黄地散治疗骨质疏松小鼠SAMP6主动脉钙化的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以快速老化骨质疏松SAMP6小鼠及其正常对照小鼠SAMR1为研究对象,以中药复方“黄地散”为治疗手段,通过考察血清睾酮(T)、骨钙素(BGP)、血清超氧化物歧化酶(SOD)、丙二醛(MDA)及低密度脂蛋白胆固醇(LDL C)水平、组织钙含量、主动脉钙化情况、股骨生物力学性能、主动脉及股骨中局部骨代谢因子骨形态发生蛋白2(BMP 2)和护骨素(OPG)表达等的变化,观察黄地散对主动脉钙化和骨质疏松症的影响。探讨动脉钙化与骨质疏松的相关性,揭示黄地散对骨质疏松鼠主动脉钙化的调控作用及调控机制。
     与SAMR1小鼠比较,SAMP6对照组小鼠血清T明显低下;BGP水平明显升高。SAMP6血清SOD水平明显下降,而MDA浓度明显升高;SAMP6血钙、骨钙浓度较低;尿钙、主动脉钙含量较高。形态学显示SAMP6小鼠主动脉中膜平滑肌细胞排列紊乱;中弹力板多处疏松断裂消失;中膜弹性纤维间有细小黑色钙沉积颗粒。SAMP6股骨显微结构破坏,生物力学性能较SAMR1降低。SAMP6对照组主动脉OPG表达下降,BMP 2表达上升;而股骨OPG、BMP 2表达均显著下降。
     黄地散促使SAMP6小鼠血清T含量明显上升;血清BGP水平明显下降;血SOD上升,血MDA浓度下降。黄地散还对SAMP6异常的组织钙分布有良性调节作用,使血钙、骨钙上升;而尿钙、主动脉钙下降。还可改善SAMP6主动脉结构,减少主动脉钙沉积。黄地散对SAMP6股骨形态计量学、生物力学指标也有明显改善作用,可促进骨形成,抑制骨吸收,增加骨量,提高骨强度。黄地散可对SAMP6主动脉、股骨内骨代谢相关因子OPG、BMP 2的表达有明显良性调节作用,使二者表达趋于正常。
     骨质疏松小鼠SAMP6主动脉中膜细胞外基质和平滑肌细胞内存在微钙化现象。SAMP6小鼠发生血管钙化并骨质疏松症与性激素分泌下降;脂质过氧化损伤增加;成骨细胞和破骨细胞数目和活性的失调;体内钙平衡遭到破坏,BGP、OPG和BMP 2等局部骨代谢因子表达异常有关。黄地散通过加强性激素分泌及良性调节骨代谢因子OPG、BMP 2表达,既促进骨形成,降低骨吸收,增加骨强度;又抑制了钙盐在主动脉的进一步沉积。因此,黄地散在防治骨质疏松的同时,也提供了对心血管的保护。
SAMP6 mice and their normal control mice SAMR1 were enrolled in this study. After 8 weeks of treatment with HuangDi Powder, the serum level of testosterone (T), osteocalcin (BGP), SOD, MDA and LDL C was determined. The calcium content in different tissues, aortic calcification, the mechanical properties of femur, and the expression of local bone metabolism factors (OPG and BMP 2) in arteriae aorta and femur were also assessed after experiment. The therapeutic effect of HuangDi powder on arterial calcification and osteoporosis was studied and the corralation of vascular calcification and osteoporosis was explored. The effect of HuangDi powder on arterial calcification in osteoporotic SAMP6 mice and its possible mechanisms were investigated.
     Compared to SAMR1 control group, the serum T level of SAMP6 was significantly decreased, whereas the BGP content was obviously increased. The SOD concentration in SAMP6 serum was significantly lower, and the MDA level was notably higher than that in SAMR1. When compared with SAMR1, the calcium content in serum and femur of SAMP6 decreased, while that in urine and arteriae aorta increased obviously. Morphological studies on thoracic aorta showed that the smooth muscle cells in tunica media decreased in amount and arranged disorderly, the elastic lamella were severe disorganized with areas of complete disappearance of the elastic fiber, and numerous calcium deposits were detected within the elastin fibers of tunica media in SAMP6. The microstructure and biomechanical properties of femur in SAMP6 were clearly worse than that in SAMR1. In the aorta of SAMP6, the OPG expression was down regulated and the BMP 2 expression was up regulated, but in the femur of SAMP6, the expression level of both OPG and BMP 2 decreased sharply than that in SAMR1.
     After the treatment with HuangDi powder, the serum T level in SAMP6 markedly heightened, whereas the OC concentration sharply declined. The increased serum SOD and the decreased MDA contents also were found in SAMP6 mice. HuangDi powder also improved abnormal tissue distribution of calcium to some degree, which induced an increase in calcium content in serum and femur and a decrease in calcium concentration in urine and arteriae aorta of SAMP6. HuangDi Powder could remodel the abnormal architecture of aorta wall and reduce the calcium deposition in thoracic aorta. The bone histomorphometric and mechanical indexes of SAMP6 also improved significantly. HuangDi powder was effective in promoting bone formation, restraining bone resorption, restoring the amount of bone volume and improving bone strength. Moreover, HuangDi powder could also restore the expression of OPG and BMP 2 in thoracic aorta and femur of SAMP6 to normal level.
