缺氧缺血脑损伤恢复期神经细胞的凋亡机制及N-乙酰半胱氨酸的治疗作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分凋亡在三日龄大鼠缺氧缺血脑损伤恢复期的作用以及远期预后
     目的:围产期损伤后神经细胞持续凋亡是新生儿缺氧缺血性脑损伤(hypoxicischemic brain injury,HIBI)远期预后不良的机制之一,目前对于损伤后恢复期神经细胞凋亡的作用和机制研究较少。本研究通过3日龄大鼠缺氧缺血脑损伤模型,评估大脑损伤的细胞类型和凋亡基因在损伤后的持续表达,并通过免疫组织学、影像学和行为学评估大鼠成年期预后。
     方法:通过结扎右侧颈总动脉合并缺氧(6-7%)2.5小时,建立3日龄SD大鼠缺氧缺血脑损伤模型(HI组n=52,对照组n=41)。应用Oligo GEArray~(?)凋亡基因芯片比较脑损伤后12小时与损伤后7天凋亡基因表达的差异;应用免疫组织化学染色检测肿瘤坏死因子相关的凋亡诱导配体(TRAIL)及其死亡受体、Caspase-3在脑组织中的表达;大鼠成年后在42日龄进行大脑磁共振成像检查,44日龄采用Morris水迷宫测试其学习和空间记忆能力,48日龄进行MBP染色评估大脑髓鞘化。
     结果:①3日龄大鼠缺氧缺血脑损伤后,未成熟的神经元和少突胶质细胞均发生损伤。损伤后恢复期(HI后7天)细胞凋亡基因进一步激活,包括TNF及其受体家族、Bcl 2家族、Caspase家族,以及募集Caspase结构域和死亡诱导效应因子。②损伤后24小时和72小时脑组织TRAIL的死亡受体DR5主要表达在大脑皮层的板下层锥形神经元,缺氧缺血脑损伤显著增加DR5阳性细胞数(n=5,24小时:HI组右侧、左侧和对照组分别为130±62、72±17和35±20,F=6.54,p=0.013,两两比较HI右侧与左侧比较,p<0.05;72小时分别为147±67、85±30和58±15,F=4.71,p=0.033,两两比较HI右侧与对照组比较p<0.05);损伤后72小时,HI组右侧大脑皮质和脑室周Caspase-3阳性细胞数显著多于对照组右侧(286±61和171±63,n=4,t=2.613,p<0.05)。③42日龄时头部磁共振显示HI组大鼠右侧大脑皮质ROI值变异度与对照组没有显著性差异。HI组右侧皮质体积较左侧和对照组显著减小(分别为84±15.1、130.9±17.3和133.0±10.9[mm~3],F=25.3,p<0.001)。④水迷宫实验HI组上台花费时间明显较对照组长(第4日:52.71±35.87与17.80±8.85[s],p<0.01),上台成功率也明显低于对照组(第4日:60%与98.33%,p<0.001)。HI组大鼠在训练第二日在各项指标上均有提高,但其后的训练不能改善其表现。在第5日记忆测试中,虽然HI大鼠游泳的距离与对照组没有差异,其经过站台的次数显著少于对照组(0.3±0.5比1.1±0.8次,t=3.28,p<0.05)。缺氧后12小时表达NG2和04的未成熟少突胶质细胞数明显减少,而第48日龄时脑组织MBP染色显示HI组右侧大脑髓鞘化明显低于对侧和对照组同侧。
     结论:①3日龄大鼠缺氧缺血脑损伤后,损伤的细胞包括未成熟的神经元和少突胶质细胞;②损伤后恢复期(HI后7天)细胞凋亡基因进一步激活,包括TNF及其受体家族、Bcl-2家族、Caspase家族,以及募集Caspase结构域和死亡诱导效应因子;③缺氧缺血损伤调节TRAIL受体DR5、Caspase-3在神经元上的表达,可能参与调节损伤后细胞的归宿;④早期发生缺氧缺血脑损伤引起脑组织坏死和激活凋亡基因,导致皮质萎缩,影响动物的空间学习和记忆功能。
     第二部分N-乙酰半胱氨酸对窒息新生猪血流动力学和神经细胞凋亡的影响
     目的:目前新生儿缺氧缺血脑损伤尚缺乏令人满意的治疗方法,特别是在损伤后的恢复期,针对损伤的多种机制的策略可能具有较好的临床应用前景。N-乙酰半胱氨酸(NAC)具有清除氧自由基、抗炎和抗细胞凋亡的作用,但在缺氧缺血脑损伤恢复期的神经保护作用尚缺乏相应的研究。本项目通过足月新生猪窒息模型,观察N-乙酰半胱氨酸治疗窒息新生猪大脑氧供和血供以及神经细胞凋亡的影响。
     方法:通过机械通气给予11-14%氧气建立新生猪(n=8)脑缺氧-再氧合损伤模型,新生猪在缺氧2小时后给予N-乙酰半胱氨酸(NAC,150 mg/kg推注,然后20 mg/kg/h静脉注射维持24小时)治疗24小时,同时给予100%氧气1小时,观察缺氧损伤后48小时内心率、血压、颈总动脉血流(CCAF)和氧供(CCADO_2),以及脑组织内一氧化氮(NO)浓度的变化;并采用ELISA法检测缺氧损伤后48小时右侧皮质脂质过氧化物(LPO)和凋亡标记物Caspase-3的活性。设缺氧-再氧合对照组(n=8)和假手术组(n=6)。
     结果:新生猪在发生缺氧后,动脉血pH显著下降并伴有严重的代谢性酸中毒(pH平均为7.05,HCO_3平均为10-11 mM),给予100%氧气后,缺氧NAC治疗组和对照组的pH和HCO_3均迅速恢复正常。缺氧-再氧合结束后早期,NAC治疗迅速增加颈总动脉血流和氧供(NAC组、对照组和假手术组,CCAF分别13.53±1.20、9.70±1.12和17.17±1.31 ml/min/kg,F=66.93,p<0.001;CCDO_2分别为0.53±0.23、0.48±0.16和1.85±0.36 mL O_2/mL/kg,F=62.70,p<0.001)。但其后48小时观察期间NAC对颈总动脉血流和氧供没有进一步的改善。NAC治疗在早期不影响心率和平均动脉压,但在缺氧后24小时NAC治疗组新生猪的心率显著高于对照组(NAC组、对照组和假手术组分别为228±41、191±28和188±23次/分,F=3.738,p<0.001)。在缺氧后NAC治疗组和对照组脑组织皮质内NO浓度显著高于假手术组,并持续整个48小时观察期,NAC治疗不影响脑组织内NO浓度。48小时后与缺氧-再氧合对照组比较,NAC治疗显著减少新生猪右侧大脑皮质中LPO(NAC组、对照组和假手术组分别为229±41、639±152和280±40 uM,F=5.13,p<0.05)和Caspase-3活性(NAC组、对照组和假手术组分别为0.4±0.1、0.8±0.1和0.6±0.1 U/mg,F=4.28,p<0.05)。
     结论:新生猪缺氧-再氧合损伤后48小时内,给予NAC静脉注射治疗能改善大脑血流动力学,迅速恢复大脑的血流和氧供。这种作用不依赖组织内的一氧化氮调节,而可能与其减少脑组织的氧化应激和神经细胞的凋亡有关。
     第三部分进展性气胸对新生猪大脑血流动力学和血气的影响
     目的:气胸是NICU常见的并发症,严重的气胸影响机体的血流动力学和减少大脑的血供和氧供,是神经系统预后不良的高危因素。但在气胸进展过程中对大脑血流供应的影响缺少研究。通过建立足月新生猪气胸模型,观察气胸在进展过程中对机体血气、生理指标以及颈总动脉氧供和血供的影响。
     方法:新生猪(n=9)给予机械通气后,在20分钟内每5分钟给予右侧胸腔注射10ml/kg(共40 ml/kg)空气建立进展性气胸的模型。观察心率、平均动脉压、中心静脉压、颈总动脉血流(CCAF)和颈总动脉氧供(CCADO_2),以及动脉血气的变化。另有7只新生猪作为对照组。
     结果:随着气胸的进展,胸腔内注射20ml/kg空气后SaO_2和PaO_2显著下降(20ml/kg时间点与基础值,SaO_2分别为83.5±12.4和94.4±4.0;PaO_2分别为52.5±12.4和77.5±14.9,p<0.05),而血气pH和PaCO_2并没有发生改变。在注射30ml/kg空气后中心静脉压和颈总动脉血流显著上升(与基础值比较,CVP分别为7.5±3.7和6.1±2.9mmHg;CCAF分别为43±18和35±14 mL/min/Kg,p<0.05),但CCADO_2显著下降(与基础值比较分别为2.5±1.8和3.6±1.3mL O_2/min/Kg,p<0.05),而气胸进展对心率和血压没有显著的影响。
     结论:气胸进展的早期,在发生代谢性酸中毒前,尽管颈总动脉血流升高,颈总动脉的氧供由于低氧血症而显著下降。中等程度的气胸不影响新生猪的心率和血压,但其中心静脉压逐渐增高。
PARTⅠ:Further activation of apoptosis during the recovery of the hypoxic ischemic brain injury of 3-day old rat pups and the outcome in adulthood
     Objectives:Although the persistent apoptosis is one of the important factors of poor longterm outcome of newborn infants with hypoxic ischemic(HI) brain injury after perinatal events,little information is available regarding the mechanism of the activation of apoptosis. We aimed to compare the differences of the activation of apoptotic genes between the acute and recovery stages after HI brain injury in a 3-day-old-rat HI brain injury model,to observe the expression of apoptotic proteins on the neural cells,and to investigate myelination of the brain,changes in cranial MRI and cognitive function in young adulthood.
     Methods:A 3-day-old SD rat HI brain injury model was established by right carotid artery ligation followed by 2.5 hours of hypoxia(6%O_2)(HI group,n=52).Control pups were sham-operated(n=41).Right brain cortex was collected at 12 hours(acute stage) and 7 days (recovery stage) after HI and subjected to an apoptosis Oligo GEArray~(?),and the differences between 12 hours and 7 days after HI were analyzed.The expression of TRAIL and its receptors,Caspase-3 in the cerebral cortex and periventricular white matter regions was examined at 24 and 72 hours after HI using immunochemistry staining.MRI scanning, Morris water maze test and myelination assessment were performed in both groups at 42,44 and 48 days of age,respectively.
     Results:Comparing to 12 hours after HI,the apoptotic genes were further activated at 7 days after HI in the brain of HI rat pups,including TNF,Caspase,Bcl 2,Caspase Recruitment Domains,Death Domain and Death Effector Domain families.Although there were no changes in the expression of TRAIL and its other receptors,HI was disclosed to enhance the expression of DR5 in the pyramidal neurons in the subplate of cortex at 24 and 72 hours after HI(24 hours after HI:130±62 vs.72±17 and 35±20 cells/mm~2 in right,left side of HI group and right cortex of control group,respectively;n=5,F=6.54,p<0.05,1-way ANOVA,SNK, right vs.left of HI,p<0.05;72 hours after HI:147±67 vs.85±30 and 58±15 cells/mm~2, F=4.71,p<0.05,SNK,right of HI vs right of Control,p<0.05).Meanwhile,the expression of Caspase-3 in the cortex and periventricular white matter was found to be elevated at 72 hours after HI compared to those in control group(286±61 vs.171±63 cells/mm~2,n=4, t=2.613,p<0.05),with no change at 24 hours.Furthermore,the MRI assessment demonstrated that the volume of right cortex of HI rats(n=8) was significantly smaller than that of left side and controls(n=6)(84±15.1 vs.130.9±17.3 and 133.0±10.9[mm~3],F=25.3, p<0.001,SNK,right cortex of HI vs.left and control,p<0.05).During the four days of navigation trial in the Morris water maze test,the HI rats demonstrated longer escape latency than the rats of control group(fourth day:52.71±35.87 vs 17.80±8.85[s],p<0.01).They crossed the platform less than those in the control group as well(0.3±0.5 vs 1.1±0.8 times, t=3.28,p<0.05) in Space probe trial.The myelination with myelin basic protein staining was impaired in the right white matter of HIBI rats compared to the left corresponding region and the right side of control group at 48 days of age.
     Conelusions:The activation of apoptotic genes induced by HI persist upto 7 days,involving intrinsic and extrinsic apoptotic pathways.The apoptosis of neural cells leads to poor development of the cortex and myelination,and might compromise the memory and learning function in the young adulthood in rats with neonatal HI.
     PARTⅡ:N-Acetylcysteine improves hemodynamics and reduces oxidative stress in the brain of newborn piglets with hypoxia-reoxygenation injury
     Objectives:Satisfied therapy of hypoxic ischemic brain injury(HIBI) of newborns needs to be developed with promising strategy on the different mechanisms of the damage.N-acetylcysteine (NAC),a free radical scavenger with anti-inflammatory and anti-apoptotic features,was proven to minimize HIBI in various acute models,but the effects of NAC on the brain during recovery from HIBI needs to be further explored.Using a sub-acute swine model of neonatal hypoxia-reoxygenation(H-R),we evaluated the long-term beneficial effect of NAC against oxidative stress and apoptosis.
