胰岛素和鹿茸血抗骨质疏松的生物效应和机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病影响骨代谢,导致骨量减少,诱发骨质疏松,但是糖尿病性骨质疏松的发病机制仍不十分清楚。胰岛素是骨形成促进因子,对成骨细胞的增殖、分化和成熟具有促进作用,但是具体的作用机制也不清楚。本文通过体内和体外实验,探讨了胰岛素缺乏导致骨质疏松的发病机制以及胰岛素促进骨生长和分化的分子作用机制,为预防骨质疏松提供一定的理论依据。
     营养指导,饮食补充等非药物预防策略干预骨质疏松已受到人们的广泛重视,从中药中筛选抗骨质疏松药物具有广阔的应用前景。本文探讨了鹿茸血缓解去势大鼠骨质疏松的生物学效应机制。主要结果如下:
     发现糖尿病引起钙(Ca)、磷(P)、镁(Mg)、锌(Zn)、锶(Sr)等骨矿元素流失以及血清睾酮(T)、胰岛素样生长因子-1(IGF-1)和骨钙素(OC)等水平的降低是糖尿病骨密度(BMD)降低的重要原因,而胰岛素处理能够提高Ca、P、Mg等骨矿元素含量,恢复血清T、IGF-1和OC的水平,增加骨密度,缓解骨质疏松。接着,通过细胞分子生物学的研究,进一步阐明了胰岛素通过激活MAPK通路上调Osx和IGF-1的表达,与激活PI3K通路下调Runx2的表达促进成骨细胞生长和分化的分子作用机制。该结果进一步阐明了糖尿病性骨质疏松的发病机制,为胰岛素预防和治疗糖尿病性骨质疏松提供一定的理论指导并在临床应用方面具有一定的现实意义。
     此外,首次报道了鹿茸血通过提高Ca、P和Zn等骨矿元素水平以及通过提高血清T和IGF-1的水平,缓解去势大鼠骨质疏松的生物学效应机制。为鹿茸血抗骨质疏松的应用提供一定的理论依据。
     绪论中,从影响成骨细胞生长、分化的调节因子、信号通路以及转录因子等方面,简要综述了骨质疏松的发病机制。
     首次运用同步辐射X射线荧光探针分析技术(SRXRF),发现糖尿病引起钙Ca、P、Zn、Sr等骨矿元素流失是导致骨密度降低的重要原因之一,从骨矿元素变化阐明了糖尿病性骨质疏松的发病机制。研究表明:糖尿病组骨密度显著低于对照组(P<0.01),同时Ca、P和Zn元素的相对含量明显低于对照组(P<0.01);与对照组相比,糖尿病组中Sr元素的相对含量降低11%;而糖尿病大鼠硫(S)元素的相对含量显著高于对照组(P<0.01)。元素铬(Cr),铜(Cu),铅(Pb)的相对含量在两组间无显著差异。统计分析显示Ca分别和P(R=0.85,P<0.001),Sr(R=0.38,P<0.05),Zn(R=0.37,P<0.05)呈正相关性;而Zn和S呈负相关性(R=-0.40,P<0.05)。
     首次利用电感耦合等离子体原子发射光谱法(ICP-AES),发现胰岛素治疗可以通过提高Ca、P、Mg等元素的含量使骨密度得到恢复,缓解骨质疏松,表明胰岛素具有骨形成促进作用,同时也进一步证明糖尿病大鼠股骨中Ca、P、Mg、Sr、K等元素的丢失是导致BMD降低的原因之一。研究表明:与正常组相比,糖尿病组大鼠股骨骨密度显著降低(P<0.01),胰岛素治疗后显著升高(P<0.05)。ICP-AES元素分析结果显示:与正常组相比,糖尿病组大鼠股骨中Ca、P、Mg、Sr、K等5种元素含量显著降低(P<0.05),而胰岛素治疗后,元素Ca、P、Mg含量得到了恢复(P<0.05)。相关性分析显示:正常组大鼠股骨的Ca、P、Mg元素含量间具有很高的相关性。
     接着,报道了糖尿病引起血清睾酮、胰岛素样生长因子-1和骨钙素等的降低也是导致BMD降低的原因之一,而胰岛素治疗可以恢复血清睾酮、胰岛素样生长因子-1和骨钙素水平,预防骨流失和BMD降低,进一步证明了胰岛素的骨形成促进作用。实验结果表明:(1)、糖尿病组大鼠的骨密度显著降低(P<0.01),小梁骨间距明显增加,骨小梁流失显著(P<0.01),而胰岛素治疗可以降低骨流失,恢复骨密度;(2)、糖尿病组血清睾酮水平显著降低(P<0.01),胰岛素治疗后,睾酮水平升高;(3)、糖尿病组血清中骨保护素、胰岛素样生长因子-1和骨钙素也明显降低(P<0.01),经胰岛素治疗后其相应水平提高;(4)、而糖尿病组血清总碱性磷酸酶水平显著升高,胰岛素治疗后其值降低;(5)、血清钙、磷水平在三组间没有显著差异。
     通过细胞分子水平的研究,进一步阐明胰岛素通过激活MAPK通路上调Osx和IGF-1的表达以及激活PI3K通路下调Runx2的表达促进成骨细胞生长、生存和分化成熟的分子机制。采用人成骨样MG-63细胞,胰岛素刺激或者胰岛素刺激的同时分别加入特异性的阻断剂阻断PI3K通路和MAPK通路,结果显示:胰岛素上调成骨细胞表面胰岛素受体的表达,并呈时间依赖性;胰岛素能促进成骨细胞的增殖、生存;增加碱性磷酸酶的活性和1型胶原蛋白的分泌;促进钙化结节的产生;上调Osx、IGF-1、OC和BMP-2的表达,下调Runx2的表达。阻断PI3K通路后,成骨细胞的增殖受到抑制并发生明显的凋亡,碱性磷酸酶的活性和1型胶原蛋白的分泌、钙化结节的产生、OC的表达都受到明显抑制,但Runx2的表达明显增加。阻断MAPK通路也能抑制成骨细胞的增殖和生存,碱性磷酸酶的活性和1型胶原蛋白的分泌、钙化结节的产生、OC的表达受到明显抑制,同时,Osx、IGF-1的表达明显降低,BMP-2的表达也有所降低。因此,胰岛素通过上调成骨细胞表面胰岛素受体的表达,激活PI3K通路下调Runx2的表达,而激活MAPK通路上调Osx和IGF-1的表达,从而促进成骨细胞生长、生存和分化成熟。
     此外,首次运用同步辐射X射线荧光探针技术(SRXRF)报道了鹿茸血通过提高Ca、P和Zn等骨矿元素水平,缓解去势大鼠骨质疏松的作用机制。结果表明:当大鼠去势后导致骨质疏松时,其股骨的BMD明显降低,则股骨元素Ca、P、Zn和Sr的相对强度也都降低,说明由于Ca和P等元素的大量丢失,引起骨质疏松。当鹿茸血治疗后,其骨组织中Ca、P及微量元素Zn的相对强度都有不同程度的升高,因而,BMD也显著升高,骨质疏松得到显著恢复。因此,鹿茸血可以通过改善骨组织Ca、P和Zn元素的含量达到抗骨质疏松的作用。
     接着,报道了鹿茸血通过提高血清睾酮和IGF-1的水平,使BMD得到增加,缓解骨质疏松的生物学效应机制。研究表明:去势导致E2的缺乏,伴随血清睾酮、IGF-1水平的降低,致使股骨和椎骨的BMD降低,引发骨质疏松。然而,鹿茸血治疗后,通过提高血清睾酮和IGF-1的水平,使股骨和椎骨的BMD得到增加,具有抗骨质疏松效应。但是,鹿茸血缓解骨质疏松的分子机制仍需进一步的研究。
Diabetes mellitus affects bone metabolism and leads to osteopenia and osteoporosis, but its pathogenic mechanism remains unknown. Insulin has positive effects on bone growth and differentiation, but the underlying mechanism is not clear. To address these problems, here we investigate the relation between insulin deficiency and osteoporosis in vivo animal model, and the effect of insulin on osteoblast proliferation, differentiation and maturation in vitro cell culture system.
