不同垂直骨面型成人磨牙区下颌神经管位置分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     应用锥体束CT(Cone-Beam Computed Tomography, CBCT)对不同垂直骨面型成人后牙区下颌骨内下颌神经管的三维位置进行测量分析,探讨不同垂直骨面型人群的下颌神经管在后牙区下颌骨内分布的空间差异,为临床正畸治疗时种植支抗和牙齿缺失时种植体的选用提供参考依据,避免手术时因对下颌管解剖位置的不清楚伤及下齿槽血管(IAV)和下齿槽神经(IAN)。
     材料和方法:
     按照标准随机抽取2011年12月—2013年2月在山东省口腔医院门诊部就诊并拍摄CBCT的具有完整下颌牙列的男女患者各45例,年龄19—40岁(排除严重错颌畸形、半侧颜面萎缩、下颌部外伤、肿瘤、一二鳃弓综合征、外科正畸整形治疗等明显颜面部不对称的患者;排除乳牙滞留者;排除影响骨骼功能和发育的疾病,如类风湿性关节炎;排除牙周疾病,如有重度牙周炎导致的骨质吸收,使牙槽骨高度与厚度降低等、排除下颌后牙区使用金属修复体者)。将CBCT扫描资料进行回顾性分析并合成头颅侧位片,根据眶耳平面与下颌平面角(FH-MP角)、后面高与前面高之比(S-Go/N-Me)、垂直向异常指数(ODI),将其分为高角组、均角组、低角组,其中男性高角者15例,均角者19例,低角者11例;女性高角者14例,均角者20例,低角者11例。选取下领磨牙所在的下领骨的冠状截面进行相关数据测量:(1)后牙区各牙齿(第三磨牙除外)牙槽嵴顶至下领管上壁距离(MA)。(2)下领神经外侧缘到颊侧骨板外缘距离(MB)。(3)下领神经管内侧缘到舌侧骨板外缘距离(ML)。每个距离测量3次,均由同一人员测量,取三次平均值。将研究对象的所有数据输入SPSS16.0软件对测量值进行统计学分析,利用配对t检验分析、单因素方差分析、组间多重比较等方法,分析不同垂直骨面型成年男女后牙区各牙位处下颌神经管颊舌侧骨板厚度的差异以及下颌管上壁至牙槽嵴顶距离(MA)的差异,并探讨不同垂直骨面型与下颌管在后牙区下颌骨内的三维位置测量参数之间的相关关系。
     结果:
     1.男女不同性别两组下颌骨后牙区各牙槽嵴顶至下颌管上缘距离(MA)、下颌管内侧缘到舌侧骨板的距离(ML)、下颌管外侧缘到颊侧骨板的距离(MB)无明显差异,无统计学意义(P>0.05)。
     2.下颌骨左右两侧各组测量数据结果经比较没有显著性差异,无统计学意义(P>0.05)。因此本研究只选用样本人员左侧下颌骨后牙区内下颌管的相关测量数据进行分析比较(单位mm)。
     3.高角组、均角组和低角组的下颌骨后牙区各牙槽嵴顶至下颌管上缘(MA)距离在第一前磨牙处男性高角组17.52,均角组18.01,低角组18.23;女性高角组16.46,均角组16.53,低角组16.93。第二前磨牙处男性高角组17.96,均角组18.43,低角组19.07;女性高角组17.16,均角组17.53,低角组18.23。第一磨牙处男性高角组17.56,均角组18.35,低角组19.10;女性高角组16.84,均角组17.71,低角组18.11。第二磨牙处男性高角组16.23,均角组17.54,低角组18.32;女性高角组15.93,均角组16.81,低角组17.21。将各组数据进行分析比较,在第二前磨牙和第一、二磨牙处P<0.05,差异有统计学意义。
     高角组、均角组和低角组的下颌管内侧缘到舌侧骨板(ML)的距离在第一前磨牙处男性高角组4.22,均角组4.64,低角组5.04;女性高角组4.17,均角组4.58,低角组5.01。第二前磨牙处男性高角组4.82,均角组5.04,低角组5.21;女性高角组4.66,均角组4.98,低角组5.14。第一磨牙处男性高角组2.12,均角组2.27,低角组2.44;女性高角组2.08,均角组2.25,低角组2.38。第二磨牙处男性高角组1.58,均角组1.72,低角组1.96;女性高角组1.48,均角组1.67,低角组1.90。将各组数据进行分析比较,P>0.05,差异无统计学意义。
     高角组、均角组和低角组的下颌管外侧缘到颊侧骨板(MB)的距离在第一前磨牙处男性高角组1.13,均角组1.35,低角组1.74;女性高角组1.12,均角组1.28,低角组1.64。第二前磨牙处男性高角组4.82,均角组5.21,低角组5.64;女性高角组4.62,均角组4.88,低角组5.24。第一磨牙处男性高角组6.48,均角组6.76,低角组7.28;女性高角组6.26,均角组6.62,低角组7.18。第二磨牙处男性高角组5.46,均角组5.96,低角组6.52;女性高角组5.36,均角组6.01,低角组6.44。将各组数据进行分析比较,P>0.05,差异无统计学意义。
     结论:
     1.下颌管上壁至牙槽嵴顶距离,无论男女还是高角或低角均呈第二前磨牙向后到第二磨牙逐渐减小趋势。
     2.随着下颌平面角(FH-MP角)的逐渐增大,即低角→高角,下颌骨磨牙区各牙槽嵴顶至下颌管上缘(MA)距离会逐渐减小,成负相关关系。
     由此可知在临床进行牙种植手术和正畸种植支抗时,高角患者要比低角患者面临风险大一些,高角患者的下颌管更容易受到损伤。
Objective:
     The purpose of this study is to measure the three-dimensional structure of the mandibular canal in the mandibular posterior for adult men and women with the different vertical skeletal patterns by using cone-beam computed tomography (CBCT), in order to find the difference of the mandibular canal in the mandibular, which can provide reference for the clinical medicine, that would avoid to hurt the inferior alveolar nerve and the inferior alveolar vessels.