     Methods:Newborn piglets were mechanical ventilated by a pressure-controlled ventilator via tracheostomy.The animals were randomly assigned into a sham group(without H-R,n=6) and two H-R experimental groups(n=8 each) with 2 hours normocapnic alveolar hypoxia and 1 hour 100%O_2 of reoxygenation followed by 0.21 of FiO_2 for 47 hours.Five minutes after reoxygenation,hypoxic piglets received either normal saline(H-R controls) or NAC (150 mg/kg bolus and 20 mg/kg/h i.v.for 24 hours) in a blinded randomized fashion. Hemodynamic changes and blood gas variables were recorded throughout H-R.The activity of cortical caspase-3 and lipid hydroperoxide(LPO) of the fight hemisphere of the piglets was detected after 48 hours of observation.
     Results:After hypoxia,the arterial pH decreased significantly with metabolic acidosis developed(mean arterial pH~7.05;mean arterial HCO_3 10-11 mM).Upon reoxygenation, both arterial pH and HCO_3 recovered similarly in both H-R groups.Treating the piglets with NAC significantly increased both carotid blood flow(CCAF) and oxygen delivery during the early phase.Even though there was no difference between these two H-R groups thereafter, both CCAF and carotid oxygen delivery of the H-R group remained lower than the sham groups throughout the experimental period.Compared with H-R controls,significantly higher amount of anesthetics and sedative was required to maintain the NAC-treated piglets in stable condition throughout the experimental period,indicating a stronger recovery.Post-resuscitation NAC treatment also significantly attenuated the increase in cortical caspase-3 and LPO levels.
     Conclusions:In newborn piglets with H-R insults,post-resuscitation administration of NAC reduces cerebral oxidative stress with improved cerebral oxygen delivery,probably through anti-apoptosis mechanism.
     PartⅢ:Sequential Changes of Hemodynamics and Blood Gases in Newborn Piglets with Developing Pneumothorax
     Objectives:Pneumothorax,a common complications of newborns hospitalized in NICU,is a high risk of major neurological disabilities due to the attenuation of cerebral perfusion and oxygen delivery in severe situation.But little information is available regarding the temporal changes in hemodynamics and blood gases during the development of a moderate pneumothorax in a neonate.Thus,we investigated the temporal changes of hemodynamics and arterial blood gases in a neonatal swine model of unilateral pneumothorax in this prospective observational controlled animal research.
     Methods:Experimental pneumothorax(n=9) was created by intermittent progressive introduction of 10 ml/Kg of room-air every 5 min to a total 40 ml/Kg,via a 20G Insyte~(?) angiocatheter placed in the fourth intercostal space in line with the fight frontal limb. Changes in heart rate,mean arterial pressure,central venous pressure(CVP),common carotid arterial flow(CCAF) and arterial blood gases were measured and compared with the normoxic baseline and a control group(n=7)(ANOVA).
     Results:As the pneumothorax developed,CVP increased alter injecting 30 ml/Kg of roomair (p<0.001 vs.baseline and control) with no significant changes in heart rate and mean arterial pressure.After 20 ml/Kg of air was introduced,arterial blood gases showed deteriorating oxygenation.CCAF increased and carotid oxygen delivery declined after 30 ml/Kg(p<0.05 vs.baseline and control).
     Conclusions:Deterioration in oxygenation was noted early in the development of pneumothorax in newborn piglets followed by metabolic acidosis.CVP progressively increased despite the lack of significant changes in systemic hemodynamics when moderate pneumothorax developed.Although CCAF increased during a moderate pneumothorax, carotid oxygen delivery decreased.
引文
[1]周文浩,邵肖梅,张旭东等.选择性头部降温治疗新生儿缺氧缺血性脑损伤的初步评价[J].中华儿科杂志,2001,39(4):198-201.
    [2]Cheung PY,Johnson ST,Obaid L,et al.The systemic,pulmonary and regional hemodynamic recovery of asphyxiated newborn piglets resuscitated with 18%,21%and 100%oxygen[J].Resuscitation,2008,76(3):457-464.
    [3]Lee TF,Tymafichuk CN,Bigam DL,et al.Effects of postresuscitation N-acetylcysteine on cerebral free radical production and perfusion during reoxygenation of hypoxic newborn piglets[J].Pediatr Res,2008,64(3):256-261.
    [4]Oqihara T,Hirano K,Oqihara H,et al.Non-protein-bound transition metals and hydroxyl radical generation in cerebrospinal fluid of newborn infants with hypoxic ischemic encephalopathy[J].Pediatr Res,2003,53(4):594-599.
    [5]Welin AK,Sandberg M,Lindblom A,et al.White matter injury following prolonged free radical formation in the 0.65 gestation fetal sheep brain[J].Pediatr Res,2005,58(1):100-105.
    [6]Volpe JJ.Neurobiology of pedventricular leukomalacia in the premature infant[J].Pediatr Res,2001,50(5):553-562.
    [7]Segovia KN,McClure M,Moravec M,et al.Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury[J].Ann Neurol,2008,63(4):520-530.
    [8]Back SA,Han BH,Luo NL,et al.Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia[J].J Neurosci,2002,22(2):455-463.
    [9]Boylan GB,Young K,Panerai RB,et al.Dynamic cerebral autoregulation in sick newborn infants[J].Pediatr Res,2000,48(1):12-17.
    [10]Villani F,D'Incerti L,Granata T,et al.Epileptic and imaging findings in perinatal hypoxicoischemic encephalopathy with ulegyria[J].Epilepsy Res,2003,55(3):235-243.
    [11]Kadam SD,Dudek FE.Neuropathogical features of a rat model for perinatal hypoxicischemic encephalopathy with associated epilepsy[J].J Comp Neurol,2007,505(6):716-737.
    [12] Back SA, Luo NL, Borenstein, et al. Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci 2001; 21(4): 1302-1312.
    [13] Mercuri E, Ricci D, Cowan FM, et al. Head growth in infants with hypoxic-ischemic encephalopathy: correlation with neonatal magnetic resonance imaging [J]. Pediatrics, 2000,106(2): 235-243.
    [14] Rutherford MA, Azzopardi D, Whitelaw A, et al. Mild hypothermia and the distribution of cerebral lesions in neonates with hypoxic-ischemic encephalopathy [J]. Pediatrics, 2005, 116(4): 1001-1006.
    [15] Chao CP, Zaleski CG, Patton AC. Neonatal hypoxic-ischemic encephalopathy: multimodality imaging findings [J]. Radiographics, 2006,26 (Suppl 1): S159-72.
    [16] lives P, Lintrop M, Metsvaht T, et al. Cerebral blood-flow velocities in predicting outcome of asphyxiated newborn infants [J]. Acta Paediatr, 2004,93(4):523-528.
    [17] Uylings HB. Development of the cerebral cortex in rodents and man [J]. Eur J Morphol, 2000, 38(5): 309-312.
    [18] Gould E, Reeves AJ, Graziano MS, et al. Neurogenesis in the neocortex of adult primates [J]. Science, 1999,286(5439): 548-552.
    [19] Gadisseux JF, Goffinet AM, Lyon G, et al. The human transient subpial granular layer: an optical, immunohistochemical, and ultrastructural analysis [J]. J Comp Neurol, 1992,324(1): 94-114.
    [20] Bar I, de Rouvroit CL, Goffinet AM. The evolution of cortical development. An hypothesis based on the role of the Reelin signaling pathway [J]. Trends Neurosci, 2000,23:633-638.
    [21] Meyer G, Goffinet AM, Fairén A. What is a Cajal-Retzius cell? A reassessment of a classical cell type based on recent observations in the developing neocortex [J]. Cereb Cortex, 1999, 9(8): 765-775.
    [22] Jacobs KM, Hwang BJ, Prince DA. Focal epileptogenesis in a rat model of polymicrogyria [J]. J Neurophysiol, 1999, 81(1): 159-173.
    [23] Takano T, Akahori S, Takeuchi Y, et al. Neuronal apoptosis and gray matter heterotopia in microcephaly produced by cytosine arabinoside in mice [J]. Brain Res, 2006,1089(1): 55-66.
    [24] Segovia KN, McClure M, Moravec M, et al. Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury [J]. Ann Neurol, 2008, 63(4): 520-530.
    
