二滩水电站泄洪洞侧墙掺气减蚀研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二滩水电站是中国在二十世纪建成的最大水电站,电站设有2条龙抬头式泄洪洞,单洞最大泄洪流量为3800m3/s,设计最大流速为45m/s。龙抬头式泄洪洞在水利水电工程中应用十分普遍,大型龙抬头泄洪洞反弧段下游一般均具有流速高、单宽流量大、佛氏数低、底坡小的特点,为了减免泄洪洞的空蚀破坏,一般采用底部进气的掺气设施。通过设置掺气设施,大多数龙抬头泄洪洞都较好地防止了空蚀破坏。然而,二滩1号泄洪洞在采用常规的掺气设施后,虽然有效地减免了反弧段本身及反弧段下游底板的空蚀破坏,但反弧段下游侧墙仍出现了空蚀破坏,严重影响工程的安全运行。通过大比尺的模型试验,研究了多种掺气减蚀方法,提出了解决高流速、大流量泄洪洞侧墙掺气减蚀方案。2005年,采用反弧末端上游侧墙突缩(侧墙贴角)加凸型跌坎的三维掺气坎方案,对二滩1号泄洪洞2号掺气坎体型进行了改造。随后的水力学原型观测表明,2号掺气坎区域水流掺气浓度增加,底板和侧墙脉动压力和空化噪声测值平稳,且在合理范围之内。通过连续2个汛期的运行试验和现场检查,改造后的2号掺气坎体型结构完好,下游未发现明显的空化气蚀现象,成功地解决了侧墙空蚀问题。
     本文在总结前人研究成果的基础上,结合大比尺的水力学模型试验成果,分析了采用常规掺气减蚀设施后,大型龙抬头泄洪洞反弧段下游侧墙仍可能出现空蚀破坏的原因;针对已运行工程的特点,介绍了几种可能的解决泄洪侧墙空蚀破坏的掺气减蚀方案;对比分析了二滩泄洪洞原设计体型和改造体型的模型试验及原型观测情况,介绍了研究成果在二滩工程中的应用情况。
Ertan Hydropower Station is the China’s largest hydropower project completed in the 20th century. The power station is equipped with 2 spillway tunnels with inlet raised. The maximum flood discharge of each spillway tunnel is 3800m3/s and the design maximum velocity is 45m/s. The dragon-raise-head spillway tunnel is widely applied in water conservancy and hydroelectric projects. The representative flow characteristics of the anti-arc bottom of the dragon-raise-head spillway tunnel are high velocity, large-unit discharge, low Froude and small bottom slop. Forced aeration device on soleplate is usually introduced to prevent cavitation damage of hydraulic structures in engineering. The cavitation damage is prevented effectively in many spillway dragon-raise-head tunnels by aeration facility. However, when conventional aeration facility was introduced in spillway tunnel No.1 of Ertan, the anti-arc and its downstream bottom were protected, but the cavitation damage still happened on the sidewalls downstream of anti-arc and it gave bad influence on the safety of the project. Large-scale model tests were performed to study the effectivity of many methods of aeration in cavitation-protection for the sidewalls, and the plan was given for spillway tunnel with large discharge and high velocity flow. The shape of 2nd aerator was renovated at the spillway tunnel No.1 of Ertan hydropower station according the research result in 2005 and a new-style three-dimensional aerator of contracting sidewalls (lateral deflector aerator) with heaving bucket was used. The following prototype observation and inspection indicate that the fluctuating water pressures and the cavitaion noise characteristics are smooth and in reasonable ranges. The shape and structure of 2nd aerator is in good condition and the cavitation is protected. The cavitation of sidewalls is resolved successfully.
     Basing on previous research and large-scale hydraulic model tests, the cause of cavitation damage to sidewalls in the anti-arc bottom of the large dragon-raise-head spillway tunnel, adopting conventional aeration in cavitation-protection, is investigated. In view of characteristics of running project, several plans of aeration in cavitation-protection to prevent cavitation damage are commended. Model tests and prototype observation for plan and modification shape are compared, the application achievements are introduced that research results applying in Ertan hydropower station.