     Some calcium deposits were observed in the extracellular matrix and the smooth muscle cells in aortic tunica media of osteoporotic SAMP6. Thoracic aortic calcification and osteoporosis observed in SAMP6 were correlated with the deficiency in testosterone secretion, the increase of lipid peroxidation, the imbalance in numbers and activity of osteoblast and osteoclast, the disorders of calcium balance of organisms and the abnormal expression of local bone metabolism factors (BGP, OPG and BMP 2). HuangDi powder not only promoted bone formation, restrained bone resorption and increased bone strength, but also suppressed calcium deposition in aorta by stimulating testosterone secretion and regulating the expression of OPG and BMP 2. Therefore, HuangDi Powder was effective in reversing osteoporosis of SAMP6 to some degree, and protecting the cardiovascular health at the same time.
引文
[1] Szulc P, Kiel DP, Delmas PD, Calcifications in the abdominal aorta predict fractures in men: MINOS study, J Bone Miner Res, 2008,23(1):95~102
    [2] Bagger YZ, Tanko LB, Alexandersen P, et al, Radiographic measure of aorta calcification is a site specific predictor of bone loss and fracture risk at the hip, J Intern Med, 2006, 259(6):598~605
    [3] Naves M, Rodríguez García M, Díaz López JB, et al, Progression of vascular calcifications is associated with greater bone loss and increased bone fractures, Osteoporos Int, 2008,19(8):1161~1166
    [4]刘忠厚,骨质疏松学,北京:科学出版社,第1版,1998,143
    [5]薛延,骨质疏松症—骨质疏松症的流行病学概况,新医学,2007,38(1):7~8
    [6]赵燕玲,潘子昂,王石麟,等,中国原发性骨质疏松流行病学,中国骨质疏松杂志,1998,4(1):1~4
    [7] Makhluf HA, Mueller SM, Mizuno S, Age Related Decline in Osteoprotegerin Expression by Human Bone Marrow Cells Cultured in Three Dimensional Collagen Sponges, Biochem Biophys Res Commun, 2000,268(3):669~672
    [8] Jilka RL, Biology of the basic multicellular unit and the pathophysiology of osteoporosis, Med Pediatr Oncol, 2003,41(3):182~185
    [9] Frost HM, The Utah paradigm of skeletal physiology: an overview of its insights for bone, cartilage and collagenous tissue organs, J Bone Miner Metab, 2000,18(6):305~316
    [10] Jee W, osteoporosis update 1999. proceedings, Third International Congress on Osteoporosis,Beijing, 1999, 78~83
    [11] Rizzoli R, Nutrition: its role in bone health, Best Pract Res Clin Endocrinol Metab, 2008,22(5):813~829
    [12] Corwin RL, Hartman TJ, Maczuga SA, et al, Dietary saturated fat intake is inversely associated with bone density in humans: analysis of NHANES III, J Nutr, 2006, 136(1): 159~165
    [13] Hsu YH, Venners SA, Terwedow HA, et al, Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women, Am J Clin Nutr, 2006, 83(1): 146~154
    [14] Christodoulakos GE, Lambrinoudaki IV, Panoulis CP, et al, Effect of hormone replacement therapy, tibolone and raloxifene on serum lipids, apolipoprotein A1, apolipoprotein B and lipoprotein(a) in Greek postmenopausal women, Gynecol Endocrinol, 2004, 18(5): 244~257
    [15] Reid IR, Effects of calcium supplementation on bone and other end points in normal older women The Auckland Calcium Study, Nutritional Aspects of Osteoporosis 2006, Proceedings of the 6th International Symposium on Nutritional Aspects of Osteoporosis, Lausanne, Switzerland: 2006, Elsevier Publishing House , International Congress Series, 2007, 1297: 82~88
    [16] Klein RF, Allard J, Avnur Z, et al, Regulation of bone mass in mice by the lipoxygenase gene Alox15, Science, 2004, 303(5655): 229~232
    [17] Ozgocmen S, Kaya H, Fadillioglu E, et al, Role of antioxidant systems, lipid peroxidation, and nitric oxide in postmenopausal osteoporosis, Mol Cell Biochem, 2007, 295(1 2): 45~52
    [18] Karagiannides I, Thomou T, Tchkonia T, et al, Increased CUG triplet repeat binding protein 1 predisposes to impaired adipogenesis with aging, J Biol Chem, 2006, 281(32): 23025~23033
    [19] Strawford A, Antelo F, Christiansen M, et al, Adipose tissue triglyceride turnover, de novo lipogenesis, and cell proliferation in humans measured with 2H2O, Am J Physiol Endocrinol Metab, 2004, 286(4): E577~E588