    [25] Talos DM, Fishman RE, Park H, et al. Developmental regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury. I. Rodent cerebral white matter and cortex [J]. J Comp Neurol, 2006,497(1): 42-60.
    
    [26] Talos DM, Follett PL, Folkerth RD, et al. Developmental regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury. II. Human cerebral white matter and cortex [J]. J Comp Neurol, 2006,497(1): 61-77.
    
    [27] Wei L, Ying DJ, Cui L, et al. Necrosis, apoptosis and hybrid death in the cortex and thalamus after barrel cortex ischemia in rats [J]. Brain Res, 2004, 1022(1-2): 54-61.
    
    [28] Rami A, Kogel D. Apoptosis meets autophagy-like cell death in the ischemic penumbra: Two sides of the same coin? Autophagy, 2008,4(4): 422-426.
    
    [29] Wilke S, Thomas R, Allcock N, et al. Mechanism of acute ischemic injury of oligodendroglia in early myelinating white matter: the importance of astrocyte injury and glutamate release [J]. J Neuropathol Exp Neurol, 2004,63(8): 872-881.
    
    [30] Jonas EA, Hickman JA, Hardwick JM, et al. Exposure to hypoxia rapidly induces mitochondrial channel activity within a living synapse [J]. J Biol Chem, 2005, 280(6):4491.4497.
    
    [31] Karadottir R, Cavelier P, Bergersen LH, et al. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia [J]. Nature, 2005,438(7071): 1162-1166.
    [32] Takeuchi K, Yoshii K. Superoxide modifies AMPA receptors and voltage-gated K+ channels of mouse hippocampal neurons [J]. Brain Res, 2008,1236:49-56.
    [33] Shibata M, Hattori H, Sasaki T, et al. Temporal profiles of the subcellular localization of Bim, a BH3-only protein, during middle cerebral artery occlusion in mice [J]. J Cereb Blood Flow Metab, 2002, 22(7):810-820.
    [34] Delivoria-Papadopoulos M, Ashraf QM, Mishra OP. Effect of hypoxia on the expression of procaspase-9 and procaspase-3 in neuronal nuclear, mitochondrial and cytosolic fractions of the cerebral cortex of newborn piglets [J]. Neurosci Lett, 2008,438(1): 38-41.
    
    [35] Shibata M, Hisahara S, Hara H, at el. Caspases determine the vulnerability of oligodendrocytes in the ischemic brain [J]. J Clin Invest, 2000,106(5): 643-653.
    
    [36] Aktas O, Smorodchenko A, Brocke S, et al. Neuronal damage in autoimmune neuroinflammation mediated by the death ligand TRAIL [J]. Neuron, 2005, 46(3):421-432.
    
    [37] Griffiths MR, Gasque P, Neal JW. The multiple roles of the innate immune system in the regulation of apoptosis and inflammation in the brain [J]. J Neuropathol Exp Neurol,2009, 68(3):217-226.
    
    [38] Kimberley FC, Screaton GR. Following a TRAIL: update on a ligand and its five receptors [J]. Cell Res, 2004,14(5): 359-372.
    
    [39] Masumura M, Hata R, Nagai Y, et al. Oligodendroglial cell death with DNA fragmentation in the white matter under chronic cerebral hypoperfusion: comparison between normotensive and spontaneously hypertensive rats [J]. Neurosci Res, 2001,39(4): 401-412.
    
    [40] Matysiak M, Jurewicz A, Jaskolski D, et al. TRAIL induces death of human oligodendrocytes isolated from adult brain [J]. Brain, 2002,125(11): 2469-2480.
    
    [41] Jiang YM, Yamamoto M, Tanaka F, et al. Gene expressions specifically detected in motor neurons (dynactin 1, early growth response 3, acetyl-CoA transporter, death receptor 5, and cyclin C) differentially correlate to pathologic markers in sporadic amyotrophic lateral sclerosis [J]. J Neuropathol Exp Neurol, 2007,66(7):617-627.
    
    [42] Uberti D, Ferrari-Toninelli G, Bonini SA, et al. Blockade of the tumor necrosis factor- related apoptosis inducing ligand death receptor DR5 prevents beta-amyloid neurotoxicity [J]. Neuropsychopharmacology, 2007,32(4): 872-880.
    