     Nonpharmacologic management of osteoporosis includes nutrition guidelines, dietary supplementation and so on and is very important to improve bone heath for a patient at risk of osteoporosis. Screening anti-osteoporosis drugs from Chinese herbal medicine hold a very broad appliance future. Here, we investigate the biological mechanism of anti-osteoporosis of antler blood in ovariectomized rats. The thesis consists of eight chapters.
     First, we present a brief introduction to the mechanism of osteoporosis involved in the regulator, signaling pathway as well as transcription factor which effect on osteoblast growth and differentiation.
     Second, we revealed for the first time that loss of calcium (Ca), phosphorus (P), zinc (Zn) and strontium (Sr) element contents accounted for the bone mineral density (BMD) reduction in diabetic animal models. With synchrotron radiation X-ray fluorescence (SRXRF) microprobe analysis technique, we found that relative mineral content of Ca, P and Zn in diabetic femurs decreased significantly compared to controls. And Sr in diabetics reduced 11%(P= 0.09). Relative content of sulfur (S) in average was statistically higher (P< 0.01) in diabetics than that in controls. But no obvious difference was observed in relative content of chromium (Cr), iron (Fe), copper (Cu), and lead (Pb) between the two groups. Statistical analysis revealed that Ca correlated positively with P (R= 0.85, P< 0.001), with Sr (R= 0.38, P< 0.05) and with Zn (R= 0.37, P< 0.05). Whereas Zn correlated negatively with S (R=-0.40, P< 0.05).
     Third, we demonstrated for the first time that insulin treatment could restore BMD by increasing the Ca, P and magnesium (Mg) element contents which was determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) in type1 diabetic rat models. The results showed that the femoral BMD in diabetic group was significantly lower than that in normal group (P< 0.01) but reserved by insulin treatment (P< 0.05). ICP-AES analysis revealed that the element content of Ca, P, Mg, Sr, potassium (K) in diabetic group were remarkably lower than those in normal group (P<0.05) but only Ca, P and Mg content were significantly increased compared with diabetic group (P< 0.05) after insulin treatment. However, no significant differences were observed in element zinc (Zn) content among three groups.
     Fourth, we also showed that the decrease in serum levels of testosterone, insulin-like growth factor-1 (IGF-1) and osteocacin(OC) caused by insulin deficiency accounted for the bone mineral density (BMD) reduction in diabetic animal models. However, insulin treatment increased serum levels of testosterone, IGF-1 and OC and is capable of preserving bone loss. Results of BMD and histomorphometry revealed serious.bone loss in diabetes. Circling testosterone was significantly reduced in diabetic rats (P< 0.01). osteoprotegerin(OPG), IGF-1 and OC in diabetics also decreased noticeably (P< 0.01). A marked increase was observed in serum concentration of total alkaline phosphatase(ALP), bone ALP of diabetics (P< 0.01) compared to the controls. However insulin treatment induced a marked increase in the levels of testosterone, OPG, IGF-1, OC; and a decrease of total ALP, bone ALP. No significant differences were observed in serum Ca and P among three groups. Our results suggest that bone metabolism is seriously affected by diabetes. Insulin deficiency combining with testosterone depression are associated with alterations in bone turnover, resulting in the development of osteoporosis. And insulin treatment is capable of preserving bone loss and testosterone depression.
     Fifth, we reported the mechanism of the action of insulin on osteoblast growth and differentiation. Human osteoblastic cell line-MG63 was used and stimulated by insulin in the presence or absence of extracellular signal-regulated kinase (ERK) inhibitor PD98059, PI3-K inhibitor LY294002 or inhibitor PD98059+LY294002. Insulin receptor expression was determined by Confocal laser scanning microscopy (CLSM). Cell proliferation was detected by MTT assay. Cell apoptosis was determined by FACS. ALP activity was determined by ALP kit. Collagen 1 synthesis was determined by ELISA. The mineralized nodules were stained by Alizarin red stain. The mRNA expression of OC, Osx, Runx2, IGF-1, BMP-2 were quantified by real-time RT-PCR. Our results showed that insulin positively regulated the expression of its receptor. Insulin could promote cell proliferation, and blockage of each of the two pathways could decrease the proliferation and cause remarkable cell apoptosis. ALP activity and collagenl synthesis, OC expression, and mineralized nodule formation were increased in insulin treated group, whereas these indicators were decreased in both blockage groups. Down-regulation of Runx2 expression was reversed significantly in PI3K blocked group, but up-regulation of Osx expression was decreased significantly in MAPK blocked group, and so were IGF-1 and BMP-2 after insulin treatment. Therefore, insulin promoted osteoblast differentiation through MAPK signaling pathway to up-regulate Osx expression and PI3K signaling pathway to down-regulate Runx2 expression.
     In addition, it's the first time that we reported the antiosteoporotic effects of antler blood. The femoral BMD was analyzed by DXA and the element relative content was determined by SRXRF microprobe in ovariectomized rats. The results showed that the femoral BMD was significantly lower than that of sham-operated rats (p< 0.05) but reversed by antler blood (Cervus nippon Temminck) treatment (p< 0.05). A further study demonstrated that the relative contents of P, Ca, Zn and Sr were obviously lower in ovariectomized rats compared to sham-operated rats but only the relative contents of P, Ca and Zn were normalized by antler blood treatment (p< 0.05). Our experiments revealed that loss of element Ca, P, Zn and Sr was closely related to the BMD reduction in ovariectomized rats and the anti-osteoporotic effect of antler blood was mediated by increasing the contents of P, Ca and Zn.
     Forthermore, the antiosteoporotic effects of antler blood were evaluated in ovariectomized Wistar rats. Compared with SHAM group, serum 17β-estradiol (E2) level decreased significantly (p<0.05) and OC level increased significantly (p<0.05) in OVX group, indicating successful model of osteoporosis. However, serum levels of IGF-1 and testosterone (T) were lower obviously in OVX group than those in SHAM group (p<0.05) but reserved by antler blood treatment (p<0.05) and the BMD of the lumbar spine and left femur in OVX group decreased remarkably (p<0.05) compared to SHAM group but normalized by treated with the antler blood (p<0.05). No obvious changes in serum levels of Ca, P, total ALP and OPG were observed among three groups. These results showed that bone growth promoting effects of antler blood were mediated by high serum concentration of T and IGF-1.