    [20] Ma XH, Muzumdar R, Yang XM, et al, Aging is associated with resistance to effects of leptin on fat distribution and insulin action, J Gerontol A Biol Sci Med Sci, 2002, 57(6): B225~B231
    [21] Guo W, Pirtskhalava T, Tchkonia T, et al, Aging results in paradoxical susceptibility of fat cell progenitors to lipotoxicity, Am J Physiol Endocrinol Metab, 2007, 292: E1041~E1051
    [22] Ye P, Zhang XJ, Wang ZJ, et al, Effect of aging on the expression of peroxisome proliferator activated receptor gamma and the possible relation to insulin resistance, Gerontology, 2006, 52(2): 69~75
    [23] Duque G, Macorittoc M, Kremerc R, 1,25(OH)2D3 inhibits bone marrow adipogenesis in senescence accelerated mice (SAM P/6) by decreasing the expression of peroxisome proliferator activated receptor gamma 2 (PPARγ2), Exp Gerontol, 2004, 39: 333~338
    [24] Akune T, Ohba S, Kamekura S, et al, PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors, J Clin Invest, 2004, 113(6): 846~855
    [25] Li X, Cui Q, Kao C, et al, Lovastatin inhibits adipogenic and stimulates osteogenic differentiation by suppressing PPARgamma2 and increasing Cbfa1/Runx2 expression in bone marrow mesenchymal cell cultures, Bone, 2003, 33(4): 652~659
    [26] Shefer G, Wleklinski Lee M, Yablonka Reuveni Z, Skeletal muscle satellite cells can spontaneously enter an alternative mesenchymal pathway, J Cell Sci, 2004, 117 (22): 5393~5404
    [27] Karagiannides I, Tchkonia T, Dobson DE, et al, Altered expression of C/EBP family members results in decreased adipogenesis with aging, Am J Physiol, 2001, 280(6): R1772~R1780
    [28] Stringer B, Waddington R, Sloan A, et al, Serum from Postmenopausal Women Directs Differentiation of Human Clonal Osteoprogenitor Cells from an Osteoblastic toward an Adipocytic Phenotype, Calcif Tissue Int, 2007, 80(4): 233~243
    [29] Kirkland JL, Tchkonia T, Pirtskhalava T, et al, Adipogenesis and aging: does aging make fat go MAD? Exp Gerontol, 2002, 37(6): 757~767
    [30] Goldbarg SH, Elmariah S, Miller MA, et al, Insights into degenerative aortic valve disease, J Am Coll Cardiol, 2007,50(13):1205~1213
    [31] Shiraki M, Miyagawa A, Akiguchi I, et al, Evidence of hypovitaminosis D in patients with mitral ring calcification, Jpn Heart J,1988,29:801~808
    [32] Kruger MC, Horrobin DF, Calcium metabolism, osteoporsis and essential fatty acids: A review, Progress in Lipid Research, 1997, 36:131~151
    [33] Cranney A, Horsley T, O'Donnell S, et al, Effectiveness and safety of vitamin D in relation to bone health, Evid Rep Technol Assess, 2007,(158):1~235
    [34] Chen NX, Moe SM, Arterial calcification in diabetes, Curr Diab Rep, 2003, 3: 28~32
    [35] London GM, Guerin AP, Marchais SJ, et al, Cardiac and arterial interactions in end stage renal failure,Kidney Int, 1996,50: 600~608
    [36] Bügel S, Vitamin K and bone health in adult humans, Vitam Horm, 2008;78:393~416
    [37] Shearer MJ, Role of vitamin K and Gla proteins in the pathophysiology of osteoporosis and vascular calcification, Current Opinion in Clinical Nutrition and Metabolic Care, 2000,3:433~438
    [38] Parhami F, Garfinkel A, Demer LL, Role of Lipids in Osteoporosis, Arteriosclerosis, Thrombosis, and Vascular Biology, 2000,20:2346~2348
    [39] Farhad P,Andrew D,Jennifer Balucan M,et a1.Lipid oxidation produets have opposite effects on calcifying vascular cell and bone differentiation, Arteriosclerosis, Thrombosis, and Vascular Biology, 1997,17:680~687
    [40] Mody N, Parhami F, Sarafian TA, et a1, Oxidative stress modulates osteoblastic differentiation of vascular and bone cells, Free Radic Biol Med, 2001,3l:509~519
    [41] Klein RF, Allard J, Avnur Z, et al, Regulation of bone mass in mice by the lipoxygenase gene Alox15, Science, 2004, 303(5655):229~232
    [42] Ozgocmen S, Kaya H, Fadillioglu E, et al, Role of antioxidant systems, lipid peroxidation, and nitric oxide in postmenopausal osteoporosis, Mol Cell Biochem, 2007, 295(1 2): 45~52
    [43] Ylitalo R, Bisphosphonates and atherosclerosis, General Pharmacology, 2000, 35:287~296
    [44] Fleisch H, Development of bisphosphonates, Breast Cancer Res, 2002,4:30~34
