激活PPARγ与视黄醇类受体抑制骨肉瘤生长的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实验目的
     骨肉瘤是骨肿瘤中的主重要恶性肿瘤。患者的长期生存依赖于如何预防、治疗这类肿瘤及如何减少其复发率和病灶转移。本课题旨在研究激活PPARγ和视黄醇类核受体抑制人骨肉瘤生长的作用。
     实验方法与步骤
     本课题采用细胞增殖实验、PCR技术、蛋白免疫印迹技术、重组腺病毒技术、报告质粒技术及常规组织学技术,研究激动PPARγ与类视黄醇类核受体协同抑制人骨肉瘤细胞增殖的作用。实验步骤如下:
     1.在基因表达水平和蛋白表达水平检测PPARγ和视黄醇类受体(RAR和RXR)各亚型在人原代骨肉瘤细胞及人骨肉瘤细胞株中的表达。
     2.通过体外增殖实验检测曲格列酮(Tro)、全反式维甲酸(ATRA)和9-顺式维甲酸(9CRA)单用,以及Tro与ATRA或与9CRA合用对骨肉瘤增殖的抑制作用。
     3.利用AdEasy系统构建视黄醇类受体(RARα和RXRα)重组腺病毒载体,检测外源性过表达核受体或外源性过表达核受体的同时加用核受体激动剂(Tro、ATRA及9CRA)对骨肉瘤细胞生长及凋亡的影响。
     4.用核受体重组腺病毒感染骨肉瘤细胞,将感染重组核受体腺病毒的骨肉瘤细胞接种于裸鼠胫骨近端进行异位成瘤实验,通过Xenogen成像系统检测外源性过表达核受体对骨肉瘤生长的影响,采用组织化学技术对肿瘤组织进行增殖、凋亡及分化指标检测。
     5.检测Tro、ATRA及9CRA对间充质干细胞及骨肉瘤细胞诱导分化的作用,原代骨肉瘤细胞及骨肉瘤细胞株ALP表达状态及原代骨肉瘤细胞的成瘤性。
     实验结果
     1.在大多数骨肉瘤细胞中均能检测到PPARγ及RAR、RXR的各型受体表达。
     2.成功建立RARα及RXRα重组腺病毒并进行功能测定。
     3.Tro、ATAR及9CRA,以及过表达核受体PPARγ、RARα和RXRα的同时加用相应激动剂均能有效抑制骨肉瘤细胞增殖。
     4.体内外实验显示,Tro与ATRA或9CRA合用对骨肉瘤细胞生长的有显著协同抑制作用,同时过表达PPARγ2和RARα或PPARγ2和RXRα也具有同样的作用;过表达核受体可抑制骨肉瘤细胞生长及促进骨肉瘤细胞凋亡、分化。
     5.Tro、ATRA及9CRA能够诱导间充质干细胞成骨分化,Tro的诱导化作用虽较弱,但与ATRA及9CRA之间存在明显的协同效应。在骨肉瘤细胞中也存在类似的结果。
     实验结论
     激活PPARγ、RAR及RXR能够抑制肿瘤细胞增殖,并且PPARγ2与RARα与RXRα同时激活能协同性抑制瘤肿生长,这种作用至少与涉及诱导骨肉瘤细胞分化有关。
Aim
     Osteosarcoma (OS) is the most common non-hematological malignant tumor of bone in children and adults. Without systemic treatment, few patients with osteosarcoma achieve long term disease free status, even the optimal local treatment is taken. Clinical management of OS faces numerous challenges, including adverse effects associated with chemotherapies, chemoresistance, recurrence, and pulmonary metastasis. In this project, we focused on trying differentiation therapy to OS with activating PPARγ, RARαand RXRα.
     Methods and procedure
     We used cell proliferation test, PCR, Western blot, recombinant adevovirus, reporter construct and histochemistry technique to elucidate the synergistic anti-proliferation effect on human osteosarcoma when PPARγand retinoids receptors were activated.
     1. We checked the mRNA and protein expression for PPARγand different subtype receptors of RAR and RXR in primary human osteosarcoma and osteosarcoma cell lines, in order to make sure these nuclear receptors were available in osteosarcoma cells.
     2. We tested the anti-proliferation effects of Tro, ATRA, 9CRA and Tro combinated with ATRA or 9CRA on human osteosarcoma.
     3. We constructed the recombinant RARα, RXRαadenovirus with AdEasy system and tested the function of the recombinant adenovirus. We tested the anti-proliferation effects of exogenous overexpress nuclear receptors from the recombinant adenovirus or exogenous overexpress of the nuclear receptors combinated with corresponding nuclear receptor agonists on human osteosarcoma.
     4. We infected the osteosarcoma cells with recombinant adenovirus and then injected the cells to proximal tibia for ectopic tumorigencity test in nude mice. Track the tumor with Xenogen system, sacrifice the animals at the end of test, and retrieve the tumor mass for proliferation, apoptosis and differentiation test with histochemistry technique.
     5. Test the effects of Tro, ATRA and 9CRA on osteogenic differentiation in Mesenchymal stem cell and osteosarcoma cell lines, the alkaline phosphatase expression in primary osteosarcoma and osteosarcoma cell lines, and the tumorigenicity of primary osteosarcoma.
     Results
     1. The expressions of PPARγand different type of RAR and RXR were detectalbe in all tested cells.
     2. RARαand RXRαrecombinant adenovirus were sucessfully constructed, and the receptors expressed by which could be activated by the corresponding agonists and regulated the target gene expressions.
     3. Tro, ATRA and 9CRA, as well as exogenous overexpress PPARγ, RARαand RXRαcombinated with corresponding agonists, could inhibited the proliferation of osteosarcoma.