     Materials and Methods:
     From December2011to February2013,45female and45male patients with CBCT examination were chosen from the patients who have all the teeth in the mandible accepted the cone-beam computed tomography (CBCT) in Department of Orthodontic of school of Stomatology of Shandong University, aged from19to40years old,{get rid of the patients who have serious malocclusion, hemifacial atrophy, mandibular trauma, tumor, one or two branchial arch syndrome, surgical orthodontic surgery treatment; excluding the adult retained deciduous teeth; eliminate the effect of skeletal function and development of diseases, such as rheumatoid arthritis; exclusion of periodontal diseases, such as periodontitis resulted in resorption of alveolar bone height reduction, excluding mandible molar metal restorations.},which were divided into3groups according to the mandibular plane [2], the ratio of between the posterior face height and the anterior face height (the male patients:15in the high-angle group,19in the average-angle group,11in the low-angle group; the female patients:14in the high-angle group,20in the average-angle group,11in the low-angle group).The measurements included:(1) the distance between the upper edge mandibular canal and the alveolar crest of each molar tooth(MA);(2)the distance between the lateral border inferior alveolar canal and the buccal cortex of mandible (MB);(3) the distance between the interior border of inferior alveolar canal and lingual cortex of the mandible (ML). Each distance measure3times and the mean value were recorded. All the measure datas of the subject investigated are analysed by the means of SPSS16.0. The statistical methods used in this study are One-way AN OVA and multiple comparisons between groups (LSD), Paired T-test, Pearson correlation analysis, which used to compare the differences of the MA, MB and ML between different vertical skeletal pattern adults, and determine the correlation of these parameters with the vertical skeletal pattern.
     Results:
     l.In different gender(male and female), datas of the distance between the upper edge mandibular canal and the alveolar crest of each molar tooth(MA), the distance between the lateral border inferior alveolar canal and the buccal cortex of mandible (MB) and the distance between the interior border of inferior alveolar canal and lingual cortex of the mandible (ML) showed little difference, which was not significantly different.(P>0.05).
     2.Measurement results of left or right mandile was obtained separately, however, there was no statistical significance between the two sides(P>0.05). Datas of left mandible that related to mandibular canal are as follows (unit/mm).