    [45] Price PA, Faus SA, Williamson MK, Biphosphonates alendronate and ibandronate inhibit artery calcification at doses comparable to those that inhibit bone resorption, Arterioscler Thromb Vasc Biol, 2001,21:817~824
    [46] Burnet JR, Vasikaran SD, Cardiovascular disease and osteoporosis: is there a link between lipids and bone? Ann Clin Biochem, 2002,39(3):203~210
    [47] Fleiseh H, Mechanisms of action of the bisphosphonates, Medicina(BAires), 1997,57(Suppl 1):65~75
    [48] Christian RC, Liu PY, Harrington S, et a;, Intimal estrogen receptor (ER)beta, but not ERalpha expression, is correlated with coronary calcification and atherosclerosis in pre and postmenopausal women, J Clin Endocrinol Metab, 2006,91(7):2713~2720
    [49]耿健,六味地黄丸对绝经后妇女一氧化氮、内皮素和雌二醇的影响,浙江中医杂志,2004,9(1):36~38
    [50]施杞,谢可永,补肾填精法防治绝经后骨质疏松症的临床研究,上海中医药杂志,1996,10(2):2~7
    [51]刘庆思,陈仲泽,李小侬,等,骨康胶囊治疗绝经后骨质疏松症65例疗效观察,新中医,1995,27 (10):31~32
    [52]沈霖,杜靖远,橱隶玉,等,青蛾丸加减对大鼠卵巢切除诱导的实验性骨质疏梧症的影响,中医研究,1994,7(2):19~23
    [53]李朝阳,李青南,吴铁,等,中药朴骨二号对去卵巢大鼠密质骨代谢影响的定量研究,中成药,1994,16(1):32~33
    [54]陈坤,于世风,史风芹,等,黔岭藿对体外培养的破骨细胞作用的研究,中国骨质疏松杂志,1996,2(3):259~261
    [55]李芳芳,李恩,束士军,等,朴肾方荆及不同分离组分对成骨细胞增殖分化的影响,中国骨质疏松杂志,1998,4(3):71~73
    [56]杨文斌,王文健,费震宇,补肾中药对去势后大鼠雌激素受体作用的实验研究,中西医结合学报,2006,4(1):26~29
    [57]吴伟康,黑子清,孙惠兰,等,四逆汤对高胆固醇喂饲所致动脉粥样硬化形成和氧化损伤的影响,中国动脉硬化杂志,2003,11(6):505~509
    [58] Wu SY, Pan CS, Geng B, et al, Hydrogen sulfide ameliorates vascular calcification induced by vitamin D3 plus nicotine in rats, Acta Pharmacol Sin, 2006,27(3):299~306
    [59] Luo G, Ducy P, McKee MD, et al, Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein, Nature, 1997,386:78~81
    [60] Rebsamen MC, Sun J, Norman AW, et al, 1alpha,25 dihydroxyvitamin D3 induces vascular smooth muscle cell migration via activation of phosphatidylinositol 3 kinase, Circ Res, 2002,91(1):17~24
    [61] Schurgers LJ, Spronk HM, Soute BA, et al, Regression of warfarin induced medial elastocalcinosis by high intake of vitamin K in rats, Blood, 2007,109(7):2823~2831
    [62] Price PA, Faus SA, Williamson MK, Warfarin Induced artery calcification is accelerated by growth and vitamin D, Arterioscler Thromb Vasc Biol, 2000,20:317~327
    [63] Riley EH, Lane JM, Urist MR, et al, Bone morphogenetic protein 2: biology and applications, Clin Orthop, 1996, 324: 39~46
    [64] Kuro o M, Matsumura Y, Aizawa H, et al, Mutation of the mouse klotho gene leads to a syndrome resembling ageing, Nature, 1997, 390(6655): 45~51
    [65]竹田俊男,老化促進モテルマウス(SAM)の開發,日本會志,1990,79(2):39~48
    [66]韩景献,日本快速老化模型小鼠(SAM)老化诸征,实验动物科学与管理,1995,12(4):21~29
    [67] Kasai S, Shimizu M, Matsumura T, et al, Consistency of low bone density across bone sites in SAMP6 laboratory mice, J Bone Miner Metab, 2004,22:207~214
    [68] Silva MJ, Brodt MD, Ettner SL, Long bones from the senescence accelerated mouse SAMP6 have increased size but reduced whole bone strength and resistance to fracture, J Bone Miner Res, 2002,17:1597~1603
    [69] Silva MJ, Brodt MD, Uthgenannt BA, Morphological and mechanical properties of caudal vertebrae in the SAMP6 mouse model of senile osteoporosis, Bone, 2004,35:425~431
    [70] Silva MJ, Brodt MD, Fan Z, et al, Nanoindentation and whole bone bending estimates of material properties in bones from the senescence accelerated mouse SAMP6, J Biomech, 2004,37:1639~1646
    [71] Chen H, Shoumura S, Emura S, Ultrastructural changes in bones of the senescence accelerated mouse (SAMP6): a murine model for senile osteoporosis, Histol Histopathol, 2004,19:677~685
    [72] Silva MJ, Brodt MD, Ko M, et al, Impaired marrow osteogenesis is associated with reduced endocortical bone formation but does not impair periosteal bone formation in long bones of SAMP6 mice, J Bone Miner Res, 2005, 20:419~427
    [73] Kodama Y, Takeuchi Y, Suzawa M, et al, Reduced expression of interleukin 11 in bone marrow stromal cells of senescence accelerated mice (SAMP6): relationship to osteopenia with enhanced adipogenesis, J Bone Miner Res, 1998,13:1370~1377
    [74] Tohjima E, Inoue D, Yamamoto N, et al, Decreased AP 1 activity and interleukin 11 expression by bone marrow stromal cells may be associated with impaired bone formation in aged mice, J Bone Miner Res, 2003,18:1461~1470
