因素(外伤、缺血、缺氧和异常免疫反应等)易受攻击的靶细胞。目前的研究表明少突胶质细胞系各阶段的特异性标志分子已基本明确,可以通过不同标记物的组合来区分它们;少突胶质-2型星形胶质前体细胞(oligodendrocyte-type 2 astrocyte progenitor cells, O2A)离体培养的成功也为研究其增殖、迁徙、分化特性及与脱髓鞘病变的关系提供了实验细胞模型;在正常成年大脑与脊髓内存在着约占胶质细胞5~8%的具有分化潜能的前体细胞,一定程度的损伤性刺激后可以使它们发生增殖、迁徙、分化和再生,这为神经损伤的治疗提供了新的思路。
     一、少突胶质细胞纯化培养的实验研究
     目的获得芯片检测所需要的纯化OL。
     方法采用改良的恒温振荡、差速贴壁法进行O2A的纯化培养,并通过体外诱导分化使之为成熟的OL;应用免疫荧光双重标记方法进行OL的细胞鉴定。
     结果OL免疫荧光标记为A2B5标记阴性、MBP或GalC标记阳性;OL纯度达98%,且细胞数量达到5×106个。
     二、电离辐射后少突胶质细胞基因表达谱变化的离体实验
     目的观察电离辐射前后OL基因表达的早期变化规律。
     方法对纯化的OL采用6MV-X线照射10Gy剂量,用表达谱芯片检测比较对照组(1组)与照射后1hr、4hr组(2、3组)各基因mRNA表达的变化。
     结果三组细胞杂交后的基因检出率分别为42.81%、41.64%、45.31%;2比1上调基因数为27个,下调基因数为164个,3比1上调基因数为295个,下调基因数为302个,3比2上调基因数为510个,下调基因数为320个;基因功能分类结果共有79大类1079个基因被列出,具体功能分类包括:细胞生理过程、肿瘤凋亡、新陈代谢、细胞周期、细胞通讯、蛋白结合等。
     三、与早期放射性脑损伤相关的功能基因定量分析
     目的验证芯片结果可靠性的同时进一步探讨候选基因在OL内差异表达的意义。
     方法依据芯片检测结果选出9个在早期放射性脑损伤中可能发挥重要调控作用的候选基因,应用实时荧光定量RT-PCR的方法对其mRNA进行定量分析。
     结果荧光定量RT-PCR基因定量与基因芯片分析结果比较,27个mRNA检测结果中有22个结果一致,符合率为81.5%;三组样本中各基因ΔCt值分别为:①胶质原纤维酸性蛋白:1.3777、2.2266、5.3992;②髓鞘碱性蛋白:-3.4061、-2.6133、-2.0232;③载脂蛋白E:12.1203、14.7452、17.2264;④促甲状腺激素释放激素:5.8994、8.2740、2.4709;⑤甲状腺激素受体α:6.3269、5.8081、6.4793;⑥转化生长因子β2:4.6782、5.2108、5.1181;⑦早期生长反应2:10.0840、7.4766、8.5754;⑧神经细胞黏附分子1:3.7024、3.9211、5.6716;⑨S100蛋白β多肽:2.5607、5.5696、4.2581。
     结论
     1.通过改良的恒温振荡法和差速贴壁法进行O2A的纯化培养,并诱导分化为纯化的OL,免疫荧光标记为A2B5标记阴性、MBP或GalC标记阳性;OL纯度达98%,且细胞数量达到5×106个,符合基因芯片检测要求。
     2.照射后早期就发生了电离辐射导致的OL基因表达谱的改变;芯片检测结果提示发生变化的OL基因包括细胞损伤相关基因、细胞保护相关基因和损伤修复相关基因,这些基因之间的动态平衡变化决定了辐射对OL的最终生物学效应。
     3.应用实时荧光定量RT-PCR的方法对候选基因mRNA进行定量分析,结果与芯片检测基因mRNA的结果基本一致,两者比较在检测的特异性上更加近似,而检测的敏感性上前者优于后者;对候选基因mRNA进行定量分析,进一步了解了它们在放射性脑损伤早期的变化情况,GFAP、MBP、apoE、TGFβ2和NCAM-1 mRNA下调的变化可能与OL的损伤机制相关;而TRH、THRα和EGR2 mRNA上调以及S100βmRNA下调的变化可能与OL的修复与保护机制相关。
Ionizing radiation remains a major treatment modality for primary and metastatic tumors of the central nervous system (CNS) and the head-neck. In addition, application of radiation in some other nonneoplastic disorders of the brain is increasing. In the treatment of tumors within or adjacent to the brain and spinal cord, this complications is associated with a high risk of morbidity, which can be especially devastating to patients. For this reason, this effect of radiation on the CNS has been the basis for extensive research. The pathogenesis and the early stage diagnosis of the radiation-induced CNS injury were insufficient at the present time. Studying extensively will be significantly to the development of radiation oncology.
     Pathological analysis of radiation-induced CNS injury confirmed that vascular abnormalities appeared atypical in the early stage. Late changes of the brain can be distinguished: Demyelination, proliferative and degenerative glial reactions, capillary occlusion and white matter necrosis. Because vascular abnormalities and demyelination dominate the histological presentation of radiation injury in the CNS, the vasculature and the oligodendrocytes lineage have traditionally been considered the primary radiation targets in the CNS. With the development of these research works, at least four factors contribute to the development of CNS toxicity: Damage to vessel structures; deletion of oligodendrocyte-2 astrocyte progenitors (O-2A) and mature oligodendrocytes; deletion of neural stem cell populations in the hippocampus, cerebellum and cortex; generalized alterations of cytokine expression.