    [43] Shankaran S, Pappas A, Laptook AR et al. Outcomes of safety and effectiveness in a multicenter randomized, controlled trial of whole-body hypothermia for neonatal hypoxic-ischemic encephalopathy [J]. Pediatrics, 2008,122(4): 791-798.
    
    [44] Sun M, Zhao Y, Xu C. Cross-talk between calpain and caspase-3 in penumbra and core during focal cerebral ischemia-reperfusion [J]. Cell Mol Neurobiol, 2008,28(1): 71-85.
    
    [45] Zhu J, Zhou L, XingWu F. Tracking neural stem cells in patients with brain trauma [J]. N Engl J Med, 2006, 355(22): 2376-2378.
    [1]米杰,林良明,刘玉琳等.1998年中国活产儿出生体重抽样的调查结果[J].中华预防医学杂志,2002,36(3):3154-157.
    [2]Hack M,Taylor HG,Drotar D,et al.Chronic conditions,functional limitations,and special health care needs of school-aged children born with extremely low-birth-weight in the 1990s[J].JAMA,2005,294(3):318-325.
    [3]Litt J,Taylor HG,Klein N,et al.Learning disabilities in children with very low birth weight:Prevalence,neuropsychological correlates,and educational interventions[J].J Learn Disabil,2005,38(2):130-141.
    [4]Volpe JJ.Neurobiology of periventricular leukomalacia in the premature infant[J].Pediatr Res,2001,50(5):553-562.
    [5]Back SA.Perinatal white matter injury:the changing spectrum of pathology and emerging insights into pathogenetic mechanisms[J].Ment Retard Dev Disabil Res Rev,2006,12(2):129-140.
    [6]Lee TF,Tymafichuk CN,Bigam DL,et al.Effects of postresuscitation N-acetylcysteine on cerebral free radical production and perfusion during reoxygenation of hypoxic newborn piglets[J].Pediatr Res,2008,64(3):256-261.
    [7]Cheung PY,Johnson ST,Obaid L,et al.The systemic,pulmonary and regional hemodynamic recovery of asphyxiated newborn piglets resuscitated with 18%,21%and 100%oxygen[J].Resuscitation,2008,76(3):457-464.
    [8]Back SA,Luo NL,Borenstein,et al.Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury.J Neurosci 2001;21(4):1302-1312.
    [9]Riddle A,Luo NL,Manese M,et al.Spatial heterogeneity in oligodendrocyte lineage maturation and not cerebral blood flow predicts fetal ovine periventricular white matter injury[J].J Neurosci,2006,26(11):3045-3055.
    [10]Soane L,Rus H,Niculescu F,et al.Inhibition of oligodendrocyte apoptosis by sublytic C5b-9 is associated with enhanced synthesis of bcl-2 and mediated by inhibition of caspase-3 activation[J].J Immunol,1999,163(11):6132-6138.
    [11]Matysiak M,Jurewicz A,Jaskolski D,et al.TRAIL induces death of human oligodendrocytes isolated from adult brain[J].Brain,2002,125(11):2469-2480.
    [12] Griffiths MR, Gasque P, Neal JW. The multiple roles of the innate immune system in the regulation of apoptosis and inflammation in the brain [J]. J Neuropathol Exp Neurol, 2009, 68(3):217-226.
    
    [13] Kimberley FC, Screaton GR. Following a TRAIL: update on a ligand and its five receptors [J]. Cell Res, 2004,14(5): 359-372.
    
    [14] Hermisson M, Weller M. NF-kappaB-independent actions of sulfasalazine dissociate the CD95L- and Apo2L/TRAIL-dependent death signaling pathways in human malignant glioma cells [J]. Cell Death Differ, 2003,10(9):1078-1089.
    
    [15] Aktas O, Smorodchenko A, Brocke S, et al. Neuronal damage in autoimmune neuroinflammation mediated by the death ligand TRAIL [J]. Neuron, 2005, 46(3):421-432.
    
    [16] Jiang YM, Yamamoto M, Tanaka F, et al. Gene expressions specifically detected in motor neurons (dynactin 1, early growth response 3, acetyl-CoA transporter, death receptor 5, and cyclin C) differentially correlate to pathologic markers in sporadic amyotrophic lateral sclerosis [J]. J Neuropathol Exp Neurol, 2007,66(7):617-627.
    
    [17] Uberti D, Ferrari-Toninelli G, Bonini SA, et al. Blockade of the tumor necrosis factor- related apoptosis inducing ligand death receptor DR5 prevents beta-amyloid neurotoxicity [J]. Neuropsychopharmacology, 2007,32(4): 872-880.
    
    [18] Cao L, Li Y, Cheng F, Li S, et al. Hypoxia/reoxygenation up-regulated the expression of death receptor 5 and enhanced apoptosis in human hepatocyte line [J]. Transplant Proc, 2006, 38(7):2207-2209.
    
    [19] Back SA, Han BH, Luo NL, et al. Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia [J]. JNeurosci 2002;22(2):455-463.
    
    [20] Paxinos G, Watson C; 诸葛启钏 主译.大鼠脑立体定位图谱第3版[M].北京:人民卫生出版社,2005:63.
    
    [21] Vorhees CV, Williams MT. Morris water maze: Procedures for assessing spatial and related forms of learning and memory [J]. Nat Protoc, 2006,1(2): 848-858.
    
    [22] Uylings HB. Development of the cerebral cortex in rodents and man [J]. Eur J Morphol, 2000, 38(5): 309-312.
    