引文
1.李建中,宁利中,高速水力学[M],西北工业大学出版社,1994.12
    2.倪汉根,气核-空化-空蚀[M],成都,成都科技大学出版社,1993年11月
    3.黄继汤,空化与空蚀的原理及应用[M],北京,清华大学出版社,1991年2月
    4.吴持恭,高速水力学学科发展综述[J],泄水工程高速水流研究进展,1990,年10月
    5.R.T.Knapp, J.W.Daily, and F.G. Hammitt,“Cavitation”,McGraw Hill Book Book Co., 1970.中译本“空化与空蚀”[M],水利水电科学研究院译,水利出版社,1981年
    6.W.S.汉密尔顿,水工建筑物气蚀破坏与防护[J],中南水电,1989年第3期
    7.Besant,H.W., Hydrostatics and Hydro dynamics, Art.158, Cambridge University Press, London, 1859
    8.Rayleigh, L., On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity, Phil. Mag. Vol.34, 1917
    9.Plesset, M.S., The Dynamics of Cavitation Bubbles, Trans. AS ME, J.Appl. Mech., vol.16, 1949
    10.Gilmore, F.B., The Growth and Collapse of a Spherical Bubble in a Viscous Compressible Liquid, Calif. Inst. of Tech., Hydrodyn. Lab., Rep. 26-4, 1952
    11.Benjamin, T.B., Pressure Waves From Collapsing Cavity, 2nd Symp. Naval Hydrodyn., Washington D.C., 1958
    12.Hunter, C., On the Callapse of An Empty Cavity in Water, J. Fluid Mech., Vol.8, 1960
    13.Hickling, R., Plesset, M.S., Collapse and Rebound of A Spherical Bubble in Water, Phys. Fluids, Vol.7, 1964
    14.Jahsman, W.E., Collapse of A Gas-Filled Spherical Cavity, J. Appl. Mech., vol.35, 1968
    15.Plesset, M.S., Prosperetti, A Bubble Dynamics and Cavitation, Annual Revew. of Fluid Mech., Vol.9, 1977
    16.Naude, C.F., Ellis, A.T., On the Mechanism of Cavitation Damage by Nonhemispherical Cavities Collapsing in Contact with a Solid Boundary, Trans ASME, J. Basic Engr., Vol.83, 1961
    17.Van wijingaarden, L., On the Collective Collapse of A Large Number of Gas Bubbles in Water, Proc. 11th Int. Congr. of Appl. Mech., Springer, Berlin, 1964
    18.Chahine, G.L., Asymptotic Theory of Collective Bubble Growth and Collapse, Proc. 5th Int. Symp. On Water Column Separation, Obernach, Germany, 1981
    19.Morch, K.A., Cavity Cluster Dynamics and Cavitation Erosion, Report of Appl. Phy. Lab., Technical University of Denmark, DK-2800, Lyngby, Denmark, 1982
    20.黄建波,初生空化数及空化荷载的预测[D],博士论文,大连理工大学,1987年9月
    21.Plesset, M.S., Chapman, R.B., Collapse of An Initially Spherical Vapor Cavity in the Neighbourhood of A Solid Boundary, J.Fluid Mech., Vol.47, 1971
    22.E.N.Harvey, W.D.McElroy and A.H. Whiteley,“On Cavity Formation in Water”, Jr. Appl. Phys., 18, No.2, 1947
    23.R.T.Knapp, J.W.Daily, and F.G. Hammitt,“Cavitation”,McGraw Hill Book Book Co., 1970.中译本“空化与空蚀”[M],水利水电科学研究院译,水利出版社,1981年
    24.M.Kornfeld and L.Suvarov,“On the Destructive Action of Cavitation”, Jr.Appl.phys., 15,1944.