     Both recent laboratory and clinical data have been used to establish the mechanisms of oligodendrocytes apoptosis, radiation effects of O-2A and mature oligodendrocytes, the response to dose per fraction and number of fractions. In contrast, the relationships between the radiation response to oligodendrocytes and the mechanisms of demyelination remain unclear. The cellular and molecular processes responsible for the histological presentation of radiation induced CNS injury remain poorly defined. There are a lot of reports in neurological and neurobiological research that oligodendrocytes were also targets of injury in several pathological conditions, such as trauma, ischemia, hypoxia, abnormal immune reaction. Recent studies indicated that the oligodendrocytes lineage express the cell-specific antigens in the specific stage. The methods have been established to obtaining more pure O-2A progenitor cells. After pathological stimulation these O-2A progenitor cells were proliferated, migrated and differentiated, which provided new avenues to explore the new therapy strategy for the CNS injury.
     PartⅠThe method for culture of rats’pure oligodendrocytes
     Objective To establish the method of obtaining more pure O-2A progenitor cells, so as to build oligodendrocytes culture for subsequentant microarray research.
     Methods Based on the differential properties of cellular adhesions and developmental time–course, O-2A progenitor cells were isolated at the onset of the layer of T1A with a standard shaking method and then purified with the differential adhesion method combining with using the growth factors, and further O-2A progenitor cells differentiated into oligodendrocytes depending on the culture medium. Immunocytochemistry labeling for cell-specific antigens had been done to characterize oligodendrocytes.
     Results The mature oligodendrocytes expressed MBP or GalC, whereas did not express the A2B5 antigens. The purity of oligodendrocytes was 98% and the quantities were 5×106.
     PartⅡEarly gene expression profile in oligodendrocytes after exposure to ionizing radiation in vitro
     Objective To characterize the cellular functions associated with the altered transcript profiles of oligodendrocytes exposed to in vitro X-ray irradiation.
     Methods The total RNA was extracted from oligodendrocytes in unirradiated control (Group 1) and at 1 hour (Group 2), 4 hour (Group 3) after 6MV X-ray irradiation at 10Gy, hybridized to Affymetrix RAT230 2.0 Array, and evaluated the difference and screening the genes expressed differently.
     Results The expression rate of gene chips in three groups was 42.81%, 41.64% and 45.31% respectively. The genes with 2-fold expressed differentially include 27 genes up-regulated and 164 genes down-regulated in Group 2 vs. Group 1, 295 genes up-regulated and 302 genes down-regulated in Group 3 vs. Group 1, 510 genes up-regulated and 320 genes down-regulated in Group 3 vs. Group 2. According to functional categories results, there were 1079 genes expressed. The numbers of functional classification were 79. The annotated genes functional classification was associated with oligodendrocytes injury, repair and protection, such as cellular physiological process, apoptosis or tumor, cell cycle, metabolism, cell communication, receptor binding, et al.
     PartⅢReal-time RT-PCR analysis of functional gene expression in early radiation-induced CNS injury
     Objective To validate the microarray results and discuss these significantly modulated genes in oligodendrocytes.
     Methods Quantitative real-time RT-PCR was performed to analysis 9 genes mRNA for selected radiation-modulated genes.
     Results Comparing with the results between the mircoarray and the real-time RT-PCR, the coincidence rate was 81.5%.ΔCt value of 9 genes included:①glial fibrillary acidic protein: 1.3777, 2.2266, 5.3992;②myelin basic protein: -3.4061, -2.6133, -2.0232;③apolipoprotein E: 12.1203, 14.7452, 17.2264;④thyrotropin releasing hormone: 5.8994, 8.2740, 2.4709;⑤thyroid hormone receptorα: 6.3269, 5.8081, 6.4793;⑥transforming growth factor, beta 2: 4.6782, 5.2108, 5.1181;⑦early growth response 2: 10.0840, 7.4766, 8.5754;⑧neural cell adhesion molecule 1: 3.7024, 3.9211, 5.6716;⑨S100 protein, beta polypeptide: 2.5607, 5.5696, 4.2581.
     Conclusions
     1. Pure oligodendrocytess expressed MBP or GalC positive and A2B5 negative epitope. The purity and the quantities matched the criterion of microarray.
     2. Radiation-induced changes in oligodendrocytes gene expression took place early after irradiation. The findings suggest that irradiation of the oligodendrocytes induced the expression of genes involved in damaging, protective and reparative functions, while the dynamic balance of these modulated gene decided the ultimate radiation-induced pathophysiological effects.
     3. The results of real-time RT-PCR coincided with the results of microarray. Both of them were approximate in the testing particularity, while real-time RT-PCR was superior to microarray in the testing sensitivity. These real-time RT-PCR results revealed that gene expression changed during the early radiation-induced CNS injury, and that, down-modulating GFAP, MBP, apoE, TGFβ2, NCAM-1 mRNA coincided with the mechanisms of the oligodendrocytes damaging, while up-modulating TRH, THRα, EGR2 mRNA and down-modulating S100βmRNA coincided with the mechanisms of the oligodendrocytes protective and reparative functions.
引文
1 Nordal RA, Wong CS. Molecular targets in radiation-induced blood-brain barrier disruption. Int. J. Radiat. Oncol. Biol. Phys, 2005, 62(1):279-287.
    2 Coderre JA, Morris GM, Micca PL, et al. Late effects of radiation on the central nervous system: role of vascular endothelial damage and glial stem cell survival. Radiat. Res, 2006, 166(3):495-503.