    [23] Volpe JJ. Cerebral white matter injury of the premature infant: more common than you think [J]. Pediatrics, 2003, 112(1): 176-179.
    [24] Volpe JJ. Encephalopathy of prematurity includes neuronal abnormalities [J]. Pediatrics,2005, 116(1): 221-225.
    [25] Limperopoulos C, Soul JS, Haidar H, et al. Impaired trophic interactions between the cerebellum and the cerebrum among preterm infants [J]. Pediatrics, 2005, 116(4): 844-850
    [26] Bassan H, Feldman HA, Limperopoulos C, et al. Periventricular hemorrhagic infarction: risk factors and neonatal outcome [J]. Pediatr Neurol, 2006,35(2):85-92.
    [27] Skoff RP, Bessert DA, Barks JD, et al. Hypoxic-ischemic injury results in acute disruption of myelin gene expression and death of oligodendroglial precursors in neonatal mice [J]. Int J Dev Neurosci, 2001,19(2): 197-208.
    [28] Levison SW, Rothstein RP, Romanko MJ, et al. Hypoxia/ischemia depletes the rat perinatal subventricular zone of oligodendrocyte progenitors and neural stem cells [J]. Dev Neurosci, 2001,23(3):234-247.
    [29] Haynes RL, Folkerth RD, Keefe RJ, et al. Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia [J]. JNeuropathol Exp Neurol, 2003,62(5):441-450.
    [30] Ness JK, Romanko MJ, Rothstein RP, et al. Perinatal hypoxia-ischemia induces apoptotic and excitotoxic death of periventricular white matter oligodendrocyte progenitors [J]. Dev Neurosci, 2001,23(3): 203-208.
    [31] Tanaka K, Nogawa S, Ito D, et al. Activation of NG2-positive oligodendrocyte progenitor cells during post-ischemic reperfusion in the rat brain [J]. Neuroreport, 2001, 12(10): 2169-2174.
    [32] Uehara H, Yoshioka H, Kawase S, et al. A new model of white matter injury in neonatal rats with bilateral carotid artery occlusion [J]. Brain Res, 1999, 837(1-2): 213- 220.
    [33] Stefanis L. Caspase-dependent and -independent neuronal death: two distinct pathways to neuronal injury [J]. Neuroscientist, 2005, 11(1): 50-62.
    [34] Sanchez-Gomez MV, Alberdi E, Ibarretxe G, et al. Caspase-Dependent and Caspase- Independent Oligodendrocyte Death Mediated by AMPA and Kainate Receptors [J]. J Neurosci, 2003, 23(29): 9519 -9528.
    [35] Segovia KN, McClure M, Moravec M, et al. Arrested oligodendrocyte lineage maturation in chronic perinatal white matter injury [J]. Ann Neurol, 2008, 63(4): 520- 530.
    [36] Keane RW, Kraydieh S, Lotocki G, et al. Apoptotic and anti-apoptotic mechanisms following spinal cord injury [J]. J Neuropathol Exp Neurol, 2001,60(5): 422-429.
    [37] Matsushita H, Morishita R, Nata T, et al. Hypoxia-induced endothelial apoptosis through nuclear factor-kappaB (NF-kappaB)-mediated bcl-2 suppression: in vivo evidence of the importance of NF-kappaB in endothelial cell regulation [J]. Circ Res,2000, 86(9): 974-981.
    [38] Iida T, Mine S, Fujimoto H, et al. Hypoxia-inducible factor-lalpha induces cell cycle arrest of endothelial cells [J]. Genes Cells, 2002, 7(2):143-149.
    [39] Ness JM, Harvey CA, Strasser A, et al. Selective involvement of BH3-only Bcl-2 family members Bim and Bad in neonatal hypoxia-ischemia [J]. Brain Res, 2006, 1099(1): 150-159.
    [40] Masumura M, Hata R, Nagai Y, et al. Oligodendroglial cell death with DNA fragmentation in the white matter under chronic cerebral hypoperfusion: comparison between normotensive and spontaneously hypertensive rats [J]. Neurosci Res, 2001,39(4): 401-412.
    [41] Martin-Villalba A, Herr I, Jeremias I, et al. CD95 ligand (Fas-L/APO-1L) and tumor necrosis factor-related apoptosis-inducing ligand mediate ischemia-induced apoptosis in neurons [J]. J Neurosci, 1999,19(10): 3809-3817.
    [42] Cretney E, McQualter JL, Kayagaki N, et al. TNF-related apoptosis-inducing ligand (TRAIL)/Apo2L suppresses experimental autoimmune encephalomyelitis in mice [J]. Immuno cell biology, 2005, 83(5): 511-519.
    [43] LeBlanc H, Lawrence D, Varfolomeev E, et al. Tumor-cell resistance to death receptor- -induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax [J]. Nat Med, 2002, 8(3):274-281.
    [44] Li L, Prevette D, Oppenheim RW, et al. Involvement of specific caspases in motoneuron cell death in vivo and in vitro following trophic factor deprivation [J]. Mol Cell Neurosci, 1998, 12(3):157-167.
    [45] Gadisseux JF, GofFmet AM, Lyon G, et al. The human transient subpial granular layer: an optical, immunohistochemical, and ultrastructural analysis [J]. J Comp Neurol, 1992,324(1): 94-114.
    [46] Bar I, de Rouvroit CL, Goffinet AM. The evolution of cortical development. An hypothesis based on the role of the Reelin signaling pathway [J]. Trends Neurosci, 2000, 23: 633-638.
    [47] Meyer G, Goffinet AM, Fairén A. What is a Cajal-Retzius cell? A reassessment of a classical cell type based on recent observations in the developing neocortex [J]. Cereb Cortex, 1999, 9(8): 765-775.
    [48] Valverde F, López-Mascaraque L, Santacana M, et al. Persistence of early-generated neurons in the rodent subplate: Assessment of cell death in neocortex during the early postnatal period [J]. J Neurosci, 1995,15(7): 5014-5024.
    [49] Talos DM, Fishman RE, Park H, et al. Developmental regulation of alpha-amino-3- hydroxy-5-methyl-4-isoxazole-propionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury. I. Rodent cerebral white matter and cortex [J]. J Comp Neurol, 2006,497(1): 42-60.
    [50] Talos DM, Follett PL, Folkerth RD, et al. Developmental regulation of alpha-amino-3- hydroxy-5-methyl-4-isoxazole-propionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury. II. Human cerebral white matter and cortex [J]. J Comp Neurol, 2006,497(1): 61-77.
    [51] Jacobs KM, Hwang BJ, Prince DA. Focal epileptogenesis in a rat model of polymicrogyria [J]. J Neurophysiol, 1999, 81(1): 159-173.
    
    [52] Grossman R, Hoffman C, Mardor Y et al. Quantitative MRI measurements of human fetal brain development in utero [J]. Neuroimage, 2006, 33(2): 463-470.
    
    [53] Kinoshita Y, Okudera T, Tsuru E, et al. Volumetric analysis of the germinal matrix and lateral ventricles performed using MR images of postmortem fetuses [J]. AJNR Am J Neuroradiol, 2001, 22(2): 382-388.
    
    [54] Limperopoulos C, Soul JS, Gauvreau K, et al. Late gestation cerebella growth is rapid and impeded by premature birth [J]. Pediatrics, 2005, 115(3): 688-695.
    [55] Mercuri E, Ricci D, Cowan FM, et al. Head growth in infants with hypoxic-ischemic encephalopathy: correlation with neonatal magnetic resonance imaging [J]. Pediatrics, 2000,106(2): 235-243.
    [56] Tolsa CB, Zimine S, Warfield SK, et al. Early alteration of structural and functional brain development in premature infants born with intrauterine growth restriction [J]. Pediatr Res, 2004, 56(1): 132-138.
    [57] Thompson DK, Warfield SK, Carlin JB et al. Perinatal risk factors altering regional brain structure in the preterm infant [J]. Brain, 2007,30(3): 667-677.
    [58] McAuliffe JJ, Miles L, Vorhees CV. Adult neurological function following neonatal hypoxia-ischemia in a mouse model of the term neonate: water maze performance is dependent on separable cognitive and motor components [J]. Brain Res, 2006,1118(1):208-221.
    [59] Downer EJ, Gowran A, Campbell VA. A comparison of the apoptotic effect of Delta(9)-tetrahydrocannabinol in the neonatal and adult rat cerebral cortex [J]. Brain Res, 2007,1175(10):39-47.
    [60] Hodozuka A, Tsuda H, Hashizume K, et al. Focal cortical dysplasia: pathophysiological approach [J]. Childs Nerv Syst, 2006,22(8):827-833.
    
    [61] Wagner BP, Nedelcu J, Martin E. Delayed postischemic hypothermia improves long- term behavioral outcome after cerebral hypoxia-ischemia in neonatal rats [J]. Pediatr Res,2002,51(3):354-360.
    [62] Wang DS, Bennett DA, Mufson EJ, et al. Contribution of changes in ubiquitin and myelin basic protein to age-related cognitive decline [J]. Neurosci Res, 2004,48(1): 93-100.
    [63] O'Shea TM, Kuban KC, Allred EN, et al. Neonatal cranial ultrasound lesions and developmental delays at 2 years of age among extremely low gestational age children [J]. Pediatrics, 2008,122(3):662-669.
    [64] Fields RD. White matter in learning, cognition and psychiatric disorders [J]. Trends Neurosci, 2008,31(7):361-370
    [1] Ginet V, Puyal J, Magnin G, et al. Limited role of the c-Jun N-terminal kinase pathway in a neonatal rat model of cerebral hypoxia-ischemia [J]. J Neurochem, 2009, 108(3):552-562.
    
    [2] van der Kooij MA, Groenendaal F, Kavelaars A, et al. Combination of deferoxamine and erythropoietin: therapy for hypoxia-ischemia-induced brain injury in the neonatal rat [J]? Neurosci Lett, 2009,451(2): 109-113.
    [3] Shankaran S, Pappas A, Laptook AR et al. Outcomes of safety and effectiveness in a multicenter randomized, controlled trial of whole-body hypothermia for neonatal hypoxic-ischemic encephalopathy [J]. Pediatrics, 2008, 122(4): 791-798.
    [4] Shah P, Riphagen S, Beyene J, et al. Multiorgan dysfunction in infants with post- asphyxial hypoxic-ischaemic encephalopathy [J]. Arch Dis Child Fetal Neonatal Ed, 2004, 89(2): 152-155.
    [5] Piantadosi CA, Zhang J. Mitochondrial generation of reactive oxygen species after brain ischemia in the rat [J]. Stroke, 1996,27(2): 327-332.
    [6] Ekert P, MacLusky N, Luo XP, et al. Dexamethasone prevents apoptosis in a neonatal rat model of hypoxic-ischemic encephalopathy (HIE) by a reactive oxygen species- independent mechanism [J]. Brain Res, 1997, 747(1): 9-17.
    [7] Khan M, Sekhon B, Jatana M, et al. Administration of N-acetylcysteine after focal cerebral ischemia protects brain and reduces inflammation in a rat model of experimental stroke [J]. J Neurosci Res, 2004, 76(4): 519-527.
    [8] Yip L, Dart RC, Hurlbut KM. Intravenous administration of oral N-acetylcysteine [J]. Crit Care Med, 1998,26(1):40-43.
    [9] Jatana M, Singh I, Singh AK, et al. Combination of systemic hypothermia and N- acetylcysteine attenuates hypoxic-ischemic brain injury in neonatal rats [J]. Pediatr Res, 2006, 59(5): 684-689.
    [10] Wang X, Svedin P, Nie C, et al. N-Acetylcysteine reduces lipopolysaccharidesensitized hypoxic-ischemic brain injury [J]. Ann Neurol, 2007; 61(3):263-271
    