    [75] Shimizu M, Higuchi K, Bennett B, et al, Identification of peak bone mass QTL in a spontaneously osteoporotic mouse strain, Mamm Genome, 1999,10:81~87
    [76] Shimizu M, Higuchi K, Kasai S, et al, Chromosome 13 locus, Pbd2, regulates bone density in mice, J Bone Miner Res, 2001,16:1972~1982
    [77] Shimizu M, Higuchi K, Kasai S, et al, A congenic mouse and candidate gene at the Chromosome 13 locus regulating bone density, Mamm Genome, 2002,13: 335~340
    [78] Benes H, Weinstein RS, Zheng W, et al, Chromosomal mapping of osteopenia associated quantitative trait loci using closely related mouse strains, J Bone Miner Res, 2000,15:626~633
    [79]于顺禄,白人晓,骨质疏松的病理与骨组织形态计量学观察指标与临床意义,中国体视学与图像分析,1999,3(9):189~192
    [80]史晓林,自拟强骨饮治疗骨质疏松症的32例临床报告,中国中医骨伤科杂志,2006,14(2):33~34
    [81]徐建春,毛应德龙,史晓林,等,骨质疏松疾病的研究进展与展望,浙江临床医学,2006,8(1):89~90
    [82] Hahn M, Vogel M, Pompesious Kempa M, et al, Trabecular bone pattern factor a new parameter for simple quantification of bone microarchitecture, Bone, 1992,13:327~330
    [83] Eriksen EF, Melsen F, Sod E, et al, Effects of long term risedronate on bone quality and bone turnover in women with postmenopausal osteoporosis, Bone, 2002,31(5):620~625
    [84] Parfitt AM, The quantitative approach to bone morphology, A critique of current methods and their interpretation, In: Frame B:Clinical of current methods and their interpretation, In: Frame B: Clinical aspecte of metabolic bone disease, Amsterdam:Excerpta Medica, 1973:86~94
    [85] Stevenson JC, Lindsay R, Osteoporosis, Lodon: Chpman and Hall Medical, 1998,89~102
    [86] Salle BL, Rauch F, Travers R, et al, Human fetal bone development: histomorphometric evaluation of the proximal femoral etaphysis, Bone, 2002,30(6):823~828
    [87]徐淑云,卞如濂,陈修,药理实验方法(第2版),北京:人民卫生出版社,1991,87
    [88] Alfaro Acha A, Ostir GV, Markides KS, et al, Cognitive status, body mass index, and hip fracture in older Hispanic adults, J Am Geriatr Soc, 2006,54(8):1251~1255
    [89] Vainionp?? A, Korpelainen R, Lepp?luoto J, et al, Effects of high impact exercise on bone mineral density: a randomized controlled trial in premenopausal women, Osteoporos Int, 2005,16(2):191 197
    [90] Yarrow JF, Conover CF, Purandare AV, et al, Supraphysiological testosterone enanthate administration prevents bone loss and augments bone strength in gonadectomized male and female rats, Am J Physiol Endocrinol Metab, 2008,295(5):E1213~E1222
    [91] Erben RG, Eberle J, Stahr K, et al, Androgen deficiency induces high turnover osteopenia in aged male rats: a sequential histomorphometric study, J Bone Miner Res, 2000,15(6):1085~1098
    [92] Seo JT, Lee JS, Oh TH, et al, The clinical significance of bone mineral density and testosterone levels in Korean men with non mosaic Klinefelter's syndrome, BJU Int, 2007,99(1):141~146
    [93] Cross NA, Fowles A, Reeves K, et al, Imaging the effects of castration on bone turnover and hormone independent prostate cancer colonization of bone, Prostate, 2008,68(15):1707~1714
    [94] Kenny AM, Prestwood KM, Marcello KM, et al, Determinants of bone density in healthy older men with low testosterone levels, J Gerontol A Biol Sci Med Sci, 2000,55(9):M492~M497
    [95] Ivaska KK, Hentunen TA, V??r?niemi J, et al, Release of intact and fragmented osteocalcin molecules from bone matrix during bone resorption in vitro, J Biol Chem, 2004, 279: 18361~18369
    [96] Srivastava AK, Mohan S, Singer FR, et al, A urine midmolecule osteocalcin assay shows higher discriminatory power than a serum midmolecule osteocalcin assay during short term alendronate treatment of osteoporotic patients, Bone, 2002, 31: 62~69
    [97] Lee AJ, Hodges S, Eastell R, Measurement of osteocalcin, Ann Clin Biochem, 2000,37:432~446
    [98] Verhoeven AC, Boers M, te Koppele JM, et al, Bone turnover, joint damage and bone mineral density in early rheumatoid arthritis treated with combination therapy including high dose prednisolone, Rheumatology (Oxford), 2001,40(11):1231~1237
    [99] Khosla S, Kleerkoper M. Biochemical markers of bone turnover, In: Favus MJ, ed. Primer on the metabolic bone diseases and disorders of mineral metabolism, 4th edn. Philadelphia: Lippincott, Williams & Wilkins, 1999,128~134.