    3 Belka C, Budach W, Kortmann RD, et al. Radiation induced CNS toxicity-molecular and cellular mechanisms. Br J Cancer, 2001, 85(9):1233-1239.
    4 Shaw EG, Robbins ME. The management of radiation-induced brain injury. Cancer Treat Res, 2006, 128:7-22.
    5 Raber J, Rola R, LeFevour A, et al. Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis. Radiat. Res, 2004, 162(1):39-47.
    6 Monje ML, Mizumatsu S, Fike JR, et al. Irradiation induces neural precursor-cell dysfunction. Nature Medicne, 2002, 8(9):955-962.
    7 Atkinson S, Li YQ, Wong CS. Changes in oligodendrocytes and myelin gene expression after radiation in the rodent spinal cord. Int. J. Radiat. Oncol. Biol. Phys, 2003, 57(4):1093-1100.
    8 Raber J, Fan Y, Martsumori Y, et al. Irradiation attenuates neurogenesis and exacerbates ischemia-induced deficits. Ann. Neurol, 2004, 55(3):381-389.
    9 Fukuda A, Fukuda H, Swanpalmer J, et al. Age-dependent sensitivity of the developing brain to irradiation is correlated with the number and vulnerability of progenitor cells. J. Neurochem, 2005, 92(3):569-584.
    10李华杰,包仕尧,田野,等.大鼠全脑照射后早期大脑NG2和O4表达变化.中华放射肿瘤学杂志, 2005, 14(1):64-67.
    11 Hinks GL, Chari DM, O’Leary MT, et al. Depletion of endogenous oligodendrocyte progenitors rather than increased availability of survival factors is a likely explanation for enhanced survival of transplanted oligodendrocyte progenitors in X-irradiation compared to normal CNS. Neuropathol. & Appl. Neurobiol, 2001, 27(1):59-67.
    12 Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neruogenesis. Science, 2003, 302(5651):1760-1765.
    13 Deng W, Poretz RD. Oligodendroglia in developmental neurotoxicity. Neurotoxicology, 2003, 24(2):161-178.
    14胡建国,陆佩华,徐晓明.少突胶质细胞生物学功能与相关疾病研究进展.生理科学进展, 2004, 35(1):39-41.
    15 Hampton DW, Rhodes KE, Zhao C, et al. The response of oligodendrocyte precursor cells, astrocytes and microglia to a cortical stab injury, in the brain. Neuroscience, 2004, 127(4):813-820.
    16 Dewar D, Underhill SM, Goldberg MP. Oligodendrocytes and ischemic brain injury. J. Cereb. Blood Flow. & Metab, 2003, 23(3):263-274.
    17 Kotter MR, Li WW, Zhao C, et al. Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J. Neurosci, 2006, 26(1):328-332.
    18 Schwab JM, Bernard F, Moreau-Fauvarque C, et al. Injury reactive myelin/ oligodendrocyte-derived axon growth inhibition in the adult mammalian central nervous system. Brain Res. Rev, 2005, 49(2):295-299.
    19 Cai Z, Lin S, Fan LW, et al. Minocycline alleviates hypoxic-ischemic injury to developing oligodendrocytes in the neonatal rat brain. Neuroscience, 2006, 137(2):425-435.
    1. Herrera J, Yang H, Zhang SC, et al. Embryonic-derived glial–restricted precursor cells (GRP cells) can differentiate into astrocytes and oligodendrocytes in vivo. Exp. Neurol, 2001, Sep; 171(1):11-21.
    2. Bunge RP. Glial cells and the central myelin sheath. Physiol. Rev, 1968, 48(1):197-251.
    3. McCarthy KD, de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell Biol, 1980, 85(3):890-902.
    4. Hirayma M, Sillberg DH, Lisak PH, et al. Long-term culture of oligodendrocytes isolated from rat corpus callosum by Percoll density granident. Lysis by polyclonal antigalactocerebroside serum. J. Neuropathol. Exp. Neurol, 1983, 42(1): 16-28.
    5. Jingyi Shi, Adrian M, Ben A, et al. Purification and characterization of adult oligodendrocyte precursor cells from the rat optic nerve. J. Neurosci, 1998, 18(12): 4627-4636.
    6. Zhang SC, Lundberg C, Lipsitz D, et al. Generation of oligodendroglial progenitors from neural stem cells. J. Neurocytol, 1998, 27(7): 475-489.
    7. Boulton A, Baker G, Walz W, et al. Practical cell culture techniques. Neuromethods, 1992, 23(1):269-352.
    8. Levitt MSP. Target-derived astroglial regulate axonal outgrowth in a regin-specific manner. Dev. Biol, 1992, 149(2):278-294.
    9. Blakemore WF, Olby NJ, Franklin RJM, et al. The use of transplanted glial cells toreconstruct glail environments in the CNS. Brain Pathol, 1995, 5(4):443-450.
    10. Hao C, Gullbert LJ, Pedoroff S, et al. Production of colony stimulating factor-1 (CSF-1) by mouse astroglia in vitro. J. Neurosci. Res, 1990(27):314-323.
    11. Barres BA, Burne JF, Holtmann B, et al. Ciliary neurotrophic factor enhance the rate of oligodendrocyte generation. Mol. & Cell Neurosci, 1996, 8(2-3):146-156.
    12. Tang DG., Tokumoto YM, Raff MC. Long-term culture of purified postnatal oligo -dendrocyte precursor cells: evidence for an intrinsic maturation program that plays out over months. J. Neurosci, 2000, 148(5):971-984.