     Finally, we summarize the contents of seven chapters above.
引文
[1]Report of a WHO study group.1994. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. World Health Organ Techn Rep Ser,843:1-129.
    [2]Marx J.2004. Coming to grips with bone loss. Science,305:1420-1422.
    [3]廖二元,谭利华,代谢性骨病学.人民卫生出版社,2003.
    [4]Stein GS, Lian JB.1993. Molecular Mechanisms mediating proliferation/differentiation interrelationships during progressive development of osteoblast phenotype. Endocrine,14(4): 424-442.
    [5]Roux S, Orcel P.2000. Bone loss. Factors that regulate osteoclast differentiation:an update. Arthritis Res.,2:451-456.
    [6]Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Boyle WJ, Riggs BL.2000. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res.,15:2-12.
    [7]Raisz LG.2005. Pathogenesis of osteoporosis:concepts, conflicts, and prospects. The journal of clinical investigation,115(12):3318-2225.
    [8]Canalis E, Giustina A, Bilezikian JP.2007. Mechanisms of anabolic therapies for osteoporosis. N Engl J Med.,357:905-916.
    [9]Ecarot-Charrier B, Shepard N, Charette G, et al.1988. Mineralization in osteoblast cultures:a light and electron microscopic study. Bone,9(3):147-154,
    [10]Franklin HE.1995. Bone marrow, cytokines and bone remodeling. N Engl Med,332: 305-311.
    [11]McCormick RK.2007. Osteoporosis:integrating biomarkers and other diagnostic correlates into the management of bone fragility. Alternative Medicine Review,12(2):113-145.
    [12]McCabe LR, Last TJ, Lynch M, Lian J, Stein J, Stein G.1994. Expression of cell growth and bone phenotypic genes during the cell cycle of normal diploid osteoblasts and osteosarcoma cells. J Cell Biochem,56:274-282.
    [13]Owen TA, Aronow M, Shalhoub V, Barone LM., Wilming L, Tassinari MS, Kennedy MB, Pockwinse S, Lian JB, Stein GS.1990. Progressive development of the rat osteoblast phenotype in vitro:reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol,143(3):420-430
    [14]McCabe LR, Banerjee C, Kundu R, Harrison RJ, Dobner PR, Stein JL, Lian JB, Stein GS. 1996.Developmental expression and activities of specific fos and jun proteins are functionally related to osteoblast maturation:role of Fra-2 and jun D during fifferetiation. Endocrinology, 137(10):4398-4480.
    [15]Lynch MP, Stein JS, Stein GS, Lian JB.1994. Apoptosis during in vitro bone formation. J Bone Miner Res,9:S352.
    [16]Lee MH, Kwon TG, Park HS, Wozney JM, Ryoo HM.2003. BMP2-induced Osterix expression is mediaied by Dlx5 but is independent of Runx2. Biochem. Biophys. Res. Commun.,309:689-694.
    [17]Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T.1997. Targeted disruption of Cbfal results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell,89:755-764.
    [18]Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ.1997. Cbfal, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell,89:765-771.
    [19]Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B. 2002. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell,108:17-29.
    [20]Nakashima K, de Crombrugghe B.2003. Transcriptional mechanisms in osteoblast differentiation and bone formation. TRENDS in Genetics,19(8):458-466.
    [21]Komori T.2006. Regulation of osteoblast differentiation by transcription factors. Journal of Cellular Biochemistry,99(5):1233-1239.
    [22]Lian JB, Stein GS.2003. Runx2/Cbfa1:a multifunctional regulator of bone formation. Curr Pharm Des,9(32):2677-85.
    [23]Kobayashi H, Gao Y, Ueta C, Yamaguchi A, Komori T.2000. Multi-lineage differentiation of Cbfal-deficient calvarial cells in vitro. Biochem Biophys Res Commun,273:630-636.
    [24]董世武,应大君,段小军,朱楚洪,刘光久,糜建红.2005.核心结合因子a1对骨髓间充质干细胞成骨细胞标志基因表达的影响.中国修复重建外科杂志,19:746-750.
    [25]Komori T.2005. Regulation of skeletal development by the Runx family of transcription factors. J Cell Biochem,95:445-453.
    [26]Stein GS, Lian JB, van Wijnen AJ, Stein JL, Montecino M, Javed A, Zaidi SK, Young DW, Choi JY, Pockwinse SM.2004. Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene,23:4315-4320.
    [27]Okazaki K, Sandell LJ.2004. Extracellular matrix gene regulation. Clin Orthop,427(Suppl): 123S-128S.
    [28]Saito T, Ogawa M, Hata Y, Bessho K.2004. Acceleration effect of human recombinant bone morphogenetic protein-2 on differentiation of human pulp cells into odontoblasts. J Endod, 30:205-208.
    [29]Xiang Z, Aubin JE, Inman RD.2003. Molecular and cellular biology of new bone formation: insights into the ankylosis of ankylosing spondylitis. Curr Opin Rheumatol,15:387-393.
    [30]Liu W, Toyosawa S, Furuichi T, Kanatani N, Yoshida C, Liu Y, Himeno M, Narai S, Yamaquchi A, Komori T.2001. Overexpression of Cbfa1 in ostcoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures. J. Cell Biol.,155:157-166.
    [31]Geoffroy V, Kneissel M, Fournier B, Boyde A, Matthias P.2002. High bone resorption in adult aging transgenic mice overexpressing cbfa1/runx2 in cells of the osteoblastic lineage. Mol Cell Biol,22:6222-6233.
    [32]Kanatani N, Fujita T, Fukuyama R, Liu W, Yoshida CA, Moriishi T, Yamana K, Miyazaki T, Toyosawa S, Komori T.2006. Cbf-beta regulates Runx2 function isoform-dependently in postnatal bone development. Dev Biol.,296(1):48-61.
    [33]Nishio Y, Dong Y, Paris M, O'Keefe RJ,. Schwarz EM, Drissi H.2006. Runx2-mediated regulation of the zinc finger Osterix/Sp7 gene. Gene,372:62-70.
    [34]Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD, MacDougald OA. 2005. Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Nail Acad Sci USA, 102(9):3324-3329.
    [35]Celil AB, Hollinger JO, Campbell PG.2005. Osx transcriptional regulation is mediated by additional pathways to BMP2/Smad signaling. J Cell Biochem,95(3):518-528.
    [36]Celil AB, Campbell PG.2005. BMP-2 and insulin-like growth factor-I mediate Ostcrix(Osx) expression in human mesenchymal stem cells via the MAPK and protein kinase D signaling pathways. J Biol Chem,280(36):31353-31359.
    [37]Yakar S, Rosen CJ.2003. From mouse to man:redefining the role of insulin-like growth factor-I in the acquisition of bone mass. Exp Biol Med (Maywood),228:245-252.
    [38]Domene HM, Bengolea SV, Martinez AS, Ropelato MG, Pennisi P, Scaglia P, Heinrich JJ, Jasper HG.2004. Deficiency of the circulating insulin-like growth factor system associated with inactivation of the acid-labile subunit gene. N Engl J Med,350:570-577.