    [100] Ettinger B, San Martin J, Crans G, et al, Differential effects of teriparatide on BMD after treatment with raloxifene or alendronate, J Bone Miner Res, 2004,19:745~751
    [101] Iki M, Morita A, Ikeda Y, et al, Biochemical markers of bone turnover may predict progression to osteoporosis in osteopenic women: the JPOS Cohort Study, J Bone Miner Metab, 2007,25(2):122~129
    [102] Cheng S, Suominen H, V??n?nen K, et al, Serum osteocalcin in relation to calcaneal bone mineral density in elderly men and women: a 5 year follow up, J Bone Miner Metab, 2002,20(1):49~56
    [103] Pagani F, Francucci CM, Moro L, Markers of bone turnover: biochemical and clinical perspectives, J Endocrinol Invest, 2005,28(10 Suppl):8~13
    [104] Iki M, Akiba T, Matsumoto T, et al, Reference database of biochemical markers of bone turnover for the Japanese female population. Japanese Population based Osteoporosis (JPOS) Study, Osteoporos Int, 2004,15(12):981~991
    [105] ?ukaszkiewicz J, Karczmarewicz E, P?udowski P, et al, Feasibility of simultaneous measurement of bone formation and bone resorption markers to assess bone turnover rate in postmenopausal women: an EPOLOS study, Med Sci Monit, 2008,14(12):PH65~70
    [106] Melton LJ, Khosla S, Atkinson EJ, et al, Relationship of bone turnover to bone density and fractures, J Bone Miner Res, 1997,12(7):1083~1091
    [107] Lepiarz Rusek W, Kokocińska D, Early, noninvasive diagnostic of osteoporosis in men, Przegl Lek, 2005,62(7):641~649
    [108] Iki M, Morita A, Ikeda Y, et al, Biochemical markers of bone turnover predict bone loss in perimenopausal women but not in postmenopausal women the Japanese Population based Osteoporosis (JPOS) Cohort Study, Osteoporos Int, 2006,17(7):1086~1095
    [109] Chen H, Shoumura S, Emura S, Ultrastructural changes in bones of the senescence accelerated mouse (SAMP6): a murine model for senile osteoporosis, Histol Histopathol, 2004,19:677~685
    [110] Silva MJ, Brodt MD, Ko M, et al, Impaired marrow osteogenesis is associated with reduced endocortical bone formation but does not impair periosteal bone formation in long bones of SAMP6 mice, J Bone Miner Res, 2005,20:419~427
    [111] Jilka RL, Weinstein RS, Takahashi K, et al, Linkage of decreased bone mass with impaired osteoblastogenesis in a murine model of accelerated senescence, J Clin Invest, 1996,97(7):1732~1740
    [112] Ozgocmen S, Kaya H, Fadillioglu E, et al, Role of antioxidant systems, lipid peroxidation, and nitric oxide in postmenopausal osteoporosis, Mol Cell Biochem, 2007, 295(1 2): 45~52
    [113] Hsu YH, Venners SA, Terwedow HA, et al, Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women, Am J Clin Nutr, 2006, 83(1): 146~154
    [114] Schlienger RG, Meier CR, HMG CoA reductase inhibitors in osteoporosis: do they reduce the risk of fracture? Drugs Aging, 2003,20(5):321~336
    [115] Ylitalo R, Syv?l? H, Tuohimaa P, et al, Suppression of immunoreactive macrophages in atheromatous lesions of rabbits by clodronate, Pharmacol Toxicol, 2002,90(3):139~143
    [116] Prakasam G, Yeh JK, Chen MM, et al, Effects of growth hormone and testosterone on cortical bone formation and bone density in aged orchiectomized rats, Bone, 1999,24(5):491~497
    [117]黄纪明,白树民,朱德兵,质构仪在骨生物力学检测中的应用,中国骨质疏松杂志,2003,9(3):276~278
    [118] Turner CH, Burr DB, Basic biomechanical measurements of bone: a tutorial, Bone, 1993,14(4):595~608
    [119] Seeman E, Bone quality: the material and structural basis of bone strength, J Bone Miner Metab, 2008,26: 1~8
    [120] Felsenberg D, Boonen S, The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management, Clin Ther, 2005,27:1~11
    [121] Seeman E, The structural and biomechanical basis of the gain and loss of bone strength in women and men, Endocrinol Metab Clin North Am, 2003,32:25~38
    [122] Crabtree N, Kibirige M, Fordham J, et al, The relationship between lean body mass and bone mineral content in paediatric health and disease, Bone, 2004,35(4):965~972
    [123] Borah B, Ritman EL, Dufresne TE, et al, The effect of risedronate on bone mineralization as measured by micro computed tomography with synchrotron radiation: correlation to histomorphometric indices of turnover, Bone, 2005,37:1~9
    [124] Loveridge N, Power J, Reeve J, et al, Bone mineralization density and femoral neck fragility, Bone, 2004,35:929~941
    [125] Bouxsein ML, Mechanisms of osteoporosis therapy: a bone strength perspective, Clin Cornerstone, 2003,5(suppl 2):S13~S21
    [126] Van Der Linden JC, Verhaar JA, Weinans H, A three dimensional simulation of age related remodeling in trabecular bone, J Bone Miner Res, 2001,16:688~696
    [127] Seeman E, The structural and biomechanical basis of the gain and loss of bone strength in women and men, Endocrinol Metab Clin North Am, 2003,32:25~38