    13. Levi G., Agresti C., D’Urso D., et al. Is the oligodendroglial differentiation of bipotential oligodendrocyte type-2 astrocyte progenitors promoted by autocrine factors? Neurosci. Lett, 1991, 128(1):37-41.
    14. Ahlgren SC, Wallace H, Bishop J, et al. Effects of thyroid hormone on embryonic oligodendrocyte precursor cell development in vivo and in vitro. Mol. & Cell Neurosci, 1997, 9(5-6):420-432.
    15. Gu J, Royland JE, Wiggins RC, et al. Selenium is required for normal upregulation of myelin genes in differentiating oligodendrocytes. J. Neurosci. Res, 1997, 47(6):626-635.
    16. Althaus HH, Kloppner S, Schmidt-schultz T, et al. Nerve growth factor induces proliferation and enhances fiber regeneration in oligodendrocytes isolated from adult pig brain. Neurosci. Lett, 1992, 135(2):219-223.
    17. Miller RH. Regulation of oligodendrocyte development in the vertebrate CNS. Prog. Neurobiol, 2002, 67(6): 451-467.
    1 Schena M, Shalon D, Dais R W, et al. Quantitative monitoring of gene expression with a complementary DNA microarray. Science, 1995, 270(2):467-470.
    2 Schena M, Shalon D, Heller R, et al. Parallel human genome analysis: Microarray-based expression monitoring of 1000 genes. Prog. Natl. Aced. Sci. USA, 1996, 93(20):10614-10619.
    3 Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer:Class discovery and class prediction by gene expression monitor. Science, 1999, 286(5439):531-537.
    4 Welford SM, Gregg J, Chen E, et al. Detection of differentially expressed genes in primary tumor tissues using representational differences analysis coupled to microarray hybridization. Nucleitic Acids Res, 1998, 2(12):3059-3060.
    5 Derisi J, Penland L, Brown PO, et al. Use of a cDNA microarray to analyze gene expression patterns in human cancer. Nat. Genet, 1996, 14(4):457-460.
    6 Wang K, Gan L, Jeffery E, et al. Monitoring gene expression profile changes in ovarian carcinomas using cDNA microarray. Gene, 1999, 229(1-2):101-108.
    7 Sgroi DC, Teng S, Robinson G, et al. In vivo gene expression profile analysis of human breast cancer progression. Cancer Res, 1999, 52(22):5656-5661.
    8 Bubendorf L, Kolmer M, Kononen J, et al. Hormone therapy failure in human prostate cancer: analysis by complementary DNA and tissue. J. Natl. Cancer Inst, 1999, 91(20):1758-1764.
    9 Lock CB, Heller RA. Gene microarray analysis of multiple sclerosis lesions. Trends Mol. Med, 2003, 9(12):535-541.
    10 Belka C, Budach W, Kortmann RD, et al. Radiation induced CNS toxicity-molecular and cellular mechanisms. Br J Cancer, 2001, 85(9):1233-1239.
    11 Blackshaw S, FraioLi RE, Furukawa T, et a1. Comprehensive analysis of photoreceptor gene expression and the identification of candidate retinal disease genes. Cell, 2001, 107(5):579-589.
    12 Ermolaeva O, Rastogi M, Pruitt KD, et al. Data management and analysis for gene expression array. Nat. Genet, 1998, 20(1):19-23.
    13陈应柱,田野,包仕尧.少突胶质细胞电离辐射损伤机制的研究进展.辐射防护, 2006; 26(1): 24-28.
    14 Coderre JA, Morris GM, Micca PL, et al. Late effects of radiation on the central nervous system: role of vascular endothelial damage and glial stem cell survival. Radiat. Res, 2006, 166(3):495-503.
    15 Sofroniew MV. Reactive astrocytes in neural repair and protection. Neuroscientist, 2005, 11(5):400-407.
    16 Monje ML, Palmer T. Radiation injury and neurogenesis. Curr. Opin. Neurol, 2003,16(2):129-134.
    17 Bartholdi D, Schwab ME. Oligodendroglial reaction following spinal cord injury in rat: transient upregulation of MBP mRNA. Glia, 1998, 23(3):278-284.
    18 Huber AB, Weinmann O, Brosamle C, et al. Patterns of Nogo mRNA and protein expressing in the developing and adult rat and after CNS lesions. J. Neurosci, 2002, 22(9):3553-3567.
    19 Bush TG, Puvanachandra N, Horner CH, et al. Leukocyte infiltration, neuronal degeneration, and neurite outgrowth after ablation of scar-forming, reactive astrocytes in adult transgenic mice. Neuron, 1999, 23(2):297–308.
    20 Yin E, Nelson DO, Coleman MA, et al. Gene expression changes in mouse brain after exposure to low-dose ionizing radiation. Int. J. Radiat. Biol, 2003, 79(10):759–775.
    21 Mahmoud-Ahmed AS, Atkinson S, Wong CS. Early gene expression profile in mouse brain after exposure to ionizing radiation. Radiat. Res, 2006, 165(2):142–154.
    22 Sonis ST, Scherer J, Phelan S, et al. The gene expression sequence of radiated mucosa in an animal mucositis model. Cell Prolif, 2002, 35(Suppl. 1):93-102.
    23 Slonim DK. From patterns to pathways: Gene expression data analysis comes of age. Nat. Genet, 2002, 32 (Suppl.):502–508.
    24 Belka C, Rudner J, Wesselborg S, et al. Differential role of caspase-8 and BID activation during radiation-and CD95-induced apoptosis. Oncogene, 2000, 19(9): 1181-1190.