    [39]Karasik D, Myers RH, Cupples LA, Hannan MT, Gagnon DR, Herbert A, Kiel DP.2002. Genome screen for quantitative trait loci contributing to normal variation in bone mineral density:the Framingham Study. J Bone Miner Res,17:1718-1727.
    [40]Niu T, Rosen CJ.2005. The insulin-like growth factor-Ⅰ gene and osteoporosis:a critical appraisal. Gene,361:38-56.
    [41]Kaliman P, Vinals F, Testar X, Palacin M, Zorzano A.1996. Phosphatidylinositol 3-kinase inhibitors block differentiation of skeletal muscle cells. J Biol Chem,271(32):19146-19151.
    [42]Ghosh-Choudhury N, Abboud SL, Nishimura R, Celeste A, Mahimainathan L, Choudhury GG.2002. Requirement of BMP-2-induced phosphatidylinositol 3-kinase and Akt serine/threonine kinase in osteoblast differentiation and Smad-dependent BMP-2 gene transcription. J Biol Chem,277(36):33361-33368.
    [43]Hidaka K, Kanematsu T, Takeuchi H, Nakata M, Kikkawa U, Hirata M.2001. Involvement of the phosphoinositide 3-kinase/protein kinase B signaling pathway in insulin/IGF-I-induced chondrogenesis of the mouse embryonal carcinoma-derived cell line ATDC5. Int J Biochem Cell Biol,33(11):1094-1103.
    [44]Fujita T, Azuma Y, Fukuyama R, Hattori Y, Yoshida C, Koida M, Ogita K, Komori T.2004. Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling. J Cell Biol,166(1):85-95.
    [45]Grey A, Chen Q, Xu X, Callon K, Cornish J.2003. Parallel phosphatidylinositol-3 kinase and p42/44 mitogen-activated protein kinase signaling pathways subserve the mitogenic and antiapoptotic actions of insulin-like growth factor Ⅰ in osteoblastic cells. Endocrinology,144: 4886-4893.
    [46]Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, Marshak DR, Pittenger MF.2000. Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem,275(13):9645-9652.
    [47]Rodriguez JP, Rios S, Fernandez M, Santibanez.IF.2004. Differential activation of ERK1,2 MAP kinase signaling pathway in mesenchymal stem cell from control and ostcoporotic postmenopausal women. J Cell Biochem,92(4):745-754.
    [48]Lee KS, Kim HJ, Li QL, Chi XZ, Ueta C, Komori T, Wozney JM, Kim EG, Choi JY, Ryoo HM, Bae SC.2000. Runx2 is a common target of transforming growth factor betal and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol,20(23):8783-8792.
    [49]Chen D, Zhao M, Mundy GR.2004. Bone morphogenetic proteins, Growth Factors,22(4): 233-241.
    [50]Issack PS, DiCesare PE.2003. Recent advances toward the clinical application of bone morphogenetic proteins in bone and cartilage repair. Am J Orthop,32(9):429-436.
    [51]Granjeiro JM, Oliveira RC, Bustos-Valenzuela JC, Sogayar MC, Taga R.2005. Bone morphogenetic proteins:from structure to clinical use. Braz J Med Biol Res,38(10): 1463-1473.
    [52]Zhang YW, Yasui N, Itok K, Huang G, Fujii M, Hanai J, Noqami H, Ochi T, Miyazono K, Ito Y.2000. A RUNX2/PEBP2alpha A/CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia. Proc. Natl. Acad. Sci. USA.,97: 10549-10554.
    [53]Bae SC, Lee KS, Zhang YW, Ito Y.2001. Intimate relationship between TGF-beta/BMP signaling and runt domain transcription factor, PEBP2/CBF. J Bone Joint Surg Am,83-A Suppl 1(Pt 1):S48-55.
    [54]Balasch J.2003. Sex steroids and bone:current perspectives. Hum Reprod Update,9: 207-222.
    [55]Compston JE.2001. Sex steroids and bone. Physiol Rev,81:419-447
    [56]Albright F, Smith PH, Richardson AM.1941. Postmenopansal osteoporosis:its clinical features. JAMA,116:2465.
    [57]Russell RG, Espina B, Hulley P.2006.Bone biology and the pathogenesis of osteoporosis. Curr Opin Rheumatol,18 Suppl 1:S3-10.
    [58]Eriksen EF, Colvard DS, JBerg N, LGraham M, Mann KG, Spelsberg TC, Riggs BL.1988. Evidence of estrogen receptors in normal human osteoblast-like cells. Science,241:84-86.
    [59]Bord S, Horner A, Beavan S, Compston J.2001. Estrogen receptors alpha and beta are differentially expressed in developing human bone. J. Clin. Endocrinol. Metab.,86: 2309-2314.
    [60]Oreffo RO.1999. Expression of estrogen receptor alpha in cells of osteoclastic lineage. Histochem. Cell Biol., 111:125-133.
    [61]Lee K, Jessop H, Suswillo R, Zaman G, Lanyon L.2003. Endocrinology:bone adaptation requires oestrogen receptor-alpha. Nature,424:389.
    [62]Ioannidis JP, Ralston SH, Bennett ST, Brandi ML, Grinberg D, Karassa FB, Langdahl B, van Meurs JB, Mosekilde L, Scollen S, Albagha OM, Bustamante M, Carey AH, Dunning AM, Enjuanes A, van Leeuwen JP, Mavilia C, Masi L, McGuigan FE, Nogues X, Pols HA, Reid DM, Schuit SC, Sherlock RE, Uitterlinden AG.2004. GENOMOS Study. Differential genetic effects of ESR1 gene polymorphisms on osteoporosis outcomes. JAMA,292:2105-2114.
    [63]Albagha OM, Pettersson U, Stewart A, McGuigan FE, MacDonald HM, Reid DM, Ralston SH.2005. Association of oestrogen receptor alpha gene polymorphisms with postmenopausal bone loss, bone mass, and quantitative ultrasound properties of bone. J. Med. Genet.,42:
    240-246.
    [64]Turner RT.1999. Mice, estrogen, and postmenopausal osteoporosis. J. Bone Miner. Res.,14: 187-191.
    [65]Daci E, Verstuyf A, Moermans K, Bouillon R, Carmeliet G.2000. Mice lacking the plasminogen activator inhibitor 1 are protected from trabecular bone loss induced by estrogen deficiency. J. Bone Miner. Res.,15:1510-1516.
    [66]Simonet WS, Lacey DL, Dunstan CR., Kelley M., Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Boyle WJ, et al.1997. Osteoprotegerin:a novel secreted protein involved in the regulation of bone density. Cell,89:309-319.
    [67]Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparell i C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ.1998. Osteoprotegerin ligarid is a cytokine that regulates osteoclast differentiation and activation. Cell,93:165-176.
    [68]Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T.1998. Osteoclast differentiation factor is a ligand for osteoprotegerin /osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA.,95:3597-3602.
    [69]Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L.1997. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature,390:175-179.
    [70]Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, Tan HL, Elliott G, Kelley MJ, Sarosi I, Wang L, Xia XZ, Elliott R, Chiu L, Black T, Scully S, Capparelli C, Morony S, Shimamoto G, Bass MB, Boyle WJ.1999. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA.,96:3540-3545.