    [11] Li AE, Ito H, Rovira II, et al. A role for reactive oxygen species in endothelial cell anoikis [J]. Circ Res, 1999, 85(4): 304-310.
    [12] Li WQ, Dehnade F, Zafarullah M. Thiol antioxidant, N-acetylcysteine, activates extracellular signal-regulated kinase signaling pathway in articular chondrocytes [J]. Biochem Biophys Res Commun, 2000,275(3): 789-794.
    [13] Johnson ST, Bigam DL, Emara M, et al. N-acetylcysteine improves the hemodynamics and oxidative stress in hypoxic newborn pigs reoxygenated with 100% oxygen. Shock 2007;28(4):484-490.
    [14] Lee TF, Tymafichuk CN, Bigam DL, et al. Effects of postresuscitation N-acetylcysteine on cerebral free radical production and perfusion during reoxygenation of hypoxic newborn piglets [J]. Pediatr Res, 2008,64(3): 256-261.
    [15] Ytreb(?) LM, Korvald C, Nedredal GI, et al. N-acetylcysteine increases cerebral perfusion pressure in pigs with fulminant hepatic failure [J]. Crit Care Med, 2001, 29(10): 1989-1995.
    [16] Nakajima W, Ishida A, Lange MS, et al. Apoptosis has a prolonged role in neurodegeneration after hypoxic ischemia in newborn rat [J]. J Neurosci, 2000, 20(21):7994-8004.
    [17] Galley HF, Howdle PD, Walker BE, et al. The effects of intravenous antioxidants in patients with septic shock [J]. Free Radic Biol Med, 1997,23(5):768-774.
    [18] Girouard H, Chulak C, Wu L, et al. N-acetylcysteine improves nitric oxide and alpha-adrenergic pathways in mesenteric beds of spontaneously hypertensive rats [J]. Am J Hypertens, 2003,16(7):577-584.
    [19] Xia Z, Nagareddy PR, Guo Z, et al. Antioxidant N-acetylcysteine restores systemic nitric oxide availability and corrects depressions in arterial blood pressure and heart rate in diabetic rats [J]. Free Radic Res, 2006,40(2): 175-184.
    [20] Hsu BG, Lee RP, Yang FL, et al. Post-treatment with N-acetylcysteine ameliorates endotoxin shock-induced organ damage in conscious rats [J]. Life Sci, 2006,79(21):2010-6.
    [21] Freire Cerqueira N, Hussni CA, Bonetti Yoshida W, et al. Effects of pentoxifylline and n-acetylcysteine on injuries caused by ischemia and reperfusion of splanchnic organs in rats [J]. Int Angiol, 2008, 27(6):512-21.
    [22] Safar P, Behringer W, B(o|¨)ttiger BW, et al. Cerebral resuscitation potentials for cardiac arrest [J]. Crit Care Med, 2002, 30(4Suppl): S140-S144.
    [23] Wendon JA, Harrison PM, Keays R, et al. Cerebral blood flow and metabolism in fulminant liver failure. Hepatology 1994; 19:1407-1413.
    [24] Gratton R, Carmichael L, Homan J, et al. Carotid arterial blood flow in the bovine fetus as a continuous measure of cerebral blood flow [J]. J Soc Gynecol Invest, 1996, 3(2):60-65.
    [25] Davidge ST, Ojimba J, McLaughlin MK. Vascular function in the vitamin E-deprived rat: an interaction between nitric oxide and superoxide anions [J]. Hypertension, 1998, 31(3):830-835.
    [26] Demchenko IT, Oury TD, Crapo JD, et al. Regulation of brain's vascular responses to oxygen [J]. Circ Res, 2002, 91(11):1031-1037.
    [27] Larsen FS, Strauss G, Knudsen GM, et al. Cerebral perfusion, cardiac output, and arterial pressure in patients with fulminant hepatic failure [J]. Crit Care Med, 2000, 28(4): 996-1000.
    [28] Colquhoun SD, Lipkin C, Connelly CA. The pathophysiology, diagnosis, and management of acute hepatic encephalopathy [J]. Adv Intern Med, 2001,46:155-176.
    [29] Erbas H, Aydogdu N, Kaymak K. Effects of N-acetylcysteine on arginase, ornithine and nitric oxide in renal ischemia-reperfusion injury [J]. Pharmacol Res, 2004,50(5):523-527.
    [30] Clarkson AN, Liu H, Schiborra F, et al. Angiogenesis as a predictive marker of neurological outcome following hypoxia-ischemia [J]. Brain Res, 2007, 1171:111-121.
    [31] Wuyts WA, Vanaudenaerde BM, Dupont LJ, et al. Involvement of p38 MAPK, JNK, p42/p44 ERK and NF-kB in IL-1 beta-induced chemokine release in human airway smooth muscle cells [J]. Respir Med, 2003,97(7): 811-817.
    
    [32] Zafarullah M, Li WQ, Sylvester J, et al. Molecular mechanisms of N-acetylcysteine actions [J]. Cell Mol Life Sci, 2003, 60(1):6-20.
    [33] Blackwell TS, Blackwell TR, Holden EP, et al. In vivo antioxidant treatment suppresses nuclear factor-kB activation and neutrophilic lung inflammation [J]. J Immunol, 1996, 157(4): 1630-1637.
    [34] Wu D, Xu C, Cederbaum A. Role of nitric oxide and nuclear factor-kappaB in the CYP2E1 potentiation of tumor necrosis factor alpha hepatotoxicity in mice [J]. Free Radic Biol Med, 2009, 46(4): 480-491.
    [1]Chernick V,Avery ME.Spontaneous alveolar rupture at birth[J].Pediatrics,1963,32:816-824.
    [2]Rhodes PG,Graves GR,Patel DM,et al.Minimizing pneumothorax and bronchopulmonary dysplasia in ventilated infants with hyaline membrane disease[J].J Pediatr,1983,103(4):634-637.
    [3]Katar S,Deveciglu C,Kervancioglu M,et al.Symptomatic spontaneous pneumothorax in term newborns[J].Pediatr Surg Int,2006,22(9):755-758.
    [4]Horbar JD,editor.Vermont Oxford Network,1998 Database Summary[R].Burlington,VT:Vermont Oxford Network,1999:
    [5]Ogata ES,Gregory GA,Kitterman JA,et al.Pneumothorax in the respiratory distress syndrome:incidence and effect on vital signs,blood gases,and pH[J].Pediatrics,1976,58(2):177-183.
    [6]Lin HC,Su BH,Lin TW,et al.System-based strategy for the management of meconium aspiration syndrome:198 consecutive cases observations[J].Acta Paediatr Taiwan,2005,46(2):67-71.
    [7]Migliazza L,Bellan C,Alberti D et al.Retrospective study of 111 cases of congenital diaphragmatic hernia treated with early high-frequency oscillatory ventilation and presurgical stabilization[J].J Pediatr Surg,2007,42(9):1526-1532.
    [8]Powers WF,Clemens JD.Prognostic implications of age at detection of air leak in very low birth weight infants requiring ventilatory support[J].J Pediatr,1993,123(4):611-617.
    [9]Makhoul IR,Smolkin T,Sujov P.Pneumothorax and nasal continuous positive airway pressure ventilation in premature neonates:a note of caution[J].ASAIO J,2002,48(5):476-479.
    [10] Morley CJ, Davis PG, Doyle LW, et al. Nasal CPAP or intubation at birth for very preterm infants [J]. N Engl J Med, 2008,358(7): 700-708.
    [11] Linder N, Haskin O, Levit O, et al. Risk factors for intraventricular hemorrhage in very low birth weight premature infants: a retrospective case-control study [J]. Pediatrics, 2003,111(5): 590-595.
    [12] Bassan H, Feldman HA, Limperopoulos C, et al. Periventricular hemorrhagic infarction: risk factors and neonatal outcome [J]. Pediatr Neurol 2006; 35(2): 85-92.
    [13] Kohelet D, Shochat R, Lusky A, et al. Risk factors for neonatal seizures in very low birth weight infants: population-based survey [J]. J Child Neurol, 2004,19(2): 123-128.
    [14] Laptook AR, O'Shea TM, Shankaran S, et al. Adverse neurodevelopmental outcomes among extremely low birth weight infants with a normal head ultrasound: prevalence and antecedents [J]. Pediatrics, 2005,115(3): 673-680.
    [15] Brann BS 4th, Mayfield SR, Goldstein M, et al. Cardiovascular effects of hypoxia/hypercarbia and tension pneumothorax in newborn piglets [J]. Crit Care Med, 1994,22(9): 1453-1460.
    [16] Temesvári P, Karg E, Bódi I, et al. Impaired early neurologic outcome in newborn piglets reoxygenated with 100% oxygen compared with room air after pneumothorax- induced asphyxia [J]. Pediatr Res, 2001,49(6): 812-819.
    [17] Ellsbury DL, Klein JM, Segar JL. Optimization of high-frequency oscillatory ventilation for the treatment of experimental pneumothorax [J]. Crit Care Med, 2002, 30(5): 1131-1135.
    [18] Mclntosh N, Becher JC, Cunningham S, et al. Clinical diagnosis of pneumothorax is late: use of trend data and decision support might allow preclinical detection [J]. Pediatr Res, 2000,48(3): 408-415.
    [19] Onasanya BI, Rais-Bahrami K, Rivera O, et al. The use of intratracheal pulmonary ventilation and partial liquid ventilation in newborn piglets with meconium aspiration syndrome. Pediatr Crit Care Med, 2001,2(1): 69-73.
    [20] Haaland K, Karlsson B, Skovlund E, et al. Simultaneous measurements of cerebral circulation with electromagnetic flowmetry and Doppler ultrasound velocity in the newborn pig [J]. Pediatr Res, 1994, 36(5): 601-606.
    [21] Megyeri P, Abraham CS, Temesvari P, et al. Recombinant human tumor necrosis factor alpha constricts pial arterioles and increases blood-brain barrier permeability in newborn piglets [J]. Neurosci Lett, 1992,148(1-2): 137-140.
    [22] Temesvari P, Abraham CS, Kovacs J. Tension pneumothorax in newborn piglets [J]. Crit Care Med, 1995,23(8): 1446-1448.
    [23] Krause MF, J(a|¨)kel C, Haberstroh J, et al. Functional residual capacity determines the effect of inhaled nitric oxide on intrapulmonary shunt and gas exchange in a piglet model of lung injury [J]. Pediatr Crit Care Med, 2001,2(1): 82-87.
    [24] Migliori B, Pontiggia F, Chirico G. The increase of oxygen requirement as index to identify the infants at high risk of pneumothorax during nasal continuous positive airway pressure [J]. Minerva Pediatr, 2005, 57(5): 281-284.
    [25] Asian A, Karagüzel G, Gura A, et al. Lung re-expansion and urinary lipid peroxidation in neonatal pneumothorax [J]. Eur J Pediatr Surg, 2006,16(5): 307-311.
    [26] Barton ED, Rhee P, Hutton KC, et al. The pathophysiology of tension pneumothorax in ventilated swine [J]. J Emerg Med, 1997,15(2): 147-153.
    [27] Skinner JR, Milliqan DW, Hunter S, et al. Central venous pressure in the ventilated neonate [J]. Arch Dis Child, 1992,67(4): 374-377.
    [28] Haaland K, Karlsson B, Skovlund E, et al. Postnatal development of the cerebral blood flow velocity response to changes in CO_2 and mean arterial blood pressure in the piglet [J]. Acta Paediatr, 1995, 84(12): 1414-1420.
    [29] van Wijk MC, Klaessens JH, Hopman JC, et al. Assessment of local changes of cerebral perfusion and blood concentration by ultrasound harmonic B-mode contrast measurement in piglet [J]. Ultrasound Med Biol, 2003,29(9): 1253-1260.
    [30] Temesvari P, Kovacs J. Selective opening of the blood-brain barrier in newborn piglets with experimental pneumothorax [J]. Neurosci Lett, 1988; 93(1): 38-43.
    [31] Temesvari P, Kovacs J, Racz K. Cerebral arterial air embolism in experimental neonatal pneumothorax [J]. Arch Dis Child, 1989; 64(1): 179.
    [1] Rorke LB. Anatomical features of the developing brain implicated in pathogenesis of hypoxic-ischemic injury [J]. Brain Pathol, 1992,2(3): 211-221.
    