    25 Sano K, Morii K, Sato M, et al. Radiation-induced diffuse brain injury in the neonatal rat model-radiation-induced apoptosis of oligodendrocytes. Neurol. Med. Chir, 2000, 40(10):495-500.
    26 Schulthesis TE, Kun LE, Ang KK, et al. Radiation response of the central nervous system. Int. J. Radiat. Oncol. Biol. Phys, 1995, 31(5):1093-1101.
    27丁维军,俞秋兴,田野,等.大鼠全脑照射后炎性细胞因子含量变化的研究.中华放射肿瘤学杂志, 2003, 12(4):276-277.
    28 Raju U, Gumin GJ,Tofilon PJ. Radiation-induced transcription factor activation in therat cerebral cortex. Int. J. Radiat. Biol, 2000, 76(8):1045-1053.
    29 Thomas EA, Copolov DL, Sutcliffe JG. From pharmacotherapy to pathophysiology: emerging mechanisms of apolipoprotein D in psychiatric disorders. Curr. Mol. Med, 2003, 3(5):408-418.
    30 Hansen PB, Olsen NV. Beta 2-microglobulin in medical disease. Ugeskr. Laeger, 1989, 151(45):2960-2962.
    31 Collavin L, Buzzai M, Saccone S, et al. cDNA characterization and chromosome mapping of the human GAS2 gene. Genomics, 1998, 48(2):265-269.
    32 Arvanitis DN, Wang H, Bagshaw RD, et al. Membrane-associated estrogen receptor and caveolin-1 are present in central nervous system myelin and oligodendrocyte plasma membranes. J. Neurosci. Res, 2004, 75(5):603-613.
    33 Gaudreault SB, Blain JF, Gratton JP, et al. A role for caveolin-1 in post-injury reactive neuronal plasticity. J. Neurochem, 2005, 92(4):831-839.
    34 Davies JE, Tang X, Bournat JC, et al. Decorin promotes plasminogen/plasmin expression within acute spinal cord injuries and by adult microglia in vitro. J. Neurotrauma, 2006, 23(3-4):397-408.
    35 Haas MA, Vickers JC, Dickson TC. Rho kinase activates ezrin-radixin-moesin (ERM) proteins and mediates their function in cortical neuron growth, morphology and motility in vitro. J. Neurosci. Res, 2007, 85(1):34-46.
    36 Steffensky M, Steinbach K, Schwarz U, et al. Differential impact of semaphorin 3E and 3A on CNS axons. Int. J. Dev. Neurosci, 2006, 24(1):65-72.
    37 Ohtsuka T, Nakanishi H, Ikeda W, et al. Nexilin: a novel actin filament-binding protein localized at cell-matrix adherens junction. J. Cell Biol, 1998, 143(5):1227-1238.
    38 Araki T, Mibrandt J. Ninjurin, a novel adhesion molecule, is induced by nerve injury and promotes axonal growth. Neuron, 1996, 17(2):353.
    39 Rogers SD, Peters CM, Pomonis JD, et al. Endothelin B receptors are expressed by astrocytes and regulate astrocyte hypertrophy in the normal and injured CNS. Glia, 2003, 41(2):180-190.
    40 Shibaguchi H, Himeno A, Shigematsu K, et al. Transient hypoxia/hypoglycemia upregulates endothelin B receptors in cultured rat astrocytes. Glia, 2000, 31(1):91-94.
    41 Rogers SD, Demaster E, Catton M, et al. Expression of endothelin-B receptors by glia in vivo is increased after CNS injury in rats, rabbits, and humans. Exp. Neurol, 1997, 145(1):180-195.
    42 Schwarting GA, Henion TR, Nugent JD, et al. Stromal cell-derived factor-1 (chemokine C-X-C motif ligand 12) and chemokine C-X-C motif receptor 4 are required for migration of gonadotropin-releasing hormone neurons to the forebrain. J. Neurosci, 2006, 26(25):6834–6840.
    43 Butt AM. Neurotransmitter-mediated calcium signalling in oligodendrocyte physiology and pathology. Glia, 2006, 54(7):666-675.
    44 Nguyen MD, Mushynski WE, Julien J-P. Cycling at the interface between neurodevelopment and neurodegeneration. Cell Death Differentiation, 2002, 9(12):1294-1306.
    45 Kang GM, Park KP, Cho CK, et al. Hspa4 (HSP70) is involved in the radioadaptive response: results from mouse splenocytes. Radiat. Res, 2002, 157(7):650-655.
    46 South SA, Deibler GE, Tzeng SF. Myelin basic protein (MBP) and MBP peptides are mitogens for cultured astrocytes. Glia, 2000, 29(1):81-90.
    47 Tang CH, Lee JW, Galvez MG, et al. Murine cathepsin F deficiency causes neuronal lipofuscinosis and late-onset neurological disease. Mol. & Cell Biol, 2006, 26(6):2309-2316.
    48 Oka Y, Ibuki T, Matsumura K, et al. Interleukin-6 is a candidate molecule that transmits inflammatory information to the CNS. Neuroscience, 2007, 145(2):530-538.
    49 McEwen BS, Reagan LP. Glucose transporter expression in the central nervous system: relationship to synaptic function. Eur. J. Pharmacol, 2004, 490(1-3):13-24.
    50 Cherchenko AP, Chelnakova IS. Activity of glutathione reductase and glutathione-S-transferase in rabbit brain tissue in the long-term post-traumatic period. Ukr. Biokhim. Zh, 2001, 73(4):100-103.