     4. There was a synergistic anti-proliferation effect in combination of Tro with ATRA or 9CRA; similar results were observed if there existed co-overexpressions of PPARγ2 with RARαor RXRαin vivo and in vitro test. Activation of the nuclear receptors induced the apoptosis and differentiation in osteosarcoma cells.
     5. Tro,ATRA and 9CRA induced the osteogenic differentiation of Mesenchymal stem cell and there was a apparently synergistic effect in combination Tro with ATRA or 9CRA, although Tro had very little effect on osteogenic differentiation. Similar results were found in osteosarcoma.
     Conclusions
     Activated PPARγ, RXRαand RARαcan inhibit the growth of osteosarcoma and there exist synergistic anti-proliferation effects on osteosarcoma when co-activations of PPARγ2 with RXRαor RARαoccur. This effect may partly result from the osteogenic differentiation induced by the nuclear receptor agonists.
引文
[1] Sandberg AA, Bridge JA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: osteosarcoma and related tumors. Cancer Genet Cytogenet[J] , 2003, 145:1–30.
    [2] Helman LJ, Meltzer P. Mechanisms of sarcoma development. Nat Rev Cancer[J], 2003, 3: 685–94.
    [3] Haydon RC, Luu HH, He TC. Osteosarcoma and osteoblastic differentiation: a new perspective on oncogenesis. Clin Orthop Relat Res[J], 2007, 454: 237–46.
    [4] Tang N, Song WX, Luo J, et al., Osteosarcoma development and stem cell differentiation. Clin Orthop Relat Res[J], 2008, 466: 2114–30.
    [5] Bruland OS, Pihl A. On the current management of osteosarcoma. A critical evaluation and a proposal for a modified treatment strategy. Eur J Cancer [J], 1997; 33: 1725–31.
    [6] 6 Gorlick R, Anderson P, Andrulis I, et al., Biology of childhood osteogenic sarcoma and potential targets for therapeutic development: meeting summary, Clinical Cancer Research[J], 2003, 9(15): 5442–5453.
    [7] Feugeas O, Guriec N, Babin-Boilletot A, et al., Loss of heterozygosity of the RB gene is a poor prognostic factor in patients with osteosarcoma, Journal of Clinical Oncology[J], 1996, 14(2): 467–472.
    [8] Gamberi G, Benassi M S, Bohling T, et al., C-myc and cfos in human osteosarcoma: prognostic value of mRNA and protein expression, Oncology[J], 1998, 55(6): 556–563.
    [9] Wang L L, Biology of osteogenic sarcoma, Cancer Journal[J], 2005, 11(4): 294–305.
    [10] German J, Bloom syndrome: a mendelian prototype of somaticmutational disease, Medicine, 1993, 72(6): 393– 406.
    [11] Hickson I D, RecQ helicases: caretakers of the genome, Nature Reviews Cancer[J], 2003, 3(3): 169–178.
    [12] Tucker A, D’Angio G J, Boice Jr J D, et al., Bone sarcomas linked to radiotherapy and chemotherapy in children, The New England Journal of Medicine[J], 1987, 317(10): 588–593.
    [13] Weatherby R P, Dahlin D C, Ivins J C, Postradiation sarcoma of bone: review of 78Mayo Clinic cases, Mayo Clinic Proceedings[J], 1981, 56(5): 294–306.
    [14] Mark R J, Poen J, Tran L M, et al., Postirradiation sarcomas: a single-institution study and review of the literature, Cancer[J], 1994, 73(10): 2653–2662.
    [15] Luo X, Chen J, Song W X, et al., Osteogenic BMPs promote tumor growth of human osteosarcomas that harbor differentiation defects, Laboratory Investigation[J], 2008; 88(12): 1264–1277.
    [16] Haydon R C, Luu H H, He T C, Osteosarcoma and osteoblastic differentiation: a new perspective on oncogenesis, Clinical Orthopaedics and Related Research[J], 2007, 454: 237–246.
    [17] Reya T, Morrison S J, Clarke M F, et al., Stem cells, cancer, and cancer stem cells, Nature[J], 2001, 414(6859):105–111.
    [18] Thoma D M, Johnson S A, Sims N A, et al., Terminal osteoblast differentiation, mediated by runx2 and p27 KIP1, is disrupted in osteosarcoma, The Journal of Cell Biology[J], 2004, 167(5): 925–934.
    [19] Tirode F, Laud-Duval K, Prieur A, et al., Mesenchymal stem cell features of Ewing tumors, Cancer Cell[J], 2007, 11(5): 421–429.
    [20] Castillero-Trejo Y, Eliazer S, Xiang L, et al., Expression of the EWS/FLI-1 oncogene in murine primary bone-derived cells results in EWS/FLI- 1-dependent, Ewing sarcoma-like tumors, Cancer Research[J], 2005, 65(19): 8698–8705.
    [21] Thomas D M, Carty S A, Piscopo D M, et al., The retinoblastoma protein acts as a transcriptional coactivator required for osteogenic differentiation, Molecular Cell[J], 2001, 8(2): 303–316 .
    [22] Carpio L, Gladu J, Goltzman D, et al., Induction of osteoblast differentiation indexes by PTHrP in MG-63 cells involves multiple signaling pathways, American Journal of Physiology[J], 2001, 281(3): 489– 499.
    [23] Nozaki K, Kadosawa T, Nishimura R, et al., 1,25- dihydroxyvitamin D3, recombinant human transforming growth factor-β1, and recombinant human bone morphogenetic protein-2 induce in vitro differentiation of canine osteosarcoma cells, The Journal of Veterinary Medical Science[J], 1999, 61(6): 649–656.
    [24] Postiglione L, Domenico G D, Montagnani S, et al., Granulocyte macro- phage colony stimulating factor (GMCSF) induces the osteoblastic differentiation of the human osteosarcoma cell line SaOS-2, Calcified Tissue International[J], 2003, 72(1): 85–97.