    [2] Boylan GB, Young K, Panerai RB, et al. Dynamic cerebral autoregulation in sick newborn infants [J]. Pediatr Res, 2000,48(1): 12-17.
    [3] Back SA, Luo NL, Borenstein, et al. Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury [J]. J Neurosci,2001,21(4): 1302-1312.
    [4] Fortin D, Rom E, Sun HJ, et al. Distinct fibroblast growth factor (FGF)/FGF receptor signaling pairs initiate diverse cellular responses in the Oligodendrocyte lineage [J]. J Neurosci, 2005,25(32): 7470-7479.
    [5] Talos DM, Follett PL, Folkerth RD, et al. Developmental regulation of AMPA receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury: part II. Human cerebral white matter and cortex [J]. J Comp Neurol,2006,497(1): 61-77.
    [6] Back SA, Han BH, Luo NL, et al. Selective Vulnerability of Late Oligodendrocyte Progenitors to Hypoxia-Ischemia [J]. J Neurosci, 2002,22(2): 455-463.
    
    [7] Chamnanvanakij S, Margraf LR, Burns D, et al. Apoptosis and white matter injury in preterm infants [J]. Pediatr Dew Pathol, 2002, 5(2): 184-189.
    [8] Rothstein RP Levison SW. Damage to the choroid plexus, ependyma and subependyma as a consequence of perinatal hypoxia/ischemia [J]. Dev Neurosci, 2002, 24(5): 426-436.
    [9] Riddle A, Luo NL, Manese M, et al. Spatial heterogeneity in oligodendrocyte lineage maturation and not cerebral blood flow predicts fetal ovine periventricular white matter injury [J]. J Neurosci, 2006,26(11): 3045-3055.
    [10] Skoff RP, Bessert DA, Barks JD, et al. Hypoxic-ischemic injury results in acute disruption of myelin gene expression and death of oligodendroglial precursors in neonatal mice [J]. Int J Dev Neurosci, 2001, 19(2): 197-208.
    
    [11] Levison SW, Rothstein RP, Romanko MJ, et al. Hypoxia/ischemia depletes the rat perinatal subventricular zone of oligodendrocyte progenitors and neural stem cells [J]. Dev Neurosci, 2001, 23(3): 234-247.
    [12] Rothstein RP, Levison SW. Gray matter oligodendrocyte progenitors and neurons die caspase-3 mediated deaths subsequent to mild perinatal hypoxic/ischemic insults [J]. Dev Neurosci, 2005, 27(2-4): 149-159.
    [13] Haynes RL, Folkerth RD, Keefe RJ, et al. Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia [J]. J Neuropathol Exp Neurol, 2003, 62(5): 441-450.
    [14] Ness JK, Romanko MJ, Rothstein RP, et al. Perinatal hypoxia-ischemia induces apoptotic and excitotoxic death of periventricular white matter oligodendrocyte progenitors [J]. Dev Neurosci, 2001, 23(3): 203-208.
    [15] Levison SW, Rothstein RP, Romanko MJ, et al. Hypoxia/ischemia depletes the rat perinatal subventricular zone of oligodendrocyte progenitors and neural stem cells [J]. Dev Neurosci, 2001,23(3): 234-247.
    [16] Rothstein RP, Levison SW. Gray matter oligodendrocyte progenitors and neurons die caspase-3 mediated deaths subsequent to mild perinatal hypoxic/ischemic insults [J]. Dev Neurosci, 2005, 27(2-4):149-159.
    [17] Mizuno K, Hida H, Masuda T, et al. Pretreatment with low doses of erythropoietin ameliorates brain damage in periventricular leukomalacia by targeting late oligodendrocyte progenitors: a rat model [J]. Neonatology, 2008, 94(4):255-266.
    [18] Talos DM, Fishman RE, Park HK, et al.. Developmental regulation of AMP A receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury: part I. Rodent cerebral white matter and cortex [J]. J Comp Neurol, 2006,497(1):42-60.
    [19] Agulhon C, Petravicz J, McMullen AB, et al. What is the role of astrocyte calcium in neurophysiology [J]? Neuron, 2008, 59(6): 932-946.
    