     3.Among different vertical facial types, the distance between the upper edge mandibular canal and the alveolar crest of each molar tooth(MA):for the first premolar plane, male high-angle group,17.52; male average-angle group,18.01; male low-angle group,18.23; and female high-angle group,16.46; female average-angle group,16.53; female low-angle group,16.93. for the second premolar plane, male high-angle group,17.96; male average-angle group.18.43; male low-angle group,19.07; and female high-angle group,17.16:female average-angle group.17.53; female low-angle group,18.23. for the firs molar plane,male high-angle group,17.56; male average-angle group,18.35; male low-angle group,19.10; and female high-angle group,16.84; female average-angle group,17.71; female low-angle group,18.11.for the second molar plane,male high-angle group,16.23; male average-angle group,17.54; male low-angle group,18.32; and female high-angle group,15.93; female average-angle group,16.81; female low-angle group,17.21.From here we see that high-angle group was significantly shorter than low-angle group(P<0.05).
     The distance between the interior border of inferior alveolar canal and lingual cortex of the mandible (ML):for the first premolar plane, male high-angle group,4.22; male average-angle group,4.64; male low-angle group,5.04; and female high-angle group,4.17; female average-angle group,4.58; female low-angle group,5.01. for the second premolar plane, male high-angle group,4.82; male average-angle group,5.04; male low-angle group,5.21; and female high-angle group,4.66; female average-angle group,4.98; female low-angle group,5.14. for the firs molar plane,male high-angle group,2,12; male average-angle group,2.27; male low-angle group,2.44; and female high-angle group,2.08; female average-angle group,2.25; female low-angle group,2.38. for the second molar plane,male high-angle group,1.58; male average-angle group,1.72; male low-angle group,1.96; and female high-angle group,1.48; female average-angle group,1.67; female low-angle group,1.90. Those show no statistical significance between high-angle and low-angle group,either(P>0.05).
     While the distance between the lateral border inferior alveolar canal and the buccal cortex of mandible (MB)::for the first premolar plane, male high-angle group,1.13; male average-angle group,1.35; male low-angle group,1.74; and female high-angle group,1.12; female average-angle group,1.28; female low-angle group,1.64. for the second premolar plane, male high-angle group,4.82; male average-angle group,5.21; male low-angle group,5.64; and female high-angle group,4.62; female average-angle group,4.88; female low-angle group,5.24. for the firs molar plane,male high-angle group,6.48; male average-angle group,6.76; male low-angle group,7.28; and female high-angle group,6.26; female average-angle group.6.62; female low-angle group,7.18. for the second molar plane.male high-angle group,5.46; male average-angle group.5.96; male low-angle group,6.52; and female high-angle group,5.36; female average-angle group,6.01; female low-angle group.6.44.Those show high-angle group had no significant difference compared to low-angle group (P>0.05).
     Conclusion:
     1. The distance between the upper edge mandibular canal and the alveolar crest of each molar tooth(MA) decreased from the mandibular pemolar to the posterior segment.whether the gender or vertical skeletal pattern.
     2.In molar segment, with the englargement of mandibular plane angle(FH-MP angle),that is,from the low-angle to high-angle, the distance between the upper edge mandibular canal and the alveolar crest of each molar tooth(MA) decreased,which reveals that there is a significantly negative relationship between FH-MP angle and MA.
     Thus it can be seen, high-angle patients facing higher risk in certain oral therapies, such as dental implant surgery and bone anchorage implant, while the mandibular canal of high-angle patient are more easily impaired.
引文
1 XieZhiwei,LiGuoju,GuJing.Anthropometric Analysis of the Mandible of the Young Females with Different Vertical Skeletal Pattern by the Cone Beam Computer Tomography[J].West China journal of Stomatology,2012,30(3):299-303.
    2 Fu Minkui. Orthodontics[M]. Beijing:People's Medical Publishing House, 2008(5):80-85.
    3 JiangWenwen. Applications of Cone Beam Computed Tomography in the Practice of Implant Dentistry[J].Journal of Hainan Medical University,2012,18(8),1050-1053.
    4 ZhaoYimin.Prosthodontics[M].Beijing:People's Medical Publishing House,2008(2):45-60.
    5 Stepovich M L. A clinical Study on Closing Edentulous spaces in the andible[J].Angle Ort hod,1979,49(4):227-233.
    6 Scarfe WC, Farman AG, Sukovic P. Clinical applications of cone-beam computed tomography in dental practice[J]. J Can Dent Assoc,2006,72(l):75-80.
    7 QiuWeiliu,ZhangZhengkang,ZhangZhiyuan.Oral and maxillofacial surgery[M]. Beijing:People's Medical Publishing House,2008(2):105-130.