    [25] Zhang Z, Burch PE, Cooney AJ, et al., Genomic analysis of the nuclear receptor family: new insights into structure, regulation, and evolution from the rat genome". Genome Research,2004, 14 (4): 580–90
    [26] Michalik L, Auwerx J, Berger JP, et al., International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev[J]. 2006,58 (4): 726–41.
    [27] Berger J, Moller DE, The mechanisms of action of PPARs. Annu Rev Med[J], 2002,53: 409–35.
    [28] Feige J N, Gelman L, Michalik L, et al., From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res[J]. 2006,45 (2): 120–59.
    [29] Heikkinen S, Auwerx J, Argmann C A, PPARγin human and mouse physiology, Biochimica et Biophysica Acta[J], 2007, 1771(8): 999–1013.
    [30] Kota B P, Huang T H-W, Roufogalis B D, An overview on biological mechanisms of PPARs, Pharmacological Research, 2005, 51(2): 85–94.
    [31] Keen H L, Ryan M J, Beyer A, et al., Gene expression profiling of potential PPARγtarget genes in mouse aorta, Physiological Genomics[J], 2004, 18(1): 33–42.
    [32] Berger J, Moller D E, The mechanisms of action of PPARs, Annual Review of Medicine[J], 2002, 53: 409–435.
    [33] Marx N, onbeck U S, Lazar M A, et al., Peroxisome proliferator-activated receptor gamma activators inhibit gene expression and migration in human vascular smooth muscle cells, Circulation Research[J], 1998, 83(11): 1097–1103.
    [34] Takeda K, Ichiki T, Tokunou T, et al., Peroxisome proliferator-activated receptorγactivators downregulate angiotensin II type 1 receptor in vascular smooth muscle cells, Circulation[J], 2000; 102(15): 1834–1839.
    [35] Lemberger T, Desvergne B, Wahli W, Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology, Annual Review of Cell and Developmental Biology[J], 1996,12: 335–363.
    [36] Forman B M, Tontonoz P, Chen J, et al., 15-deoxy-Δ12,14- prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ, Cell[J], 1995, 83(5): 803–812.
    [37] Kliewer S A, Lenhard J M, Willson T M, et al., A prostaglandin J2 metabolite binds peroxisome proliferatoractivated receptorγand promotes adipocyte differentiation,Cell[J], 1995, 83(5): 813–819.
    [38] Desvergne B, Wahli W, Peroxisome proliferatoractivated receptors: nuclear control of metabolism, Endocrine Reviews[J], 1999, 20(5): 649–688.
    [39] Yu K, Bayona W, Kallen C B, et al., Differential activation of peroxisome proliferator-activated receptors by eicosanoids, The Journal of Biological Chemistry[J], 1995, 270(41): 23975–23983.
    [40] Tontonoz P, Hu E, Spiegelman B M, Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor, Cell[J], 1994, 79(7): 1147–1156.
    [41] Greene M E, Pitts J, McCarville M A, et al., PPARγ: observations in the hematopoietic system, Prostaglandins & Other Lipid Mediators[J], 2000,62(1): 45–73.
    [42] Okuno A, Tamemoto H, Tobe K, et al., Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats, Journal of Clinical Investigation[J], 1998, 101(6): 1354–1361.
    [43] Tontonoz P, Nagy L, Alvarez J G, et al., PPARγpromotes monocyte/macrophage differentiation and uptake of oxidized LDL, Cell[J], 1998, 93(2): 241–252.
    [44] Rosen E D, Sarraf P, Troy A E, et al., PPARγis required for the differentiation of adipose tissue in vivo and in vitro, Molecular Cell[J], 1999,4(4): 611–617.
    [45] Barak Y, Nelson M C, Ong E S, et al., PPARγis required for placental, cardiac, and adipose tissue development, Molecular Cell[J], 1999, 4(4): 585–595.
    [46] Muruganandan S, Roman A A, Sinal C J, Adipocyte differentiation of bone marrow-derived mesenchymal stem cells: cross talk with the osteoblastogenic program, Cellular and Molecular Life Sciences[J], 2009, 66( 2): 236–253.
    [47] Castelein H, Gulick T, Declercq P E, et al., The peroxisome proliferator activated receptor regulates malic enzyme gene expression, The Journal of Biological Chemistry[J], 1994; 269(43): 26754–26758.
    [48] Tontonoz P, Hu E, Spiegelman B M, Regulation of adipocyte gene expression and differentiation by peroxisome proliferator activated receptorγ, Current Opinion in Genetics & Development[J], 1995,5(5): 571–576.
    [49] Schoonjans K, Watanabe M, Suzuki H, et al., Induction of the acyl-coenzyme A synthetase gene by fibrates and fatty acids is mediated by a peroxisome proliferator response element in the C promoter, The Journal of Biological Chemistry[J], 1995,270(33): 19269–19276.
    [50] Diascro Jr D D, Vogel R L, Johnson T E, et al., High fatty acid content in rabbit serum is responsible for the differentiation of osteoblasts into adipocyte-like cells, Journal of Bone and Mineral Research[J], 1998, 13(1): 96– 106.
    [51] Johnson T E, Vogel R, Rutledge S J, et al., Thiazolidinedione effects on glucocorticoid receptor-mediated gene transcription and differentiation in osteoblastic cells, Endocrinology[J], 1999; 140(7): 3245–3254.
    [52] Lecka-Czernik B, Gubrij I, Moerman E J, et al., Inhibition of Osf2/Cbfa1 expression and terminal osteoblast differentiation by PPARγ2, Journal of Cellular Biochemistry[J], 1999,74(3): 357–371.
    [53] Jeon M J, Kim J A, Kwon S H, et al., Activation of peroxisome proliferator-activated receptor-γinhibits the Runx2-mediated transcription of osteocalcin in osteoblasts, Journal of Biological Chemistry[J], 2003, 278(26): 23270– 23277.