    [71]Li J, Sarosi I, Yan XQ, Morony S, Capparelli C, Tan HL, McCabe S, Elliott R, Scully S, Van G, Kaufman S, Juan SC, Sun Y, Tarpley J, Martin L, Christensen K, McCabe J, Kostenuik P, Hsu H, Fletcher F, Dunstan CR, Lacey DL, Boyle WJ.2000. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Natl. Acad. Sci. USA.,97:1566-1571.
    [72]Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM.1999. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature,397:315-323.
    [73]Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ, Simonet WS.1998. osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev,12:1260-1268.
    [74]Mizuno A, Amizuka N, Irie K, Murakami A, Fujise N, Kanno T, Sato Y, Nakagawa N, Yasuda H, Mochizuki S, Gomibuchi T, Yano K, Shima N, Washida N, Tsuda E, Morinaga T, Higashio K, Ozawa H.1998. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem. Biophys. Res. Commun.,247:610-615.
    [75]Hughes AE, Ralston SH, Marken J, Bell C, MacPherson H, Wallace RG, van Hul W, Whyte MP, Nakatsuka K, Hovy L, Anderson DM.2000. Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat. Genet.,24:45-48.
    [76]Yasuda H, Shima N, Nakagawa N, Mochizuki SI, Yano K, Fujise N, Sato Y, Goto M, Yamaguchi K, Kuriyama M, Kanno T, Murakami A, Tsuda E, Morinaga T, Higashio K.1998. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG):a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology,139: 1329-1337.
    [77]Wittrant Y, Theoleyre S, Chipoy C, Padrines M, Blanchard F, Heymann D, Redini F.2004. RANKL/RANK/OPG:new therapeutic targets in bone tumours and associated osteolysis. Biochim. Biophys. Acta,1704:49-57.
    [78]Kostenuik PJ.2005. Osteoprotegerin and RANK.L regulate bone resorption, density, geometry and strength. Curr. Opin. Pharmacol.,5:618-625.
    [79]Wada T, Nakashima T, Hiroshi N, Penninger JM.2006. RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Mod,12:17-25.
    [80]Vanderschueren D, Vandenput L, Boonen S, Lindberg MK, Bouillon R, Ohlsson C.2004. Androgens and bone. Endocr Rev,25:389-425.
    [81]Notelovitz M.2002. Androgen effects on bone and muscle. Fertil. Steril.,77:34-41.
    [82]Notelovitz M.2002. Overview of bone mineral density in postmenopausal women. J. Reprod. Med.,47:71-81.
    [83]Riggs BL, Khosla S, Melton J.2002. Sex steroids and the construction and conservation of the adult skeleton. Endocr. Rev.,23:279-302.
    [84]Rodan GA, Rodan SB.1995. The cells of bone. Osteoporosis:Etiology, Diagnosis, and Management,2nd edition. Philadelphia:Lippincott-Raven Publishers.1-39.
    [85]Castelo-Branco C, Vicente JJ, Figueras F, Sanjuan A, Martinez de, Osaba MJ, Casals E, Pons F, Balasch J, Vanrell JA.2000. Comparative effects of estrogens plus androgens and tibolone on bone, lipid pattern and sexuality in postmenopausal women. Maturitas,34:161-168.
    [86]Reid IR.1996. Therapy of osteoporosis:calcium, vitamin D, and exercise. Am. J. Med. Sci., 312:278-286.
    [87]Prince RL, Devine A, Dhaliwal SS, Dick IM.2004. Results of a 5 year double blind, placebo controlled trial of calcium supplementation (CAIFOS):clinical fracture outcomes. J. Bone Miner. Res.,19:S3.
    [88]Jackson RD, LaCroix AZ, Gass M, et al.,2006. Calcium plus vitamin D supplementation and the risk of fractures. N. Engl. J. Med.,354:669-683.
    [89]Finkelstein JS.2006. Calcium plus vitamin D for postmenopausal women-bone appetit? N. Engl. J. Med.,354:750-752.
    [90]Lee YB, Lee HJ, Kim KS, Lee JY, Nam SY, Cheon SH, Sohn HS.2004. Evalution of the preventive effect of isoflavone extract on bone loss in ovariectomized rats. Biosci. Biotechnol. Biochem.,68:1040-1045.
    [91]Kapur P, Jarry H, Wuttke W, Pereira BM, Seidlova-Wuttke D.2008. Evalution of the antiosteoporotic potential of Tinospora cordifolia in female rats. Maturitas,59:329-338.
    [92]Alam MR, Kim SM, Lee JI, Chon SK, Choi SJ, Kim NS.2006. Effects of Safflower seed oil in osteoporosis induced-ovariectomized rats. Am. J. Chin. Med.,34:601-612.
    [93]Niblein T, Freudenstein J.2003. Effects of an isopropanolic extract of Cimicifuga racemosa on urinary crosslinks and other parameters of bone quality in an ovariectomized rat model of osteoporosis. J. Bone Miner. Metab.,21:370-376.
    [94]Kim KH, Kim KS, Chi BJ, Chung KH, Chang YC, Lee SD, Par KK, Kim HM, Kim CH. 2005. Anti-bone resorption activity of deer antler aqua-acupunture, the pilose antler of Cervus korcan TEMMINCK var. mantchuricus Swinhoc (Nokyong) in adjuvant-induced arthritic rats. J. Ethnopharmacol,96:497-506.
    [95]National Institute of Diabetes and Digestive and Kidney disease.2005. Diabetes.
    [96]Sue A. Brown, Julie L. Sharpless.2004. Osteoporosis:An Under-appreciated Complication of Diabetes. Clinical Diabetes,22:10-20.
    [97]Inzerillo AM, Epstein S.2004. Osteoporosis and diabetes mellitus. Rev Endocr Metab Disord, 5:261-268.
    [98]Kathryn M. Thrailkill, Charles K. Lumpkin, Jr., R. Clay Bunn, Stephen F. Kemp, John L. Fowlkes.2005. Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues.
    Am J Physiol Endocrinol Metab,289:E735-E745.
    [99]Niu T, Rosen CJ.2005. The insulin-like growth factor-I gene and osteoporosis:a critical appraisal. Gene,361:38-56.
    [100]Segev Y. LD, Davidoff-Friedman S, Weinreb M, Phillip M.2002. Involvement of the skeletal GH-IGF system in an experimental model of diabetes-induced growth retardation. Acta Diabetol,39:61-67.
    [101]Godsland IF.2005. Oestrogens and insulin secretion. Diabetologia,48:2213-2220.
    [102]Dhindsa S, Prabhakar S, Sethi M, Bandyopadhyay A, Chaudhuri A, Dandona P.2004. Frequent occurrence of hypogonadotropic hypogonadism in type 2 diabetes. J Clin Endocrinol Metab,89:5462-5468.
    [103]Fukunaga Y, Minamikawa J, Inoue D, and Koshiyama H.1997. Does insulin use increase bone mineral density in patients with non-insulin-dependent diabetes mellitus? Arch Intern Med,157:2668-2669.
    [104]Weinstock RS, Goland RS, Shane E, Clemens TL, Lindsay R, and Bilezikian JP.1989. Bone mineral density in women with type II diabetes mellitus. J Bone Miner Res,4:97-101.