    51 Carvalho F, Fernandes E, Remiao F, et al. Adaptative response of antioxidant enzymes in different areas of rat brain after repeated d-amphetamine administration. Addict. Biol, 2001, 6(3):213-221.
    52 Jaworski DM. Differential regulation of tissue inhibitor of metalloproteinase mRNA expression in response to intracranial injury. Glia, 2000, 30(2):199-208.
    53 Nygardas PT, Gronberg SA, Heikkila J, et al. Treatment of experimental autoimmune encephalomyelitis with a neurotropic alphavirus vector expressing tissue inhibitor of metalloproteinase-2. Scand. J. Immunol, 2004, 60(4):372-381.
    54 Morris CM, Wilson KE. High throughput approaches in neuroscience. Int. J. Dev. Neurosci, 2004, 22(7):515-522.
    1. Back SA, Han BH, Luo NL, et al. Selective vulnerability of late oligodendrocyte progenitors to Hypoxia/ischemia. J. Neurosci, 2002, 22(2):455-463.
    2. Montgomery RA, Dallman MJ. Semi-quantitative polymerase chain reaction analysis of cytokine and cytokine receptor gene expression during thymic ontogeny. Cytokine, 1997, 9(10):717-726.
    3. Wall SJ, Edward DR. Quantitative reverse transcription-polymerase chain reaction (TR-PCR ): A comparison of primedropping, competitive, and real-time RT-PCRs. Anal Biochem, 2002, 300(2):269-273.
    4. Schmittgen TD. Real-time quantitative PCR. Methods, 2001, 25(4):383-385.
    5. Freeman WM, Walker SJ, Vrana KE. Quantitative RT-PCR: pitfall and potential. Bio Techniques, 1999, 26(1):112-125.
    6. Yin E, Nelson DO, Coleman MA, et al. Gene expression changes in mouse brain after exposure to low-dose ionizing radiation. Int. J. Radiat. Biol, 2003, 79(10):759–775.
    7. Mahmoud-Ahmed AS, Atkinson S, Wong CS. Early gene expression profile in mouse brain after exposure to ionizing radiation. Radiat. Res, 2006, 165(2):142–154.
    8.吕国蔚.医学神经生物学.第一版.北京:高等教育出版社, 2000.
    9.田野,刘春风,陈列松等.大鼠早期放射性脑损伤中星型胶质细胞的病理改变.江苏医药杂志, 2001, 27(5):321-323.
    10. Ahn M, Kim H, Kim JT, et al. Gamma-ray irradiation stimulates the expression of caveolin-1 and GFAP in rat spinal cord:a study of immunoblot and immunohistochemistry. J. Vet. Sci, 2006, 7 (4):309-314.
    11. South SA, Deibler GE, Tzeng SF. Myelin basic protein (MBP) and MBP peptides are mitogens for cultured astrocytes. Glia, 2000, 29(1):81-90.
    12. Chiang CS, McBride WH, Wither HR. Radiation-induced astrocytic and microglial responses in mouse brain. Radiother. Oncol, 1993, 29(1):60-68.
    13. Masliah E, Mallory M, Veinbergs I, et al. Alterations in apolipoprotein E expression during aging and neurodegeneration. Prog. Neurobiol, 1996, 50(5-6):493-503.
    14. Wang XS, Gruenstein E. Rapid elevation of neuronal cytoplasmic calcium by apolipoprotein E peptide. J. Cell Phlsiol, 1997, 173(1):73-83.
    15. Gutman CR, Strittmatter WJ, Weisgraber KH, et al. Apolipoprotein E binds to and potentiates the biological activity of ciliary neurotrophic factor. J. Neurosci, 1997, 17(16):6114-6121.
    16. Strittmatter WJ, Roses AD. Apolipoprotein E and Alzheimer’s disease. Annu. Rev. Neurosci, 1996, 19:53-77.
    17. Higuchi Y, Nelson GA, Vazquez M, et al. Apolipoprotein E expression and behavioral toxicity of high charge, high energy (HZE) particle radiation. J. Radiat. Res, 2002, 43 (Suppl):219-224.
    18. Villasana L, Acevedo S, Poage C, et al. Sex- and APOE isoform-dependent effects of radiation on cognitive function. Radiat. Res, 2006, 166(6):883-91.
    19. Heuer H, Schafer MK, Bauer K. Thyrotropin-releasing hormone (TRH), a signal peptide of the central nervous system. Acta. Med. Austriaca, 1999, 26(4):119-22.
    20. Nie Y, Schoepp DD, Klaunig JE, et al. Thyrotropin-releasing hormone (protirelin) inhibits potassium-stimulated glutamate and aspartate release from hippocampal slices in vitro. Brain Res, 2005, 1054(1):45-54.
    21. Faden AI, Movsesyan VA, Knoblach SM, et al. Neuroprotective effects of novel small peptides in vitro and after brain injury. Neuropharmacology, 2005, 49(3):410-24.
    22. Carre JL, Demerens C, Rodriguez PA, et al. Thyroid hormone receptor isoforms are sequentially expressed in oligodendrocyte lineage cells during rat cerebral development. J. Neurosci. Res, 1998, 54(5):584-594.
    23. Billon N, Jolicoeur C, Tokumoto Y, et al. Normal timing of oligodendrocyte development depends on thyroid hormone receptor alpha 1 (TRα1). EMBO J, 2002, 21(23):6452-6460.
    24. Billon, N, Tokumoto Y, Forrest D, et al. Role of thyroid hormone receptors in timing oligodendrocyte differentiation. Dev. Biol, 2001, 235(1):110-120.