    [54] Akune T, Ohba S, Kamekura S, et al., PPARγinsufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors, Journal of Clinical Investigation[J], 2004, 113(6): 846–855.
    [55] Ali A A, Weinstein R S, Stewart S A, et al., Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation, Endocrinology[J], 2005, 146(3): 1226–1235.
    [56] Soroceanu M A, Miao D, Bai X Y, et al., Rosiglitazone impacts negatively on bone by promoting osteoblast/ osteocyte apoptosis, Journal of Endocrinology[J], 2004,183(1): 203–216.
    [57] Lecka-Czernik B, Moerman E J, Grant D F, et al., Divergent effects of selective peroxisome proliferator-activated receptor-γ2 ligands on adipocyte versus osteoblast differentiation,”Endocrinology[J], 2002, 143( 6): 2376–2384.
    [58] Ducy P, Schinke T, Karsenty G, The osteoblast: a sophisticated fibroblast under central surveillance, Science[J], 2000, 289(5484): 1501–1504.
    [59] He T C, Distinct osteogenic activity of BMPs and their orthopaedic applications, Journal of Musculoskeletal & Neuronal Interactions[J], 2005, 5(4): 363–366.
    [60] Luu H H, Song W X, Luo X, et al., Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells, Journal of Orthopaedic Research[J], 2007, 25(5): 665–677.
    [61] Aubin J E, Regulation of osteoblast formation and function, Reviews in Endocrine& Metabolic Disorders[J], 2001,2(1): 81–94.
    [62] Shi Y, Massague J, Mechanisms of TGF-βsignaling from cell membrane to the nucleus, Cell[J], 2003,113( 6): 685–700.
    [63] Attisano L, Wrana J L, Signal transduction by the TGF-βsuperfamily, Science[J], 2002; 296(5573): 1646–1647,.
    [64] Luo J, Sun M H, Kang Q, et al., Gene therapy for bone regeneration, Current Gene Therapy[J], 2005,5(2): 167– 179.
    [65] Reddi A H, Role of morphogenetic proteins in skeletal tissue engineering and regeneration, Nature Biotechnology[J], 1998,16(3): 247–252.
    [66] 66 Ducy P, Karsenty G, The family of bone morphogenetic proteins, Kidney International, 2000, 57(6): 2207–2214.
    [67] Deng Z L, Sharff K A, Tang N, et al., Regulation of osteogenic differentiation during skeletal development, Frontiers in Bioscience[J], 2008,13(6): 2001–2021.
    [68] Kang Q, Song W X, Luo Q, et al., A Comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells, Stem Cells and Development[J], 2009,18( 4): 545– 558.
    [69] Peng Y, Kang Q, Luo Q, et al., Inhibitor of DNA binding/ differentiation helix-loop-helix proteins mediate bone morphogenetic protein-induced osteoblast differentiation of mesenchymal stem cells, Journal of Biological Chemistry[J], 2004, 279(31): 32941–32949.
    [70] Luo Q, Kang Q, Si W, et al., Connective tissue growth factor (CTGF) is regulated by Wnt and bone morphogenetic proteins signaling in osteoblast differentiation of mesenchymal stem cells, Journal of Biological Chemistry[J], 2004,279(53): 55958–55968.
    [71] Si W, Kang Q, Luu H H, et al., CCN1/Cyr61 is regulated by the canonical Wnt signal and plays an important role in Wnt3A-induced osteoblast differentiation of mesenchymal stem cells, Molecular and Cellular Biology[J], 2006,26(8): 2955–2964.
    [72] Chen T L, Shen W J, Kraemer F B, Human BMP- 7/OP-1 induces the growth and differentiation of adipocytes and osteoblasts in bone marrow stromal cell cultures, Journal of Cellular Biochemistry[J], 2001,82(2): 187–199.
    [73] Sottile V, Seuwen K, Bone morphogenetic protein- 2 stimulates adipogenic differentiation of mesenchymal precursor cells in synergy with BRL 49653(rosiglitazone), FEBS Letters[J], 2000, 475(3): 201–204.
    [74] Bowers R R, Kim J W, Otto T C, et al., Stable stem cell commitment to the adipocyte lineage by inhibition of DNA methylation: role of the BMP-4 gene, Proceedings of the National Academy of Sciences of the United States of America[J], 2006,103(35): 13022–13027.
    [75] Wang E A, Israel D I, Kelly S, et al., Bone morphogenetic protein-2 causes commitment and differentiation in C3H10T1/2 and 3T3 cells, Growth Factors[J], 1993, 9(1): 57–71.
    [76] Mie M, Ohgushi H, Yanagida Y, et al., Osteogenesis coordinated in C3H10T1/2 cells by adipogenesis-dependent BMP-2 expression system, Tissue Engineering[J], 2000,6(1): 9–18.
    [77] Ahrens M, Ankenbauer T, Schroder D, et al., Expression of human bone morphogenetic proteins-2 or -4 in murine mesenchymal progenitor C3H10T 1/2 cells induces differentiation into distinct mesenchymal cell lineages, DNA and Cell Biology[J], 1993, 12(10): 871–880.
    [78] Jin W, Takagi T, Kanesashi S N, et al., Schnurri-2 controls BMP-dependent adipogenesis via interaction with Smad proteins, Developmental Cell[J], 2006, 10(4): 461–471.
    [79] Giaginis C, Tsantili-Kakoulidou A, Theocharis S, Peroxisome proliferator-activated receptors (PPARs) in the control of bone metabolism, Fundamental and Clinical Pharmacology, 2007, 21(3): 231–244.
    [80] Tseng Y H, Kokkotou E, Schulz T J, et al., New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure, Nature[J], 2008, 454: 1000– 1004.
    [81] Huang H, Song T J, Li X, et al., BMP signaling pathway is required for commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage, Proceedings of the National Academy of Sciences of the United States of America[J], 2009, 106(31): 12670–12675.