    25.M.Rattray,“Perturbation effects in Cavitation Bubble Dynamics”, Ph.D.thesis Calif Inst. Of Technology, Pesadena, Calif, 1951
    26.C.F.Kling and F.G.Hammitt,“A Photograph Study of Spark Induced Cavitation Bubble Collapse”, Trans. ASME, J. Basic. Engr., Vol.94, Ser. D., No.4, Dec. 1972
    27.W.Lauterborn and H. Bolle,“Experimental Investigations of Cavitation Bubble Collapse in the Neighbourhood of a Solid Boundary”, J. Fluid Mech, Vol.72, No.2,1975
    28.A.Shima, K.Takayama and Y.Tomita,“Mechanisms of the Bubble Collapse Near a Solid Wall and the Induced Impact Pressure Generation”, Rep Inst. High Speed Mech. Vol. 48,1984
    29.A.T.Ellis,“Production of Accelerated Cavitation Damage by an Acoustic Field in a Cylindrical Cavity”, Jr. Acoust. Soc. Am., 27, 1965
    30.G.Petracchi,“Investigations of Cavitation Corrosion”, Metallurgia Italiana, 4l, No. 1, 1949
    31.M.S.Plesset,“Bubble Dyramics”, in R. Davies (ed.), Cavitation in Real Fluids, Elsevier Publishing Co., Amsterdam. 1964
    32.时启燧,掺气减蚀设施的研究与应用[J],泄水工程高速水流研究进展,1990年10月
    33.熊贤禄,傅佩芬整理,美国专家布格和将赛延关于二滩水电站水力学问题的发言(综合整理)[J],水电工程研究,1983(1)
    34.黄委会设计院技术处,掺气减蚀原理与应用[M],1990年12月
    35.陈先朴,西汝泽,邵东超,柴恭纯,掺气减蚀研究的新方向[J],水利水电技术,2001年第10期
    36.П.A.伏依诺维奇,A.И.舒华兹,掺气水流的均匀运动[C],高速水流论文译丛,第1辑第1册,科学出版社,1958年
    37.Lane, E.W., Entrainment on Spillway Face, Civil Enger, Vol.9, 1939
    38.Halbronn, G., Durand, R. and G. Cohen de Lara, Air Entrainment in Steeply Sloping Flumes, Proc., Minnesota International Hydraulics Convention, 1953
    39.杨永森,杨永全,掺气减蚀设施体型优化研究[J],水科学进展,2000,11(2).144-147
    40.黄建波,李士豪,倪汉根,掺气对空泡溃灭压力的影响[J],水利学报,1984年第4期。
    41.倪汉根,掺气减蚀机理和空腔长度、掺气量及保护长度计算方法的研究[R],高拱坝关键技术研究子题研究报告,大连理工大学,1992年11月
    42.周菊华,水工建筑物掺气减蚀设施近况简介[J],云南水电技术,1991年第2期
    43.庞昌俊.大型“龙抬头”明流泄洪洞小底坡掺气减蚀设施的选型研究[J].水利学报,1993,(6):61-66
    44.夏毓常,张黎明,水工水力学原型观测与模型试验[M],北京,中国电力出版社,1999,105-108
    45.杨永森,吴持恭,明流隧洞反弧段水力及空化特性研究[J],成都科技大学学报,1991年第3期,21-28
    46.潘水波等,通气挑坎射流的挟气能力[J],水利学报,1980年第5期
    47.杨永森,吴持恭,二维空腔流动的一种新的数值模拟方法[J],水动力学研究与进展,A辑,增刊,1992年12月
    48.王玲玲金忠青,龙抬头泄洪洞反弧抗蚀体型研究进展和趋向[J],河海科技进展,1994,14(4),16-20
    49.冯家山水库泄洪洞通气减蚀原型观测研究报告[R],水力水电科学研究院、冯家山水库工程指挥部,陕西省水利水电勘测设计院、水利部西北水科所等,1980年10月
    50.黄国强,三峡工程溢流坝掺气减蚀研究[J],中国三峡建设,1997年3月,15-18
    51.吴持恭,明槽自掺气水流的研究[J],水力发电学报,1988年第4期
    52.杨永森,明渠自掺气水流掺气浓度分布Wood模型的改进研究[J],四川水力发电,1992年第2期
    53.周建军,明渠自掺气水流掺气浓度分布研究[J],水动力学研究与进展,1993年9月
    54.崔陇天,掺气挑坎下游含气浓度分布[J],水利学报,1985年第1期
    55.杨永森,吴持恭,通气槽挑射水流掺气特性的研究[J],水利学报,1992年第4期,1-7
    56.赵文华,几种典型水气两相流动问题的理论分析及数值模拟[D],成都科技大学博士论文,1992年7月
    57.Zarrati A. R. Mathematical Modeling of Air-water Mixtures in Open Channels. Journal of Hydraulic Research, 1994, 32(5), 713-714
    58.谭立新,许唯临,杨永全,明渠水气两相流数值模拟[J],四川联合大学学报(工程科学版)1999年1月,93-97