    8 Fu Minkui. Orthodontics[M]. Beijing:People's Medical Publishing House, 2008(5):111-132.
    9 QiuWeiliu,ZhangZhengkang,ZhangZhiyuan.Oral and maxillofacial surgery[M]. Beijing:People's Medical Publishing House,2008(2):105-130.
    10 Bou Serhal C. van Steenberghe D, Quirynen M.Jacobs R. Localisation of the mandibular canal using conventional spiral tomography-a human cadaver study. Clin Oral Impl Res,2001,12(3):230-236.
    11 Ellies LG. Altered sensation following mandibular implant surgery-a retrospective study[J]. Prosth Denstistry,1992,68(4):664-671.
    12王非.下颌第三磨牙拔除导致一下齿槽神经损伤的危险因素[J]. Journal of China-Japan Friendship Hospital,2007,21 (6):370-371.
    13 Liu Shifeng,Xiao Qiaoling,Wu Dayi.The clin ica lobserva tion and the trea tmen t of lower lip numbness recovery after implant opera tion[J].Chinese Journal of Oral Implantology,2009,14(2):5-6.
    14 Proffit W.R.. Contemporary Orthodontics[M]. American:Oversea Publishing House,2001(3):101-140.
    15 Pi Xin. Oral anatomy and physiology[M]. Beijing:People's Medical Publishing House,2007(8):95-96.
    16 Ouyangdong,SuQiang,HouCe.Evaluation of factors influencing injury of inferior alveolar nerve associated with mandibular fractures[J].Medical Journal of the Chinese People's Armed Police Forces,2005,16(1):25-27.
    17 Chaushu G, Taicher S, Halamish-Shani T, Givol N. Medicolegal aspects of altered sensation following implant placement in the mandible[J]. Int J Oral Maxillofaclmplants,2002,17(3):413-415.
    18 Zhou Guoxing,Huang Hongyuan,Hao Nanxin. Spiral CT Anatomy of the Mandibular Canal and Its Clinical Significance[J].Chinese Computed Medical Imaging,2004,10(2):89-91.
    19 Xie Zhiwei.Anthropometric Analysis of the Mandible of the Young Females with Different Vertical Skeletal Pattern by the Cone Beam Computer Tomography[D].Shan Dong:Shandong University,2012.
    20 Schwartz-Dabney CL, Dechow PC. Variations in cortical material properties throughout the human dentate mandible[J]. Am J PhysAnthropol,2003,120(3): 252-277.
    21 Wang Bei.Fang Hongbo,Xu Bing.Shi Jun. The 3D loca tion of 100 ca ses of norma lmand ibular canals[J].Journal of Practical Stomatology,2010,26(2):223-226.
    22 Task Group on Control of Radiation Dose in Computed Tomography. Managing patient dose in computed tomography. A report of the International Commission on Radiological Protection [J]. Ann ICRP,2000,30(4):7-45.
    23 Tantanapomkul W, Okouchi K, Fujiwara Y. A Comparative Study of Cone-beam Computed Tomography and Conventional Panoramic Radiography in Assessing the Topographic Relationship between the Mandibular Canal and Impacted Third Molars[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod,2007,103(2): 253-259.
    24 Xie Zhiwei,Li Guoju,Gu Jing.Anthropometric Analysis of the Mandible of the Young Females with Different Vertical Skeletal Pattern by the Cone Beam Computer Tomography[J].West China journal of Stomatology,2012,30(3):299-303.
    25 Fu Minkui. Orthodontics[M]. Beijing:People's Medical Publishing House, 2008(5):76-77.
    26 Fu Minkui. Orthodontics[M]. Beijing:People's Medical Publishing House, 2008(5):80-85.
    27曾祥龙.现代口腔正畸学诊疗手册[M].北京:北京医科大学出版社,2000(1):338-341.
    28 Proffit W.R.. Contemporary Orthodontics[M]. American:Oversea Publishing House,2001(3):101-140.
    29 Buser D. Outcome analysis of implant rest rations located in the anterior maxilla:a review of the recent literature[J]. Int J O ral M axillofac Implants,2004,19(1):30-42.