    [82] Peng Y, Kang Q, Cheng H, et al., Transcriptional characterization of bone morphogenetic proteins (BMPs)-mediated osteogenic signaling, Journal of Cellular Biochemistry[J], 2003, 90(6): 1149–1165.
    [83] Demay M B, Roth D A, Kronenberg H M, Regions of the rat osteocalcin gene which mediate the effect of 1,25-dihydroxyvitamin D3 on gene transcription,Journal of Biological Chemistry[J], 1989, 264(4): 2279–2282.
    [84] Morrison N A, Shine J, Fragonas J C, et al., 1,25-dihydroxyvitamin D-responsive element and glucocorticoid repression in the osteocalcin gene, Science[J], 1989, 246: 1158–1161.
    [85] Gouveia C H, Schultz J J, Bianco A C, et al., Thyroid hormone stimulation of osteocalcin gene expression in ROS 17/2.8 cells is mediated by transcriptional and post-transcriptional mechanisms, Journal of Endocrinology[J], 2001, 170(3): 667–675.
    [86] Moerman E J, Teng K, Lipschitz D A, et al., Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: the role of PPAR-γ2 transcription factor and TGF-β/BMP signaling pathways, Aging Cell[J], 2004, 3(6): 379–389.
    [87] Justesen J, Stenderup K, Ebbesen E N, et al., Adipocyte tissue volume inbone marrow is increased with aging and in patients with osteoporosis, Biogerontology[J], 2001, 2(3): 165–171.
    [88] Mehta R G, Williamson E, Patel M K, et al., A ligand of peroxisome proliferator-activated receptorγ, retinoids, and prevention of preneoplastic mammary lesions, Journal of the National Cancer Institute[J], 2000, 92(5): 418–423.
    [89] Tontonoz P, Singer S, Forman B M, et al., Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptorγand the retinoid X receptor, Proceedings of the National Academy of Sciences of the United States of America[J], 1997, 94(1) 237–241,.
    [90] Takahashi N, Okumura T, Motomura W, et al., Activation of PPARγinhibits cell growth and induces apoptosis in human gastric cancer cells, FEBS Letters[J], 1999, 455(1-2): 135–139.
    [91] Kubota T, Koshizuka K, Williamson E A, et al., Ligand for peroxisome proliferator-activated receptorγ(troglitazone) has potent antitumor effect against human prostate cancer both in vitro and in vivo, Cancer Research[J], 1998, 58(15): 3344–3352.
    [92] Asou H, Verbeek W, Williamson E, et al. Growth inhibition of myeloid leukemia cells by troglitazone, a ligand for peroxisome proliferator activated receptor gamma, and retinoids, International Journal of Oncology[J], 1999,15(5):1027–1031.
    [93] Sarraf P, Mueller E, Smith W M., et al., Loss-of-function mutations in PPARγassociated with human colon cancer, Molecular Cell[J], 1999, 3(6): 799–804.
    [94] Lea M A, Sura M, Desbordes C, Inhibition of cell proliferation by potential peroxisome proliferator-activated receptor (PPAR) gamma agonists and antagonists, Anticancer Research[J], 2004, 24(5A): 2765–2771.
    [95] Seargent J M, Yates E A, Gill J H, GW9662, a potent antagonist of PPARγ, inhibits growth of breast tumour cells and promotes the anticancer effects of the PPARγagonist rosiglitazone, independently of PPARγactivation, British Journal of Pharmacology[J], 2004, 143(8): 933–937.
    [96] Kim K-H, Cho Y S, Park J M, et al., Pro-MMP-2 activation by the PPARγagonist, ciglitazone, induces cell invasion through the generation of ROS and the activation of ERK, FEBS Letters[J], 2007, 581(17): 3303–3310.
    [97] Haydon R C, Zhou L, Feng T, et al. Nuclear receptor agonists as potential differentiation therapy agents for human osteosarcoma. Clin Cancer Res[J], 2002, 8:1288–94.
    [98] Rzonca S O, Suva L J, Gaddy D, et al., Bone is a target for the antidiabetic compound rosiglitazone, Endocrinology[J], 2004, 145(1): 401–406.
    [99] Rajkumar T, Yamuna M, Multiple pathways are involved in drug resistance to doxorubicin in an osteosarcoma cell line, Anti-Cancer Drugs[J], 2008, 19(3):257– 265.
    [100] Schober S L, Kuo C T, Schluns K S, et al., Expression of the transcription factor lung Kruppel-like factor is regulated by cytokines and correlates with survival memory T cells in vitro and in vivo, Journal of Immunology[J], 1999, 163(7): 3662–3667.
    [101] Allenby G, Bocquel M T, Saunders M, et al., Retinoi c acid receptors and retinoid X receptors: interactions with endogenous retinoic acids. Proc Natl Acad Sci USA [J],1993, 90 (1): 30–4.
    [102] Huang M, Ye Y, Chen S, et al., Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia" (PDF). Blood[J],1988, 72 (2): 567–72.
    [103] Castaigne S, Chomienne C, Daniel M, et al., All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia. I. Clinical results, Blood[J], 1990, 76 (9): 1704–9.
    [104] Sanz M, Treatment of acute promyelocytic leukemia, Hematology Am Soc Hematol Educ Program[J], 2006, 147–55.
    [105] Tanaka T, Suh KS, Lo AM, et al., p21WAF1/CIP1 is a common transcriptional target of retinoid receptors: pleiotropic regulatory mechanism through retinoic acid receptor (RAR)/retinoid X receptor (RXR) heterodimer and RXR/RXR homodimer, J Biol Chem[J]. 2007, 282(41): 29987-97.