    [105]Dennison EM, Syddall HE, Sayer AA, Craighead S, Phillips DIW, and Cooper C.2004. Type 2 diabetes mellitus is associated with increased axial bone density in men and women from the Hertfordshire Cohort Study:evidence for an indirect effect of insulin resistance? Diabetologia,47:1963-1968.
    [106]Keles I, Aydin G, Basar MM, Hayran M, Atalar E, Orkun S, Batislam E.2006. Endogenous sex steroids and bone mineral density in healthy men. Joint Bone Spine,73:80-85.
    [107]Cooper GJ, Chan YK, Dissanayake AM, Leahy FE, Keogh GF, Frampton CM, Gamble GD, Brunton DH, Baker JR, Poppits SD.2005. Demonstration of a hyperglycemia-driven pathogenic abnormality of copper homeostasis in diabetes and its reversibility by selective chelation:quantitative comparisons between the biology of copper and eight other nutritionally essential elements in normal and diabetic individuals. Diabetes Care,54: 1468-1476.
    [108]Zargar AH, Bashir MI, Khan AR, Masoodi SR, Laway BA, Wani AI, Dar FA.1998. Copper, zinc, and magnesium levels in non-insulin dependent diabetes mellitus. Postgrad Med J.,74: 665-668.
    [109]Fukunaga Y, Minamikawa J, Inoue D, and Koshiyama H.1996. Does hyperinsulinemia preserve bone? Diabetes Care,19:1388-1392.
    [110]Funk JR, Hale JR, Carmines D, Gooch HL, and Hurwitz SR.2000. Biomechanical evaluation of early fracture healing in normal and diabetic rats. J Orthop Res,18:126-132.
    [111]Herbsman H, Powers JC, Hirschman A, and Shaftan GW.1968. Retardation of fracture healing in experimental diabetes. J Surg Res,8:424-431.
    [112]Loder RT.1988. The influence of diabetes mellitus on the healing of closed fractures. Clin Orthop,232:210-216.
    [113]Macey LR, Kana SM, Jingushi S, Terek RM, Borretos J, and Bolander ME.1989. Defects of early fracture-healing in experimental diabetes. J Bone Joint Surg Am,71:722-733.
    [114]Spanheimer RG.1992. Correlation between decreased collagen production in diabetic animals and in cells exposed to diabetic serum:response to insulin. Matrix,12:101-107.
    [115]Topping RE, Bolander ME, and Balian G.1994. Type X collagen in fracture callus and the effects of experimental diabetes. Clin Orthop,2:220-228.
    [116]Ward DT, Yau SK, Mee AP, Mawer EB, Miller CA, Garland HO, and Riccardi D.2001. Functional, molecular, and biochemical characterization of streptozotocin-induced diabetes. J Am Soc Nephrol,12:779-790.
    [117]Santana RB, Xu L, Chase HB, Amar S, Graves DT, and Trackman PC.2003. A role for advanced glycation end products in diminished bone healing in type 1 diabetes. Diabetes,52: 1502-1510.
    [118]Liu EY, Wactawski-Wende J, Donahue RP, Dmochowshi J, Hovey KM, and Quattrin T. 2003. Does low bone mineral density start in post-teenage years in women with type 1 diabetes? Diabetes Care,26:2365-2369.
    [119]Maor G and Karnieli E.1999. The insulin-sensitive glucose transporter (GLUT4) is involved in early bone growth in control and diabetic mice, but is regulated through the insulin-like growth factor I receptor. Endocrinology,140:1841-1851.
    [120]Follak N, Kloting I, and Merk H.2005. Influence of diabetic metabolic state on fracture healing in spontaneously diabetic rats. Diabetes Metab Res Rev,21:288-296.
    [121]Follak N, Kloting L, Wolf E, and Merk H.2004. Delayed remodeling in the early period of fracture healing in spontaneously diabetic BB/OK rats depending on the diabetic metabolic state. Histol Histopathol,19:473-486.
    [122]Shepherd PR, Kahn BB.1999. Glucose transporters and insulin action:implications for insulin resistance and diabetes mellitus. N Engl J Med,341:248-257.
    [123]Sasaoka T, Rose DW, Jhun BH, Saltiel AR, Draznin B, and Olefsky JM.1994:Evidence for a functional role of She proteins in mitogenic signaling induced by insulin, insulin-like growth factor-1, and epidermal growth factor. J Biol Chem,269:13689-13694.
    [124]Lu H, Kraut D, Gerstenfeld LC, and Graves DT.2003. Diabetes interferes with the bone formation by affecting the expression of transcription factors that regulate osteoblast
    differentiation. Endocrinology,144:346-352.
    [125]Gooch HL, Hale JE, Fujioka H, Balian G, and Hurwitz SR.2000. Alterations of cartilage and collagen expression during fracture healing in experimental diabetes. Connect Tissue Res, 41:81-91.
    [126]He H, Liu R, Desta T, Leone C, Gerstenfeld LC, and Graves DT.2004. Diabetes causes decreased osteoclastogenesis, reduced bone formation, and enhanced apoptosis of osteoblastic cells in bacteria stimulated bone loss. Endocrinology,145:447-452.
    [127]Thrailkill KM, Liu L, Wahl EC, Bunn RC, Perrien DS, Cockrell GE, Skinner RA, Hogue WR, Carver AA, Fowlkes JL, Aronson J, Lumpkin CK Jr.2005. Bone formation is impaired in a model of type 1 diabetes. Diabetes,54:2875-2881.
    [128]Ilich JZ, Kerstetter JE.2000. Nutrition in bone health revisited:a story beyond calcium. J Am Coll Nutr,19:715-737.
    [129]National Institutes of Health Osteoporosis and Related Bone Diseases-National Resource Center (2006) Osteoporosis overview.
    [130]Purroy J, Spurr NK.2002. Molecular genetics of calcium sensing in bone cells. Hum Mol Genet,11:2377-2384.
    [131]Del Pino-Montes J, Benito GE, Fernandez-Salazar MP, Covenas R, Calvo JJ, Bouillon R, Quesada JM.2004. Calcitriol improves streptozotocin-induced diabetes and recovers bone mineral density in diabetic rats. Calcif Tissue Int,75:526-532.
    [132]Yates AA, Schlicker SA, Suitor CW.1998. Dietary reference intakes:the new basis for recommendations for calcium and related nutrients, B vitamins, and choline. J Am Dietetic Assn.,98:699-706.
    [133]Anderson JJB.1996. Calcium, phosphorus, and human bone development. J Nutr.,126: 1153-1158.
    [134]Reinhold JG.1975. Trace elements-a selective survey. Clin Chem.,21:476-500.
    [135]Saltman PD, Strause LG.1993. The role of trace minerals in osteoporosis. J Am Coll Nutr, 12:384-389.
    [136]Marie PJ.2005. Strontium as therapy for osteoporosis. Curr Opin Pharmacol,5:633-636.
    [137]Fogelman I, Blake GM.2005. Strontium ranelate for the treatment of osteoporosis. BMJ, 330:1400-1401.
    [138]Coulombe J, Faure H, Robin B, Ruat M.2004. In vitro effects of strontium ranelate on the extracellular calcium-sensing receptor. Biochem Biophys Res Commun,323:1184-1190.