    30 Li Ningyi,Zhao Baodong, Yang Xuecai.Intramandibular course and anatomic structure of the inferior alveolar nerve canal[J]. Chinese Journal of Stomatology, 2001,36(6):446-447
    31 Wang Lun-an,Liu Weihua,Li Xin. Clinical Applied Anatomy in Designing Osteotomy Line on the Buccal Surface of Mandible for Performing Curved Osteotomy on Mandible Having Hapertrophic Mandible Angle [J]. West China Medical Journal,2006,21(1):9-10.
    32周国兴,黄鸿源.下颌神经管的螺旋CT解剖及临床意义[J].中国医学计算机成像杂志,2004,10(4):89-91.
    33 Lan Peng, Meng Xiuying, Liu Aishi, Shen Tiebing.Study on the Distance Which Were from Every Tooth Apexs of UpperMolar to the Bot tom of Maxillary Sinus by Applying 3-DimensionalHelical Computed Tomograph [J].Inner Mongolia Medical Journal,2008.40(5):543-545.
    34邹晖,赖仁发.下颌肌肉与垂直骨面型的关系及对正畸治疗的影响[J]. Journal of Dental Prevention and Treatment,2007,15(6):280-282.
    35 Li Haitao,Cui Chuanjiang.Lu Shulai. the Changes of Electomygraphic Activity of Masticatory Muscles in Class Ⅱ1 Malocclusions with Different Vertical Craniofacial Morphology[J]. Aacademiae Medicinae Qingdao Universitatis,2010,46(1):32-34.
    36 Jung MH, Yang WS.Nahm DS. Maxium closing force of mentolabial muscles and type of malocclusion[J]. Angle Orthod,2010,80(1):72-79.
    37 Sonnesen L, Bakke M. Molar bite force in relation to occlusion craniofacial dimensions and head posture in pre-orthodontic children[J]. European journal of orthodontics,2005,27(1):58-63.
    38 Costa A, Raffainl M, Melsen B. Miniscrews as orthodontic anchorageia preliminary report[J].Adult Orthod Orthognath Surg,1998,13(1):201-209.
    39 Jin Ai-ping,HuXiaocong,Huang Yueyan.Micro-implant Anchorage in Orthodontics for Adults[J].Chinese Journal of Aesthetic Medicine,2012,21(06):1003-1004.
    40 Katsumata A, Hirukawa A, Okumura S. Effects of image artifacts on gray value density in limited-volume cone-beam computerized tomography [J].Oral Surgery, 2007,104(6):829-836.
    41 Katsumata A, Hirukawa A, Noujeim M, Okumura S. Image artifact in dental cone-beam CT [J].Oral Radiology and Endodontics,2006,101(5):652-657.
    42 Hua Y, Nackaerts O, Duyck J, Maes F.Bone quality assessment based on cone beam computed tomography imaging [J].Clinical Oral Implants Research, 2009,20(8):767-771.
    43 Corten FGA. Van't Hof MA, Buijs WCAM. Measurement of mandibular bone densityex vivo and in vivo by dual-energy x-ray absorptiometry [J].Archives of Oral Biology,1993,38(2):215-219.
    44 Fu Cong.Bone density and the cortical bone thickness in different skeletal facial types adolescent evaluated with cone beam computerized tomography[J].West China Journal of Stomatology,2012,30(2):11-12.
    45 Kohakura S, Kasai K,Ohno I, Kanazawa E. Relationship between maxillofacia morphology and morphological characteristics of vertical sections of the mandible obtained by CT scanning[J]. J Nihon Univ School Dent,1997,39(2):71-77.
    46 van Eijden TM. Biomechanics of the mandible[J]. Crit Rev Oral Biol Med,2000, 11(1):123-136.
    47 Hylander WL, Johnson KR, Crompton AW. Muscle force recruitment and biomechanical modeling-an analysis of masseter muscle function during mastication in Macaca fascias[J]. Am J Phys Anthropol,1992,88(3):365-387.
    48 Hylander WL,Johnson KR. Jaw muscle function and wishboning of the mandible during mastication in macaques and baboons[J]. Am J Phys Anthropol,1994, 94(4):523-547.
    49 Hylander WL. In-vivo bone strain as an indicator of masticatory bite force in Macaca fascicularis[J]. Archives of Oral Biology 1986.31(3):149-157.
    50 HylanderWL. Stress and strain in the mandibular symphysis of primates-a test of competing hypotheses[J]. Am J Phys Anthropol,1984,64(1):1-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700