    [106] Kerley J S, Olsen S L, Freemantle S J, et al., Transcriptional activation of the nuclear receptor corepressor RIP140 by retinoic acid: a potentialnegative-feedback regulatory mechanism, Biochem Biophys Res Commun[J], 2001, 285: 969-975.
    [107] Lonardo, F, Dragnev, K H, Freemantle S J, et al., Evidence for the epidermal growth factor receptor as a target for lung cancer prevention. Clin. Cancer Res[J], 2002, 8, 54–60.
    [108] Durand B, Saunders M, Leroy P, et al., All-trans and 9-cis retinoic acid induction of CRABPII transcription is mediated by RAR-RXR heterodimers bound to DR1 and DR2 repeated motifs, Cell[J], 1992,71: 73-85.
    [109] Grunt ThW, Dittrich E, Offterdinger M, et al., Effects of retinoic acid and fenretinide on the c-erbB-2 expression, growth and cisplatin sensitivity of breast cancer cells, Br J Cancer[J]. 1998, 78(1): 79-87.
    [110] Stewart, P L , Fuller S D , Burnett R M, Difference imaging of adenovirus: bridging the resolution gap between X-ray crystallography and electron microscopy, EMBO J[J], 1993,12(7): 2589-99
    [111] Graham, F L , Smiley J , Russell W C , et al., Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol[J], 1977, 36(1):59-74.
    [112] Breyer, B , Jiang W , Cheng H , et al., Adenoviral vector-mediated gene transfer for human gene therapy. Curr Gene Ther[J], 2001, 1(2): 149-62.
    [113] Nadeau, I,Kamen A, Production of adenovirus vector for gene therapy, Biotechnol Adv[J], 2003, 20(7-8): 475-89.
    [114] McConnell, M J, Imperiale M J, Biology of adenovirus and its use as a vector for gene therapy, Hum Gene Ther[J], 2004, 15(11): 1022-33.
    [115] Peault B, Rudnicki M, Torrente Y, et al., Stem and progenitor cells in skeletal muscle development, maintenance, and therapy, Mol Ther[J], 2007, 15(5): 867-77.
    [116] He, TC, Zhou S, Da Costa LT, et al., A simplified system for generatingrecombinant adenoviruses. Proc Natl Acad Sci U S A[J], 1998, 95(5): 2509-14.
    [117] Sandberg A A, Bridge J A, Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: osteosarcoma and related tumors, Cancer Genetics and Cytogenetics[J], 2003, 145(1):1–30.
    [118] Tang N, Song W X, Luo J, et al., Osteosarcoma development and stemcell differentiation, Clinical Orthopaedics and Related Research[J], 2008, 466(9): 2114–2130.
    [119] Unni K K, Dahlin D C, Osteosarcoma: pathology and classification, Seminars in Roentgenology[meeting], 1989, 24(3):143–152.
    [120] Burns B S, Edin M L, Lester G E, et al., Selective drug resistant human osteosarcoma cell lines, Clinical Orthopaedics and Related Research[J], 2001, 383: 259–267.
    [121] Kaste S C, Pratt C B, Cain A M, et al., Metastases detected at the time of diagnosis of primary pediatric extremity osteosarcoma at diagnosis: imaging features, Cancer[J], 1999, 86(8) 1602–1608.
    [122] Yonemoto T, Tatezaki S I, Ishii T, et al., Prognosis of osteosarcoma with pulmonary metastases at initial presentation is not dismal, Clinical Orthopaedics and Related Research[J], 1998, 349:194–199.
    [123] Mangelsdorf D J, Thummel C, Beato M, et al., The nuclear receptor superfamily: the second decade, Cell[J], 1995, 83(6): 835–839.
    [124] Kastner P, Mark M, Chambon P, Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life? Cell[J], 1995, 83(6): 859–869.
    [125] Chawta A, Repa J J, Evans R M, et al., Nuclear receptors and lipid physiology: opening the X-files, Science[J], 2001, 2949(5548): 1866–1870.
    [126] Osborne M P,“Breast cancer prevention by antiestrogens,”Annals of the New York Academy of Sciences[J], 1999, 889: 146– 151.
    [127] Haydon R C, Luu H H, He T C, Osteosarcoma and osteoblastic differentiation: a new perspective on oncogenesis, Clinical Orthopaedics and Related Research[J], 2007, 454: 237–246.
    [128] Torchia J, Glass C, Rosenfeld M G, Co-activators and co-repressors in the integration of transcriptional responses, Current Opinion in Cell Biology[J], 1998, 10(3): 373–383.
    [129] Berger J, Leibowitz M D, Doebber T W, et al., Novel peroxisomeproliferator-activated receptor (PPAR) gamma and PPARdelta ligands produce distinct biological effects, The Journal of Biological Chemistry[J], 1999, 274(10): 6718–6725.
    [130] Krey G, Braissant O, L’Horset F, et al., Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivatordependent receptor ligand assay, Molecular Endocrinology[J], 1997, 11(6):779–791.
    [131] Huang Q, Alvares K, Chu R, et al., Association of peroxisome proliferator-activated receptor and Hsp72, The Journal of Biological Chemistry[J], 1994, 269(11): 8493– 8497.
    [132] Puigserver P, Adelmant G, Wu Z, et al., Activation of PPARγcoactivator-1 through transcription factor docking, Science[J], 1999, 286(5443): 1368–1371.
    [133] Yu S, Reddy J K, Transcription coactivators for peroxisome proliferator-activated receptors, Biochimica et Biophysica Acta[J], 2007, 1771(8): 936–951.
    [134] Keller H, Dreyer C, Medin J, et al., Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers, Proceedings of the National cademy of Sciences of the United States of America[J], 1993, 90( 6): 2160–2164.
    [135] Kliewer S A, Sundseth S S, Jones S A, et al., Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptorsαandγ, Proceedings of the National Academy of Sciences of the United States of America[J], 1997, 94(9): 4318–4323.