    [139]Cool SM, Nurcombe V.2005. The osteoblast-heparan sulfate axis:control of the bone cell lineage. Int J Biochem Cell Biol,37:1739-1745.
    [140]Castracane VD, Kraemer GR, Ogden BW, Kraemer RR.2006:Interrelationships of serum estradiol, estrone, and estrone sulfate, adiposity, biochemical bone markers, and leptin in post-menopausal women. Maturitas,53:217-225.
    [141]Keles I, Aydin G, Basar MM, Hayran M, Atalar E, Orkun S, Batislam E.2006. Endogenous sex steroids and bone mineral density in healthy men. Joint Bone Spine,73:80-85.
    [142]Einhorn TA, Boskey AL, Gundberg CM, Vigorita VJ, Devlin VJ, Beyer MM.1988. The mineral and mechanical properties of bone in chronic experimental diabetes. J Orthop Res,6: 317-323.
    [143]Dixit PK, Ekstrom RA.1980. Decreased breaking strength of diabetic rat bone and its improvement by insulin treatment. Calcif Tissue Int,32:195-19.
    [144]Hou JC, Zernicke RF, Barnard RJ.1993. Effects of severe diabetes and insulin on the femoral neck of the immature rats. J Orthop Res,11:263-271.
    [145]Verhaeghe J, Suiker AM, Nyomba BL, Visser WJ, Einhorn TA, Dequek J, Bouillon R.1989. Bone mineral homeostasis in spontaneously diabetic BB rats. Ⅱ. Impaired bone turnover and decreased osteocalcin synthesis. Endocrinology,124:573-582.
    [146]Verhaeghe J, van Herck E, Visser WJ, Suiker AM, Thomasset M, Einhorn TA, Faierman TA, and Bouillon R.1990. Bone and mineral metabolism in BB rats with long-term diabetes. Decreased bone turnover and osteoporosis. Diabetes,39:477-482.
    [147]Verhaeghe J, Visser WJ, Einhorn TA, and Bouillon R.1990. Osteoporosis and diabetes: lessons from the diabetic BB rat. Horm Res,34:245-248.
    [148]Verhaeghe J, Suiker AM, Visser WJ, Van Herck E, Van Bree R, and Bouillon R.1992. The effects of systemic insulin, insulin-like growth factor-I and growth hormone on bone growth and turnover in spontaneously diabetic BB rats. J Endocrinol 143:485-492
    [149]Shires R, Teitelbaum SL, Bergfeld MA, Fallon MD, Slatopolsky E, and Avioli LV. (1981) The effect of streptozotocin-induced chronic diabetes mellitus on bone and mineral homeostasis in the rat. J Lab Clin Med,97:231-240.
    [150]Epstein S, Takizawa M, Stein B, Katz IA, Joffe Il, Romero DF, Liang XG, Li M, Ke HZ, Jee WS.1994. Effect of cyclosporine on bone mineral metabolism in experimental diabetes mellitus in the rat. J Bone Miner Res,9:557-566.
    [151]Verhaeghe J, Van Herck E, van Bree R, Moermans K, and Bouillon R.1997. Decreased osteoblast activity in spontaneously diabetic rats. In vivo studies on the pathogenesis. Endocrine,7:165-175.
    [152]Hou JC, Zernicke RF, Barnard RJ.1993. Effects of severe diabetes and insulin on the femoral neck of the immature rat. J Orthop Res.11:263-271.
    [153]Zhang Y, Cheng F, Li D, Wang Y, Zhang G, Liao W, Tang T, Huang Y, He W.2005. Investigation of elemental content distribution in femoral head slice with osteoporosis by SRXRF microprobe. Biol Trace Elem Res,103:177-186.
    [154]Abraham J, Grenon M, Sanchez HJ, Perez C, Barrea R.2005. A case study of elemental and structural composition of dental calculus during several stages of maturation using SRXRF. J Biomed Mater Res,75:623-628.
    [155]Shi JY, Chen YX, Huang YY, He W.2004. SRXRF microprobe as a technique for studying elements distribution in Elsholtzia splendens. Micron,35:557-564.
    [156]Beattie J, Avenell A.1992. Trace element nutrition and bone metabolism. Nutr Res Rev,5: 167-188.
    [157]Gonzalez-Reimers E, Duran-Castellon MC, Martin-Olivera R, Lopez-Lirola A, Santolaria-Fernandez F, Vega-Prieto MJ De la, Perez-Ramirez A, Garcia-Valdecasas Campelo E.2005. Effect of zinc supplementation on ethanol-mediated bone alterations. Food Chem Toxicol,43:1497-1505.
    [158]Seeman E.2003. Invited Review:Pathogenesis of osteoporosis. J. Appl. Physiol.,95: 2142-2151.
    [159]World Health Organization Prevention and Management of Osteoporosis, Technical Report Series, No.921, WHO Marketing and Dissemination, Geneva,2003.
    [160]Krakauer JC, McKenna MJ, Buderer NF, Rao DS, Whitehouse FW, Parfitt AM.1995. Bone loss and bone turnover in diabetes. Diabetes,44:775-782.
    [161]Kemink SA, Hermus AR, Swinkels LM, Lutterman JA, Smals AG.2000. Osteopenia in insulin-dependent diabetes mellitus; prevalence and aspects of pathophysiology. J. Endocrinol Invest,23:295-303.
    [162]Dominguez LJ, Muratore M, Quarta E, Zagone G, Barbagallo M.2004. Osteoporosis and diabetes. Reumatismo,56(4):235-41.
    [163]Schwartz AV.2003. Diabetes Mellitus:Does it Affect Bone? Calcif. Tissue Int.,73(6): 515-519.
    [164]Duarte VM, Ramos AM, Rezende LA, Macedo UB, Brandao-Neto J, Almeida MG, Rezende AA.2005. Osteopenia:a bone disorder associated with diabetes mellitus. J. Bone Miner. Metab.,23(1):58-68.
    [165]Herrero S, Calvo OM, Garcia-Moreno C, Martin E, San Roman JI, Martin M, Garcia-Talavera JR, Calvo JJ, Pino-Montes J.1998. Low bone density with normal bone turnover in ovariectomized and streptozotocin-induced diabetic rats. Calcif Tissue Int.,62: 260-265.
    [166]Schwartz AV, Sellmeyer DE, Ensrud KE, Cauley JA, Tabor HK, Schreiner PJ, Jamal SA, Black DM, Cummings SR.2001. Older women with diabetes have an increased risk of fracture:a prospective study. J. Clin. Endocrinol Metab.,86:32-38.
    [167]Forsen L, Meyer HE, Midthjell K, Edna TH.1999. Diabetes mellitus and the incidence of hip fracture:results from the Nord-Trondelag Health Survey. Diabetologia,42:920-925.
    [168]White CB, Turner NS, Lee GC, Haidukewych GJ.2003. Open ankle fractures in patients with diabetes mellitus. Clin. Orthop.,414:37-44.
    [169]Folk JW, Starr AJ, Early JS.1999.Early wound complications of operative treatment of calcaneus fractures:analysis of 190 fractures. J. Orthop. Trauma,13:369-372.