    59.谭立新,许唯临,杨永全,水气二相流特点及其单流体模型[J],西安理工大学学报,2000年第3期,280-283
    60.杨永全,现代工程水力学,西南民族学院学报(自然科学版)[J],2001年第3期,253-257
    61.溢洪道设计规范[S],SL253-2000。
    62.刘大明,高流速水工建筑物上掺气槽通气量的水力模拟[J],长江科学院院报,1995年3月,1-8
    63.杨永森,强迫掺气水流的数学模型[R],清华大学博士后出站报告,1993年7月
    64.何勇,构皮滩泄洪洞掺气设施试验研究[J],人民长江,2004年11月,53-54
    65.肖兴斌,王才欢,王业红,弧形闸门突扩跌坎式通气减蚀研究进展综述[J],长江科学院院报,2000年10月
    66.Van wijingaarden, L., On the Collective Collapse of A Large Number of Gas Bubbles in Water, Proc. 11th Int. Congr. of Appl. Mech., Springer, Berlin, 1964
    67.陈长植,于琪洋,杨永森,挑坎型掺气减蚀设施过流掺气特性研究[J],水利水电技术,1999年第10期
    68.庞昌俊苑亚珍,大型“龙抬头”明流泄洪洞的体形设计[J],水力发电-1992年8期, 1992(8).23-28
    69.林秉南,龚振瀛,潘东海,高坝溢洪道反弧段的合理形式[J],水利学报,1982(2),1-8
    70.魏文礼,张宗孝,谭立新,李建中,高水头泄水建筑物反弧抗蚀体型研究[J],西安理工大学学报,1999年第4期,31-34
    71.童显武,工程水力学的近期发展[C],水力学与水利信息学进展,2003年
    72.A.Shima, K.Takayama and Y.Tomita,“Mechanisms of the Bubble Collapse Near a Solid Wall and the Induced Impact Pressure Generation”, Rep Inst. High Speed Mech. Vol. 48,1984
    73.A.T.Ellis,“Production of Accelerated Cavitation Damage by an Acoustic Field in a Cylindrical Cavity”, Jr. Acoust. Soc. Am., 27, 1965
    74.G.Petracchi,“Investigations of Cavitation Corrosion”, Metallurgia Italiana, 4l, No. 1, 1949
    75.M.S.Plesset,“Bubble Dyramics”, in R. Davies (ed.), Cavitation in Real Fluids, Elsevier Publishing Co., Amsterdam. 1964
    76.Bruschin, J., Forced Aeration of High Velocity Flows, Journal of Hydraulic Research, Vol.25, No.1, 1987
    77.Chanson, H., A Model Study of Aerator Performance, Thesis Submitted to the University of Canterbury for the Degree Doctor of Dhilosophy(Civil Engieering), 1988
    78.Pinto, N.L.de S. and Neidert, S.H., et al., Aeration at High Velocity Flows, Water Power & Dam Construction, Vol.34. Feb/March 1982
    79.Rutschmann, P. and Hager W.H., Design and Performance of Spillway Chute Aerators, Water Power & Dam Construction, Vol.42, January 1990
    80.曾文其,二滩水电站泄洪隧洞减免蚀措施设计[J],水电站设计,1993.9,28-31
    81.杨永全,刘超等,二滩水电站一号泄洪洞改造工程常压模型试验[R],四川大学高速水力学国家重点实验实,2002.9
    82.陈文学,张东,二滩水电站一号泄洪洞水工常压模型试验报告[R],中国水利水电科学研究院水力学所,2002.9
    83.杨永全,刘超等,二滩水电站一号泄洪洞侧墙减免空蚀水工常压模型试验[R],四川大学高速水力学国家重点实验实,2004.6
    84.杨永全,刘超等,二滩水电站一号泄洪洞侧墙减免空蚀体型优化研究水工常压模型试验成果报告[R],四川大学高速水力学国家重点实验实,2005.1
    85.张东,高建标,二滩水电站一号泄洪洞2号掺气坎下游侧墙掺气水工模型试验报告[R],中国水利水电科学研究院水力学所,2005.1
    86.张东,二滩水电站一号泄洪洞水力学原型观测初步资料[R],中国水利水电科学研究院水力学所,2003.10
    87.张东,二滩水电站一号泄洪洞水力学原型观测报告[R],中国水利水电科学研究院水力学所,2005.12
    88.韩昌海,王正臬,明流泄洪洞反弧段体型的研究[J],水利水运科学研究,1996年第2期,117-125
    89.罗克湘,白云水电站高水头明流泄洪洞水力学问题的试验研究[J],湖南水利,1995.5,15-20
    90.王世夏,水工设计的理论和方法[M],中国水利水电出版社,2000.7,117-134
    91.肖兴斌,高速水流空化、空蚀、掺气及掺气减蚀研究工作回顾[J],长江志季刊,1999(4),37-45

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700