    [136] Schmidt A, Endo N, Rutledge S J, et al., Identification of a new member of the steroid hormone receptor superfamily that is activated by a peroxisome proliferator and fatty acids, Molecular Endocrinology[J], 1992, 6(10): 1634–1641.
    [137] Theocharis S, Margeli A, Vielh P, et al., Peroxisome proliferator-activated receptor-γligands as cell-cycle modulators, Cancer Treatment Reviews[J], 2004, 30(6):545–554.
    [138] Kersten S, Desvergne B, Wahli W, Roles of PPARS in health and disease, Nature, 2000, 405(6785): 421–424.
    [139] Horowitz J F, Leone T C, Feng W, et al., Effect of endurance training on lipid metabolism in women: a potential role for PPARαin the metabolic response to training, American Journal of Physiology[J], 2000, 279(2) :348– 355.
    [140] Alaynick W A, Nuclear receptors, mitochondria and lipid metabolism, Mitochondrion, 2008, 8(4):329–337.
    [141] Abbott B D, Review of the expression of peroxisome proliferator-activated receptors alpha (PPARα), beta (PPARβ), and gamma (PPARγ) in rodent and human development, Reproductive Toxicology[J], 2009, 27(3-4): 246–257.
    [142] Chinetti G, Griglio S, Antonucci M, et al., Activation of proliferator-activated receptorsαandγinduces apoptosis of human monocyte-derived macrophages, The Journal of Biological Chemistry, 1998, 273(40): 25573–25580.
    [143] Gelman L, Fruchart J C, Auwerx J, An update on the mechanisms of action of the peroxisome proliferators activated receptors (PPARs) and their roles in inflammation and cancer, Cellular and Molecular Life Sciences[J], 1999, 55(6-7): 932–943.
    [144] Qi J S, Desai-Yajnik V, Greene M E, et al., The ligandbinding domains of the thyroid hormone/retinoid receptorgene subfamily function in vivo to mediate heterodimerization, gene silencing, and transactivation, Molecular and Cellular Biology[J], 1995, 15(3): 1817–1825.
    [145] Grommes C, Landreth G E, Heneka M T, Antineoplastic effects of peroxisome proliferator-activated receptorγagonists, The Lancet Oncology[J], 2004, 5(7): 419–429.
    [146] Dreyer C, Krey G, Keller H, et al., Control of the peroxisomalβ-oxidation pathway by a novel family of nuclear hormone receptors, Cell[J], 1992, 68(5): 879–887.
    [147] Mudaliar S, Henry R R, New oral therapies for type 2 diabetes mellitus: the glitazones or insulin sensitizers, Annual Review of Medicine[J], 2001, 52: 239–257.
    [148] Scott R E, Differentiation, differentiation/gene therapy and cancer, Pharmacology and Therapeutics[J], 1997; 73(1):51–65.
    [149] Hoerl B J, Scott R E, Nonterminally differentiated cells express decreased growth factor responsiveness, Journal of Cellular Physiology, 1989, 139(1): 68–75.
    [150] Wang H, Scott R E, Adipocyte differentiation selectively represses the serum inducibility of c-jun and junB by reversible transcription-dependent mechanisms, Proceedings of the National Academy of Sciences of the United States of America[J], 1994, 91(11): 4649–4653.
    [151] Xiong Y, Hannon G J, Zhang H, et al., p21 is a universal inhibitor of cyclinkinases, Nature[J], 1993, 366(6456): 701–704.
    [152] Stanford J L, Szklo M, Brinton L A, Estrogen receptors and breast cancer, Epidemiologic Reviews[J], 1986, 8: 42–59.
    [153] Wang H, Scott R E, Insulin-induced mitogenesis associated with transformation by the SV40 large T antigen, Journal of Cellular Physiology[J], 1991, 147(1): 102–110.
    [154] Thomas D M, Johnson S A, Sims N A, et al., Terminal osteoblast differentiation, mediated by runx2 and p27 KIP1, is disrupted in osteosarcoma, The Journal of Cell Biology[J], 2004, 167(5): 925–934.
    [155] Carpio L, Gladu J, Goltzman D, et al., Induction of osteoblast differentiation indexes by PTHrP in MG-63 cells involves multiple signaling pathways, American Journal of Physiology[J], 2001, 281(3): 489–499.
    [156] Nozaki K, Kadosawa T, Nishimura R, et al., 1,25- dihydroxyvitamin D3, recombinant human transforminggrowth factor-β1, and recombinant human bone morphogenetic protein-2 induce in vitro differentiation of canine osteosarcoma cells, The Journal of Veterinary Medical Science[J], 1999, 61(6): 649–656.
    [157] Saez E, Tontonoz P, Nelson M C, et al., Activators of the nuclear receptor PPARγenhance colon polyp formation, Nature Medicine[J], 1998, 4(9): 1058–1061.
    [158] Lefebvre A M, Chen I, Desreumaux P, et al., Activation of the peroxisome proliferator- activated receptor gamma promotes the development of colon tumors in C57BL/6JAPCMin/+ mice, Nature Medicine[J], 1998, 4(9): 1053– 1057.
    [159] Wasan H S, Novelli M, Bee J, et al., Dietary fat influences on polyp phenotype in multiple intestinal neoplasia mice, Proceedings of the National Academy of Sciences of the United States of America[J], 1997, 94(7): 3308–3313.
    [160] Sarraf P, Mueller E, Jones D, et al., Differentiation and reversal of malignant changes in colon cancer through PPARγ, Nature Medicine[J], 1998, 4(9): 1046–1052.
    [161] Altiok S, Xu M, Spiegelman B M, PPARγinduces cell cycle withdrawal: inhibition of E2f/DP DNA-binding activity via down-regulation of PP2A, Genes and Development[J], 1997, 11(15): 1987–1998.