    25. Bernal J. Thyroid hormones and brain development. Vitam. Horm, 2005, 71:95-122.
    26.田文艳,刘青蕊,李会敏.转化生长因子β与中枢神经系统疾病. 2004, 10(7):422-424.
    27. Siglienti I, Chan A, Kleinschnitz C, et al. Downregulation of transforming growth factor-beta2 facilitates inflammation in the central nervous system by reciprocal astrocyte/microglia interactions. J. Neuropathol. Exp. Neurol, 2007, 66(1):47-56.
    28. Kane CJ, Brown GJ, Phelan KD. Transforming growth factor-beta2 increases NMDA receptor-mediated excitotoxicity in rat cerebral cortical neurons independently of glia. Neurosci. Lett, 1996, 204(1-2):93-96.
    29. Sakamoto T, Kawazoe Y, Shen JS, et al. Adenoviral gene transfer of GDNF, BDNF and TGF beta 2, but not CNTF, cardiotrophin-1 or IGF1, protects injured adult motoneurons after facial nerve avulsion. J. Neurosci. Res, 2003, 72(1):54-64.
    30. Lagord C, Berry M, Logan A. Expression of TGFbeta2 but not TGFbeta1 correlates with the deposition of scar tissue in the lesioned spinal cord. Mol. & Cell Neurosci, 2002, 20(1):69-92.
    31. Okunieff P, Cornelison T, Mester M, et al. Mechanism and modification of gastrointestinal soft tissue response to radiation: role of growth factors. Int. J. Radiat. Oncol. Biol. Phys, 2005, 62(1):273-278.
    32. Schultze-Mosgau S, Wehrhan F, Grabenbauer G, et al. Transforming growth factor beta1 and beta2 (TGFbeta2 / TGFbeta2) profile changes in previously irradiated free flap beds. Head Neck, 2002, 24(1):33-41.
    33. Herdegen T, Kiessling M, Bele S, et al. The KROX-20 transcription factor in the rat central and peripheral nervous systems: novel expression pattern of an immediate early gene-encoded protein. Neurosci, 1993, 57(1):41-52.
    34. Parkinson DB, Bhaskaran A, Droggiti A, et al. Krox-20 inhibits Jun-NH2-terminal kinase/c-Jun to control Schwann cell proliferation and death. J. Cell Biol, 2004, 164(3):385-394.
    35. Jessen KR, Mirsky R. Signals that determine Schwann cell identity. J. Anat, 2002, 200(4):367–376.
    36. Smith PM, Sim FJ, Barnett SC, et al. SCIP/Oct-6, Krox-20, and desert hedgehog mRNA expression during CNS remyelination by transplanted olfactory ensheathing cells. Glia, 2001, 36(3):342-353.
    37. Dragunow M, Beilharz E, Sirimanne E, et al. Immediate-early gene protein expression in neurons undergoing delayed death, but not necrosis, following hypoxic-ischemic injury to the young rat brain. Brain Res. Mol. Brain Res, 1994, 25(1-2):19-33.
    38. Soriano MA, Tessier M, Certa U, et al. Parallel gene expression monitoring using oligonucleotide probe arrays of multiple transcripts with an animal model of focal ischemia. J. Cereb. Blood Flow Metab, 2000, 20(7):1045-1055.
    39. Coman I, Barbin G, Charles P, et al. Axonal signals in central nervous system myelination, demyelination and remyelination. J. Neurol. Sci, 2005, 233(1-2):67-71.
    40. Massaro AR. The role of NCAM in remyelination. Neurol. Sci, 2002, 22(6):429-435.
    41. Jovanova-Nesic K, Shoenfeld Y. MMP-2, VCAM-1 and NCAM-1 expression in the brain of rats with experimental autoimmune encephalomyelitis as a trigger mechanism for synaptic plasticity and pathology. J. Neuroimmunol, 2006, 181(1-2):112-21.
    42. Deloulme JC, Raponi E, Gentil BJ, et al. Nuclear expression of S100B in oligodendrocyte progenitor cells correlates with differentiation toward the oligodendroglial lineage and modulates oligodendrocytes maturation. Mol. & Cell Neurosci, 2004, 27(4):453-65.
    43. Van Eldik LJ, Wainwright MS. The Janus face of glial-derived S100B: beneficial and detrimental functions in the brain. Restor. Neurol. Neurosci, 2003, 21(3-4):97-108.
    44. Winocur G, Roder J, Lobaugh N. Learning and memory in S100-beta transgenic mice: an analysis of impaired and preserved function. Neurobiol. Learn. Mem, 2001, 75(2):230-43.
    45. Kogel D, Peters M, Konig HG, et al. S100B potently activates p65/c-Rel transcriptional complexes in hippocampal neurons: Clinical implications for the role of S100B in excitotoxic brain injury. Neuroscience, 2004, 127(4):913-20.
    1 Belka C, Budach W, Kortmann RD, et al. Radiation induced CNS toxicity-molecular and cellular mechanisms. Br. J. Cancer, 2001, 85(9):1233-1239.
    2 Blackshaw S, FraioLi RE, Furukawa T, et a1. Comprehensive analysis of photoreceptor gene expression and the identification of candidate retinal disease genes. Cell, 2001, 107(5):579—589.
    3 Ermolaeva O, Rastogi M, Pruitt KD,et al. Data management and analysis for gene expression array. Nat. Genet, 1998, 20(1):19-23.