    [128] Silva MJ, Gibson LJ, Modeling the mechanical behavior of vertebral trabecular bone: effects of age related changes in microstructure, Bone, 1997,21:191~199
    [129] Hofbauer LC, Khosla S, Dunstan CR, et al, The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption, Bone Miner Res, 2000,15:2~12
    [130] Simonet WS, Lacey DL, Dunstan CR, et al, Osteoprotegerin: a novel secreted protein involved in the regulation of bone density, Cell, 1997,89(2):309~319
    [131] Bucay N, Sarosi I, Dunstan CR, et al, Osteoprotegerin deficient mice develop early onset osteoporosis and arterial calcification, Genes Dev, 1998,12(9):1260~1268
    [132] Papadopouli AE, Klonaris CN, Theocharis SE, Role of OPG/RANKL/RANK axis on the vasculature, Histol Histopathol, 2008,23(4):497~506
    [133] Min H, Morony S, Sarosi I, et al, Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis, J Exp Med, 2000,192(4):463~474
    [134] Hofbauer LC, Schoppet M, Osteoprotegerin: a link between osteoporosis and arterial calcification? Lancet, 2001,358:257~259
    [135] Gautschi OP, Frey SP, Zellweger R, Bone morphogenetic proteins in clinical applications, ANZ J Surg, 2007,77(8):626~631
    [136] Ballock RT, O'Keefe RJ, The biology of the growth plate, J Bone Joint Surg Am, 2003,85 A(4):715~26
    [137] Lee JY, Musgrave D, Pelinkovic D, et al, Effect of bone morphogenetic protein 2 expressing muscle derived cells on healing of critical sized bone defects in mice, J Bone Joint Surg Am, 2001,83 A(7):1032~1039
    [138]王伯沄,李玉松,黄高昇,等,病理学技术,北京:人民卫生出版社,2000,55
    [139] Vattikuti R, Towler DA, Osteogenic regulation of vascular calcification: an early perspective, Am J Physiol Endocrinol Metab, 2004,286:E686~E696
    [140] JA Ruizeveld de Winter, Trapman J, Vermey M, et al, Androgen receptor expression in human tissues: an immunohistochemical study, J Histochem Cytochem, 1991,39(7):927~936
    [141] Zgliczynski S, Ossowski M, Slowinska Srzednicka J, Effect of testosterone replacement therapy on lipids and lipoproteins in hypogonadal and elderly men, Atherosclerosis, 1996,121(1):35~43
    [142]吕宝经,赵美华,黄国芳,等,年龄变化与脂质过氧化损伤的分析,上海第二医科大学学报,1996;16(1):40
    [143]李占魁,安荣姝,陈惟昌,等,人体血清超氧化物歧化酶的活性与年龄的关系,中日友好医院学报,1996;10(3):209
    [144]楼亚梅,徐哲荣,杨云梅,十一酸睾酮对雄性家兔髂动脉内膜损伤后的修复作用,中国动脉硬化杂志,2007,15(4):272~276
    [145] Parmley WW, Blumlein S, Sievers R, Modification of experimental atherosclerosis by calcium channel blockers, Am J Cardiol, 1985,55(3):165B~171B
    [146] Mori H, Seto S, Oku Y, et al, The relationship between the aortic pulse wave velocity and osteoporosis in elderly women, Nippon Ronen Igakkai Zasshi, 1991,28(2):200~204
    [147]陈雯,郭进,颜晓东,等,老年人骨质疏松与动脉硬化的关系,临床荟萃,2004,19(5):252~254
    [148] Pritzker LB, Scatena M, Giachelli CM, The role of osteoprotegerin and tumor necrosis factorrelated apoptosisinducing ligand in human microvascular endothelial cell survival, Mol Biol Cell, 2004, 15(6): 2834~2841
    [149] Schoppet M, Preissner KT, Hofbauer LC, RANK ligand and osteoprotegerin: paracrine regulators of bone metabolism and vascular function, Arterioscler Thromb Vasc Biol, 2002,22:549~553
    [150] Sugiyama M, Kodama T, Konishi K, et al, Compactin and simvastatin, but not pravastatin, induce bone morphogenetic protein 2 in human osteosarcoma cells, Biochem Biophys Res Commun, 2000,271(3):688~692
    [151] Zebboudj AF, Shin V, Bostrom K, Matrix GLA p rotein and BMP 2 regulate osteoinduction in calcifying vascular cells, Cell Biochem, 2003, 90 (4):756~765
    [152] Shin V, Zebboudj AF, Bostr?m K, Endothelial cells modulate osteogenesis in calcifying vascular cells,J Vasc Res, 2004,41(2):193~201
    [153] Sweatt A, Sane DC, Hutson SM, et al, Matrix Gla p rotein (MGP) and bone morphogenetic protein 2 in aortic calcified lesions of aging rats, Thromb Haemost, 2003,1(1):178~185
    [154] Mohler ER, Gannon F, Reynolds C, et al, Bone formation and inflammation in cardiac valves, Circulation, 2001,103:1522~1528
    [155] Dhore CR, Cleutjens JP, Lutgens E, et al, Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques, Arterioscler Thromb Vasc Biol, 2001,21(12):1998~2003
    [156] Bostrom K,Watson KE, Horn S, et al, Bone morphogenetic protein expression in human atherosclerotic lesions, J Clin Invest, 1993,91(4):1800~1809
    [157] Schluesener HJ, Meyermann R, Immunolocalization of BMP 6, a novel TGF beta related cytokine, in normal and atherosclerotic smooth muscle cells, Atherosclerosis, 1995,113(2):153~156
    [158] Shi X, Yang X, Chen D, et al, Smad1 interacts with homeobox DNA binding proteins in bone morphogenetic protein signaling, J Biol Chem, 1999,274:13711~13717
    [159] Ducy P, Zhang R, Geeoffroy V, et al, Osf2/Cbfal: A transcriptional activator of osteoblast differentiation, Cell, 1997,89:747~754
    [160] Galvin KM, DonovanMJ ,Lynch CA, et al, A role for smad6 in development and homeostasis of the cardiovascular system, Nat Genet, 2000,24(2):171~174