    [162] Wakino S, Kintscher U, Kim S, et al., Peroxisome proliferator-activated receptorγligands inhibit retinoblastoma phosphorylation and G1→S transition in vascular smooth muscle cells, Journal of Biological Chemistry[J], 2000, 275(29):22435–22441.
    [163] Morrison R F, Farmer S R, Role of PPARγin regulating a cascade expression of cyclin- dependent kinase inhibitors, p18(INK4c) and p21(Waf1/Cip1), during adipogenesis, Journal of Biological Chemistry[J], 1999, 274(24):17088– 17097.
    [164] Shen Z N, Nishida K, Doi H, et al., Suppression of chondrosarcoma cells by 15-deoxy-Δ12, 14-prostaglandin J2 is associated with altered expression of Bax/Bcl-xL and p21, Biochemical and Biophysical Research Communications[J], 2005, 328(2): 375–382.
    [165] Haydon R C, L Zhou, T Feng, et al., Nuclear receptor agonists as potential differentiation therapy agents for human osteosarcoma, Clinical Cancer Research[J], 2002, 8(5):1288–1294.
    [166] Lucarelli E, Sangiorgi L, Maini V, et al., Troglitazione affects survival of human osteosarcoma cells, International Journal of Cancer[J], 2002, 98(3): 344–351.
    [167] Magenta G, Borenstein X, Rolando R, et al., Rosiglitazone inhibits metastasis development of a murinemammary tumor cell line LMM3, BMC Cancer[J], 2008, 8:47.
    [168] Kuniyasu H, The roles of dietary PPARγligands for metastasis in colorectal cancer, PPAR Research[J], 2008, 2008:529720.
    [169] Takano S, Kubota T, Nishibori H, et al., Pioglitazone, a ligand for peroxisome proliferator- activated receptor-γacts as an inhibitor of colon cancer liver metastasis, Anticancer Research[J], 2008, 28(6A):3593–3599.
    [170] Bren-Mattison Y, Van Putten V, Chan D, et al., Peroxisome proliferatoractivated receptor-γ(PPARγ) inhibits tumorigenesis by reversing the undifferentiated phenotype of metastatic nonsmall- cell lung cancer cells (NSCLC), Oncogene[J], 2005, 24(8):1412–1422.
    [171] Duester G, Retinoic acid synthesis and signaling during early organogenesis, Cell[J], 2008, 134(6): 921–931.
    [172] Niederreither K, Dolle P, Retinoic acid in development: towards an integrated view, Nature Reviews Genetics[J], 2008, 9(7): 541–553.
    [173] Mark M, Ghyselinck N B, Chambon P, Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis, Annual Review of Pharmacology and Toxicology[J], 2006, 46:451–480.
    [174] Hansen L A, Sigman C C, Andreola F, et al., Retinoids in hemoprevention and differentiation therapy, Carcinogenesis[J], 2000, 21(7):1271–1279.
    [175] Gee M F W, Tsuchida R, Eichler-Jonsson C, et al., Vascular endothelial growth factor acts in an autocrine manner in rhabdomyosarcoma cell lines and can be inhibited with all-trans-retinoic acid, Oncogene[J], 2005, 24(54): 8025–8037.
    [176] Ricaud S, Vernus B, Bonnieu A, Response of human rhabdomyosarcoma cell lines to retinoic acid: relationship with induction of differentiation and retinoic acid sensitivity, Experimental Cell Research[J], 2005, 311(2): 192–204.
    [177] Zhu G H, Huang J, Bi Y, et al., Activation of RXR and RAR signaling promotes myogenic differentiation of myoblastic C2C12 cells, Differentiation[J], 2009, 78(4): 195–204.
    [178] Huang J, Bi Y, Zhu G, et al., Retinoic acid signaling induces the differentiation of mouse fetal liver-derived hepatic progenitor cells, Liver International[J], 2009; 29(10): 1569–1581.
    [179] Lawrence J A, Merino M J, Simpson J F, et al., A high-risk lesion for invasive breast cancer, ductal carcinoma in situ, exhibits frequent overexpression of retinoid X receptor, Cancer Epidemiology Biomarkers and Prevention[J], 1998, 7(1): 29–35.
    [180] Huang J, Powell W C, Khodavirdi A C, et al., Prostatic intraepithelial neoplasia in mice with conditional disruption of the retinoid X receptorαallele in the prostate epithelium, Cancer Research[J], 2002; 62(16): 4812–4819.
    [181] Li M, Chiba H, Warot X, et al., RXRαablation in skin keratinocytes results in alopecia and epidermal alterations, Development[J], 2001, 128(5): 675–688.
    [182] Tanaka T, Suh K S, Lo A M, et al., p21WAF1/CIP1 is a common transcriptional target of retinoid receptors: pleiotropic regulatory mechanism through retinoic acid receptor (RAR)/ retinoid X receptor (RXR) heterodimer and RXR/RXR homodimer, Journal of Biological Chemistry[J], 2007, 282(41):29987–29997.
    [183] Duvic M, Martin A G, Kim Y, et al., Phase 2 and 3 clinical trial of oral bexarotene (Targretin capsules) for the treatment of refractory or persistent early-stage cutaneous Tcell lymphoma, Archives of Dermatology[J], 2001, 137(5): 581–593.
    [184] Blumenschein Jr G R, Khuri F R, Pawel J von, et al., Phase III trial comparing carboplatin, paclitaxel, and bexarotene with carboplatin and paclitaxel in chemotherapynaive patients with advanced or metastatic non-small-cell lungcancer: SPIRIT II, Journal of Clinical Oncology[J], 2008, 26(11):1879–1885.
    [185] Wu K, Kim H T, Rodriquez J L, et al., Suppression of mammary tumorigenesis in transgenic mice by the RXRselective retinoid, LGD1069, Cancer Epidemiology Biomarkers and Prevention [J], 2002, 11(5):467–474.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700