    4 Wen WH, Bernstein L, Lescallett J, et al. Comparison of Tp53 mutations identified by o1igonuc1eotide microarrays and convertional DNA seguence analysis. Cancer Res, 2000, 60(10):2716-2722.
    5 Amundson SA, Bitterner M, Meltzer P, et a1. Induction of gene express as a monitor of exposure to ionizing radiation. Radiat. Res, 2001, 156(5):657—661.
    6 Tusher VG, Tibshiranni R, Chu G. Significant analysis of microarrays applied to the ionizing radiation response. PNAS, 2001, 98(9):5116—5121.
    7 Sonis ST, Scherer J, Phelan S, et al. The gene expression sequence of radiated mucosa in an animal mucositis model. Cell Prolif, 2002, 35(suppl. 1):93-102.
    8 Amundson SA, Grace MB, McLeland CB, et al. Human in vivo radiation-induced biomarkers: gene expression changes in radiotherapy patients. Cancer Res, 2004, 64(18):6368-6371.
    9 Baatout S, Derradji H, Petitfour O, et al. Mechanisms of radio-induced apoptosis. Can. J. Physiol. Pharmacol, 2002, 80(7):629-637.
    10 Chong MJ, Murray MR, Gosink EC, et al. Atm and Bax cooperate in ionizing radiation-induced apoptosis in the central nervous system. Proc. Natl. Acad. Sci. USA, 2000, 97(2):889-894.
    11 Raju U, Grnnin GJ, Tofilon PJ. Radiation-induced transcription factor activation in the rat cerebral cortex. Int. J. Radiat. Biol, 2000, 76(8):1045-1053.
    12 Zou LL, Huang L, Hayes RL, et al. Liposome-mediated NGF gene transfection following neuronal injury: potential therapeutic applications. Gene Ther, 1999, 6(6):994-1005.
    13 Morris CM, Wilson KE. High throughput approaches in neuroscience. Int. J. Dev. Neurosci, 2004, 22(7):515-522.
    1. Reed JC. Double identity for proteins of the Bcl-2 family. Nature, 1997, 387(6635):773-776.
    2. Antel JP, Williams K, Blain M, et al. Oligodendrocyte lysis by CD4+ T cells independent of tumor necrosis factor. Ann. Neurol, 1994, 35(3):341-348.
    3. Kipnis J, Avidan H, Markovich Y, et al. Low-doseγ-irradiation promotes survival of injured neurons in the central nervous system via homeostasis-driven proliferation of T cells. Eur. J. Neurosci, 2004, 19(5):1191-1198.
    4. Feldhaus B, Dietzel ID, Heumann R, et al. Effects of interferon-γand tumoe necrosis factor-αon survival and differentiation of oligodendrocyte progenitors. J. Soc. Gynecol. Investig, 2004, 11(2):89-96.
    5. Kykanides S, Moore AH, Olschowka JA, et a1. Cyclooxygenase-2 modulates brain inflammation-related gene expression in central nervous system radiation injury. Mol. Brain. Res, 2002, 4(2):159-169.
    6. Ulvestad E, Williams K, Matre R, et al. Fc receptors on cultured human microglia mediate cytotoxicity and phagocytosis of antibody-coated targets. J. Neuropathol. Exp. Neurol, 1994, 53(1):27-36.
    7. Hong HJ, Chiang CS, Campbell IL, et al. Induction of acute phase gene expression by brain raidiation. Int. J. Radiat. Oncol. Biol. Phys, 1995, 33(3):619-626.
    8. Lu FG, Wong CS. Radiation-induced apoptosis of oligodendrocytes and its association with increased ceramide and down-regulated protein kinase B/Akt activity. Int. J. Radiat. Biol, 2004, 80(1):39-51.
    9. Redford EJ, Hall SM, Smith KJ. Vascular changes and demyelination induced by the intraneural injection of tumor necrosis factor. Brain, 1995, 118(Pt 4): 869-878.
    10. Noel F, Raju U, Happel E, et al. X-irradiation-induced loss of O-2A progenitor cells in rat spinal cord is inhibited by implants of cells engineered to secrete glial growth factor 2. NeuroReport, 1999, 10(3):535-540.
    11. Zorrilla Zubilete MA, Ríos H, Silberman DM, et al. Altered nitric oxide synthase and PKC activities in cerebellum of gamma-irradiated neonatal rats. Brain Res, 2005,1051(1-2):8-16.
    12. Thorburne SK, Juurlink BHJ. Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress. J. Neurochem, 1996, 67(3):1014-1022.
    13. Scolding NJ, Morgan BP, Huston A, et al. The expression of complement regulatory proteins by adult human oligodendrocytes. J. Neuroimmunol, 1998, 84(1):69-75.
    14. Lock C. B., Heller R. A. Gene microarray analysis of multiple sclerosis lesions. Trends Mol. Med, 2003, 9(12):535-541.
    15. Liu HN, Giasson BI, Mushynski WE, et al. AMPA receptor mediated toxicity in oligodendrocyte progenitors involves free radical generation and activation of JNK, calpain and Caspase-3. J. Neurochem, 2002, 82(2):398-409.
    16. Belka C, Budach W, Kortmann RD, et al. Radiation induced CNS toxicity-molecular and cellular mechanisms. Br J Cancer, 2001, 85(9):1233-1239.
    17.陈应柱,田野,包仕尧.少突胶质细胞电离辐射损伤机制的研究进展.辐射防护, 2006, 26(1):24-28.
    18. Monje ML, Mizumatsu S, Fike JR, et al. Irradiation induces neural precursor-cell dysfunction. Nature Medicne, 2002; 8(9): 955-961.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700