    [20] Haydon, PG. GLIA: listening and talking to the synapse [J]. Nature Rev Neurosci, 2001, 2(3): 185-193.
    [21] Savvaki M, Panagiotaropoulos T, Stamatakis A, et al. Impairment of learning and memory in TAG-1 deficient mice associated with shorter CNS internodes and disrupted juxtaparanodes [J]. Mol Cell Neurosci, 2008, 39(3):478-490.
    [22] Sterka D Jr, Rati DM, Marriott I. Functional expression of NOD2, a novel pattern recognition receptor for bacterial motifs, in primary murine astrocytes [J]. Glia, 2006, 53(3):322-330.
    [23] Hayakawa T, Angata T, Lewis AL, et al. A human-specific gene in microglia [J].Science, 2005, 309(5741): 1693.
    [24] Ge WP, Yang XJ, Zhang Z, et al. Long-Term Potentiation of Neuron-Glia Synapses Mediated by Ca~(2+)-Permeable AMPA Receptors [J]. Science, 2006, 312(5779): 1533-1537.
    [25] Deng WB, Neve RL, Rosenberg PA, et al. AMPA Receptor Subunit Composition and CREB Regulate Oligodendrocyte Excitotoxicity [J]. J Biol Chem, 2006, 281(47):36004-36011.
    [26] Alberd IE, Sánchez-Gómez MV, Torre I, et al. Activation of Kainate Receptors Sensitizes Oligodendrocytes to Complement Attack [J]. J Neurosci, 2006, 26(12):3220-3228.
    [27] Shibata M, Hattori H, Sasaki T, Temporal profiles of the subcellular localization of Bim, a BH3-only protein, during middle cerebral artery occlusion in mice [J]. J Cereb Blood Flow Metab, 2002,22(7): 810-820.
    [28] Deng Y, Lu J, Sivakumar V, et al. Amoeboid microglia in the periventricular white matter induce oligodendrocyte damage through expression of proinflammatory cytokines via MAP kinase signaling pathway in hypoxic neonatal rats [J]. Brain Pathol, 2008,18(3): 387-400.
    [29] Dzietko M, Boos V, Sifringer M, et al. A critical role for Fas/CD-95 dependent signaling pathways in the pathogenesis of hyperoxia-induced brain injury [J]. Ann Neurol, 2008, 64(6): 664-673.
    [30] Matysiak M, Jurewicz A, Jaskolski D, et al. TRAIL induces death of human oligodendrocytes isolated from adult brain [J]. Brain, 2002, 125(11): 2469-2480.
    [31] Shibata M, Hisahara S, Hara H, at el. Caspases determine the vulnerability of oligodendrocytes in the ischemic brain [J]. J Clin Invest, 2000,106(5): 643-653.
    [32] Cao Y, Gunn AJ, Bennet L, et al. Insulin-like growth factor (IGF)-1 suppresses oligodendrocyte caspase-3 activation and increases glial proliferation after ischemia in near-term fetal sheep [J]. J Cereb Blood Flow Metab, 2003,23(6): 739-747.
    [33] Yune TY, Lee JY, Jung GY, et al. Minocycline alleviates death of oligodendrocytes by inhibiting pro-nerve growth factor production in microglia after spinal cord injury [J].J Neurosci, 2007, 27(29): 7751-7761.
    [1] DiGregorio PJ, Ubersax JA, O‘Farrell PH. Hypoxia and nitric oxide induce a rapid, reversible cell cycle arrest of the Drosophila syncytial divisions [J]. J Biol Chem, 2001,276(3): 1930-1937.
    
    [2] Boylan GB, Young K, Panerai RB, et al. Dynamic cerebral autoregulation in sick newborn infants [J]. Pediatr Res 2000,48(1): 12-17.
    [3] Volpe JJ. Neurobiology of periventricular leukomalacia in the premature infant [J]. Pediatr Res, 2001,50(5): 553-562.
    [4] Grossman R, Hoffman C, Mardor Y, et al. Quantitative MRI measurements of human fetal brain development in utero [J]. Neuroimage, 2006, 33(2): 463-470.
    [5] Kinoshita Y, Okudera T, Tsuru E, et al. Volumetric analysis of the germinal matrix and lateral ventricles performed using MR images of postmortem fetuses [J]. AJNR Am J Neuroradiol, 2001,22(2): 382-388.
    [6] Limperopoulos C, Soul JS, Gauvreau K, et al. Late gestation cerebella growth is rapid and impeded by premature birth [J]. Pediatrics, 2005,115(3): 688-695.
    [7] Mercuri E, Ricci D, Cowan FM, et al. Head Growth in Infants With Hypoxic-Ischemic Encephalopathy: Correlation With Neonatal Magnetic Resonance Imaging [J]. Pediatrics, 2000,106 (2): 235-243.
    [8] Tolsa CB, Zimine S, Warfield SK, et al. Early alteration of structural and functional brain development in premature infants born with intrauterine growth restriction [J]. Pediatr Res, 2004, 56(1): 132-138.
    [9] Thompson DK, Warfield SK, Carlin JB et al. Perinatal risk factors altering regional brain structure in the preterm infant [J]. Brain, 2007,30(3): 667-677.
    [10] Mallard C, M. Loeliger M, Copolov D and S. Rees S. Reduced number of neurons in the hippocampus and the cerebellum in the postnatal guinea-pig following intrauterine growth-restriction [J]. Neuroscience, 2000,100(2): 327-333.
    
    [11] Bennet L, Roelfsema V, George S, et al. The effect of cerebral hypothermia on white and grey matter injury induced by severe hypoxia in preterm fetal sheep [J]. J Physiol, 2007, 578(2): 491-506.
    [12] Back SA, Luo NL, Borenstein NS, et al. Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury [J]. J Neurosci, 2001,21(4): 1302-1312.
    [13] Goni-de-Cerio F, Alvarez A, Caballero A, et al. Early cell death in the brain of fetal preterm lambs after hypoxic-ischemic injury [J]. Brain Res, 2007, 1151(2): 161-171.
    [14] Zhang CP, Zhu LL, Zhao T, et al. Characteristics of neural stem cells expanded in lowered oxygen and the potential role of hypoxia-inducible factor-1 Alpha [J]. Neurosignals, 2006-2007, 15(5):259-265.
    [15] Liu J, Chen C, Zhang P. Changes Of apoptotic signals after hypoxic-ischemic injury in the developing brain of rats using apoptosis specific cDNA array [R]. Pediatrics academic societies annual meeting, 2008.
    
    [16] Litt J, Taylor HG, Klein N, et al. Learning disabilities in children with very low birthweight: Prevalence, neuropsychological correlates, and educational interventions [J]. J Learn Disabil, 2005,38(2): 130-141.
    [17] Pfeiffer SE, Warrington AE, Bansal R. The oligodendrocyte and its many cellular processes [J]. Trends Cell Biol, 1993, 3(6): 191-197.
    [18] Back SA, Han BH, Luo NL, et al. Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia [J]. J Neurosci, 2002,22(2): 455-463.
    [19] Back SA, Luo NL, Mallinson RA, et al. Selective vulnerability of preterm white matter to oxidative damage defined by F2-isoprostanes [J]. Ann Neurol, 2005,58(1): 108-120.
    [20] Castillo-Meléndez M, Chow JA, Walker DW. Lipid peroxidation, caspase-3 immunoreactivity, and pyknosis in late-gestation fetal sheep brain after umbilical cord occlusion [J]. Pediatr Res, 2004, 55(5): 864-871.
    [21] Lee TF, Jantzie LL, Todd KG, et al. Postresuscitation N-acetylcysteine treatment reduces cerebral hydrogen peroxide in the hypoxic piglet brain [J]. Intensive Care Med,2008,34(1): 190-197.
    [22] Ikeda T, Choi BH, Yee S, et al. Oxidative stress, brain white matter damage and intrauterine asphyxia in fetal lambs [J]. Int J Dev Neurosci, 1999, 17(1): 1-14.
    [23] Husain J, Juurlink BH. Oligodendroglial precursor cell susceptibility to hypoxia is related to poor ability to cope with reactive oxygen species [J]. Brain Res, 1995, 698(1-2): 86-94.
    [24] Halliwell B. Reactive oxygen species and the central nervous system [J]. J Neurochem,1992, 59(5): 1609-1623.
    [25] Burnashev N, Monyer H, Seeburg PH, et al. Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit [J]. Neuron, 1992,8(1): 189-198.
    [26] Talos DM, Follett PL, Folkerth RD, et al. Developmental regulation of alpha-amino-3- hydroxy-5-methyl-4-isoxazole-propionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury. II. Human cerebral white matter and cortex [J]. J Comp Neurol, 2006,97(1): 61-77.
    [27] Talos DM, Fishman RE, Park H, et al. Developmental regulation of alpha-amino-3- hydroxy-5-methyl-4-isoxazole-propionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury. I. Rodent cerebral white matter and cortex [J]. J Comp Neurol, 2006,97(1): 42-60.
    [28] Follett PL, Deng W, Dai W, et al. Glutamate receptor-mediated oligodendrocyte toxicity in periventricular leukomalacia: a protective role for topiramate [J]. J Neurosci, 2004,24(18): 4412-4420.
    [29] Inder TE, Warfield SK, Wang H, et al. Abnormal cerebral structure is present at term in premature infants [J]. Pediatrics, 2005,115(2): 286-294.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700