    [161] Bostrêm K, Tsao D, Shen S, et al, Protein modulates differentiation induced by bone morphogenetic protein 2 in C3H10T1/2 cells, J Biol Chem, 2001,276:14044~14052
    [162] Shanahan CM, Cary NRB, Salisbury JR, et al, Medial localization of mineralization regulating proteins in association with Monckeberg’s sclerosis: evidence for smooth muscle cell mediated vascular calcification, Circulation, 1999,100:2168~2176
    [163] Hao H, Hirota S, Ishibashi Ueda H, et al, Expression of matrix Gla protein and osteonectin mRNA by human aortic smooth muscle, Cardiovasc Pathol, 2004,13(4):195~202
    [164] Wallin R, Wajih N, Greenwood GT, et al, Arterial calcification: a review of mechanisms, animal models ,and the prospects for therapy, Med Res Rev, 2001,21(4):274~301
    [165] Mody N, Parhami F, Sarafian TA, et al, Oxidative stress modulates osteoblastic differentiation of vascular and bone cells, Free Radic Biol Med, 2001,31:509~519
    [166] Watson KE, Abrolat ML, Malone LL, et al, Active serum vitamin D levels are inversely correlated with coronary calcification, Circulation, 1997,96:1755~1760
    [167] Olszak IT, Poznansky MC, Evans RH, et al, Extracellular calcium elicits a chemokinetic response from monocytes in vitro and in vivo, J Clin Invest, 2000,105:1299~1305
    [168] Yang H, Curinga G, Giachelli CM, Elevated extracellular calcium levels induce smooth muscle cell matrix mineralization in vitro, Kidney Int, 2004,66:2293~2299
    [169] Behre HM, Kliesch S, Leifke E, et al, Long term effect of testosterone therapy on bone mineral density in hypogonadal men, J Clin Endocrinol Metab, 1997,82(8):2386~2390
    [170] Gunness M, Orwoll E, Early induction of alterations in cancellous and cortical bone histology after orchiectomy in mature rats, J Bone Miner Res, 1995,10(11):1735~1744
    [171] Benito M, Gomberg B, Wehrli FW, et al, Deterioration of trabecular architecture in hypogonadal men, J Clin Endocrinol Metab, 2003,88(4):1497~1502
    [172] Seeman E, The dilemma of osteoporosis in men, Am J Med, 1995,98(suppl 2A):76S~88S
    [173] Benito M, Vasilic B, Wehrli FW, et al, Effect of testosterone replacement on trabecular architecture in hypogonadal men, J Bone Miner Res, 2005,20:1785~1791
    [174] Debing E, Peeters E, Duquet W, et al, Men with atherosclerotic stenosis of the carotid artery have lower testosterone levels compared with controls, Int Angiol, 2008,27(2):135~141
    [175] Nettleship JE, Jones RD, Channer KS, et al, Testosterone and coronary artery disease, Front Horm Res, 2009;37:91~107
    [176] Tharp DL, Masseau I, Ivey J, et al, Endogenous testosterone attenuates neointima formation after moderate coronary balloon injury in male swine, Cardiovasc Res, 2009, Jan 30. [Epub ahead of print]
    [177] Teoh H, Quan A, Leung SW, et al, Differential effects of 17beta estradiol and testosterone on the contractile responses of porcine coronary arteries, Br J Pharmacol, 2000, 129:1301~1308
    [178] Xu PH, Cheng Q, Li HF, et al, The relaxant effect of dobutamine on porcine coronary arterial ring segments, Pharmazie, 2005,60(5):375 377
    [179] English KM, Mandour O, Steeds RP, et al, Men with coronary artery disease have lower levels of androgens than men with normal coronary angiograms, Eur Heart J, 2000, 21:890~894
    [180] Hougaku H, Fleg JL, Najjar SS, et al, Relationship between androgenic hormones and arterial stiffness, based on longitudinal hormone measurements, Am J Physiol Endocrinol Metab, 2006,290:E234~E242
    [181] Demirbag R, Yilmaz R, Ulucay A, et al, The inverse relationship between thoracic aortic intima media thickness and testosterone level, Endocrine Research, 2005,31(4):335~344
    [182] Aydilek N, Aksakal M, Effects of testosterone on lipid peroxidation, lipid profiles and some coagulation parameters in rabbits, J Vet Med A Physiol Pathol Clin Med, 2005,52(9):436~439
    [183] M?kinen JI, Perheentupa A, Irjala K, et al, Endogenous testosterone and serum lipids in middle aged men, Atherosclerosis, 2008,197(2):688~693
    [184] Li S, Li X, Li J, et al, Inhibition of oxidative stress induced platelet aggregation by androgen at physiological levels via its receptor is associated with the reduction of thromboxane A2 release from platelets, Steroids, 2007,72(13):875~880
    [185]杨云梅,徐哲荣,吴灵娇,等,老年男性动脉粥样硬化与雄激素水平的研究,浙江大学学报(医学版),2005,34(6):547~550
    [186]沈戈,巩云霞,盛虹,等,老年男性骨密度的增龄改变与骨代谢有关激素的相关性研究,老年医学与保健,2004,10(3):161~163
    [187]刘铭,朱振安,王克敏,增龄对大鼠股骨上端BMP 2基因表达的影响,中国骨质疏松杂志,2003,9(4):311~313,353
    [188] Spector JA, Luchs JS, Mehrara BJ, Expression of bone morphogenetic proteins during membranous bone healing, Plast Reconstr Surg, 2001,107(1):124~134
    [189] Sato MM, Nakashima A, Nashimoto M, et al, Bone morphogenetic protein 2 enhances Wnt/beta catenin signaling induced osteoprotegerin expression, Genes Cells, 2009,14(2):141~153

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700