    [170]Pun KK, Lau P, Ho PW.198.9. The characterization, regulation, and function of insulin receptors on osteoblast-like clonal osteosarcoma cell line. J. Bone Miner. Res.,4:853-862.
    [171]Mishima N, Sahara N, Shirakawa M, Ozawa H.2002. Effect of streptozotocin-induced diabetes mellitus on alveolar bone deposition in the rat. Arch. Oral Biol.,47:843-849.
    [172]Glajchen N, Epstein S, Ismail F, Thomas S, Fallon M, Chakrabarti S.1988. Bone mineral metabolism in experimental diabetes mellitus:Osteocalcin as a measure of bone remodeling. Endocrinology,123:290-295.
    [173]Bouillon R.1991. Diabetic bone disease [editorial]. Calcif Tissue Int.,49:155-160.
    [174]Hashizume M Yamaguchi M.1993. Stimulatory effect of beta-alanyl-Lhistidinato zinc on cell proliferation is dependent on protein synthesis in osteoblastic MC3T3-E1 cells. Mol. Cell Biochem.,122:59-64.
    [175]Fei YR, Zhang M, Li M, Huang YY, He W, Ding WJ, Yang JH.2007. Element analysis in femur of diabetic osteoporosis model by SRXRF microprobe. Micron,38(6):637-642.
    [176]Takuya Hasegawa et al, Major-to-ultratrace element in bone-marrow fluid as determined by ICP-AES and ICP-MS, Analytical sciences vol.19 (2003).
    [177]Matsuura H, Hokura A, Katsuki F, Itoh A, Haraquchi H.2001. Element in black tea leaves by ICP-AES and ICP-MS with the acid of size exclusion chromatography. Analytical sciences,17:391-398.
    [178]Jasminka Z. Ilich JZ, Kerstetter JE.2000. Nutrition in bone health revisited:a story beyond calcium. J. Am. Coll Nutr.,19:715-737.
    [179]Basabe Tuero B, Mena Valverde MC, Faci Vega M, Aparicio Vizuete A, L6pez Sobaler AM, Ortega Anta RM.2004. The influence of calcium and phosphorus intake on bone mineral density in young women. Arch. Latinoam. Nutr.,54(2):203-208.
    [180]Zeni S, Weisstaub A.2003. Bone mass changes in vivo during the entire reproductive cycle in rats feeding different dietary calcium and calcium/phosphorus ratio content. Calcif Tissue Int.,73(6):594-600.
    [181]Albert F.2003. The role of dietary calcium in bone health. Proc. Nutr. Soc.,62(4):851-858.
    [182]Sasaki S.2006. Calcium, magnesium, and potassium as dietary nutrients. Clin. Calcium., 16(1):110-115.
    [183]Pointillart A, Gueguen L.1993. Meal-feeding and phosphorus ingestion influence calcium bioavailability evaluated by calcium balance and bone breaking strength in pigs. Bone Miner., 21(1):75-81.
    [184]Carpenter TO, Barton CN, Park YK.2000. Usual dietary magnesium intake in NHANES Ⅲ is associated with femoral bone mass. J. Bone Min. Res.,15[Suppl 1]:S292.
    [185]Kawaura A, Nishida Y, Takeda E.2005. Phosphorus intake and bone mineral density (BMD). Clin. Calcium,15(9):1501-1506.
    [186]Koshihara M, Katsumata S, Uehara M, Suzuki K.2005. Effects of dietary phosphorus intake on bone mineralization and calcium absorption in adult female rats. Biosci. Biotechnol Biochem.,69(5):1025-1028.
    [187]Heaney RP.2004. Phosphorus nutrition and the treatment of osteoporosis. Mayo. Clin. Proc., 79(1):91-97.
    [188]Tein MS, Breen SA, Loveday BE, Devlin H, Balment RJ, Boyd RD, Sibley CP, Garland HO. 1998. Bone mineral density and composition in rat pregnancy:effects of streptozotocin-induced diabetes mellitus and insulin replacement. Exp. Physiol.,83(2): 165-174.
    [189]Mamoru Nishimuta, Naoko Kodama, Eiko Morikuni, Yayoi H. Yoshioka, Hideaki Yamada, Hideaki Kitajima, Hidemaro Takeyama and Kazumasa Suzuki.2004. Balance of Magnesium Positively Correlates with That of Calcium. Journal of the American College of Nutrition, 23(6):768S-770S.
    [190]Fawcett WJ, Haxby EJ.1999. Male DA Magnesium:physiology and pharmacology. BJA, 83:302-320.
    [191]Hartwig A.2001. Role of magnesium in genomic stability. Mut. Res.,475:113-121.
    [192]Rude RK, Gruber HE, Norton HJ, Wei LY, Frausto A, Kilburn J.2006. Reduction of dietary magnesium by only 50% in the rat disrupts bone and mineral metabolism. Osteoporos Int., 17(7):1022-1032.
    [193]Matsuzaki H, Uehara M, Suzuki K.2005. Effect of dietary magnesium supplementation on bone loss in rats fed a high phosphorus diet. Magnes. Res.,18(2):91-96.
    [194]Simeckova A, Stolba P, Hatle K, Zamrazil V, Neradilova M.1990. The effect of streptozotocin-induced diabetes treated with insulin on the metabolism of calcium, magnesium and phosphorus. Vnitr. Lek.,36(6):526-530.
    [195]Fukuharu M, Sato J, Ohsawa I, Oshida Y, Nagasaki M, Nakai N, Shimomura Y, Hattori M, Tokudome S, Sato Y.2000. Additive effects of estrogen deficiency and diabetes on bone mineral density in rats. Diabetes Res Clin Pract.,48:1-8.
    [196]Ogata N, Chikazu D, Kubota N, Terauchi Y, Tobe K, Azuma Y, Ohta T, Kadowaki T, Nakamura K, and Kawaguchi H.2000. Insulin receptor substrate-1 in osteoblast is indispensable for maintaining bone turnover. J Clin Invest,105:935-943.
    [197]Thomas DM, Hards DK, Rogers SD, Ng KW, and Best JD. (1996) Insulin receptor expression in bone. J Bone Miner Res 11:1312-1320
    [198]Thomas DM UN, Hards DK, Quinn JM, Moseley JM, Findlay DM, Best JD.1998. Insulin receptor expression in primary and cultured osteoclast-like cells. Bone,23:181-186.
    [199]Gunczler P. LR, Paoli M., Martinis R., Villaroel O., Weisinger JR.2001. Decreased bone mineral density and bone formation markers shortly after diagnosis of clinical type 1 diabetes mellitus. J Pediatr Endocrinol Metab,14:525-528.
    [200]Chen Q KH, Kanatani M, Sugimoto T, Chihara K.2004. Testosterone increases osteoprotegerin mRNA expression in mouse osteoblast cells. Horm Metab Res,36:674-678.
    [201]Seftel A.2006. Male hypogonadism. Part Ⅱ:etiology, pathophysiology, and diagnosis. Int J Impot Res,18:223-228.
    [202]Diamond TH, Higano CS, Smith MR, Guise TA, Singer FR.2004. Osteoporosis in men with prostate carcinoma receiving androgen-deprivation therapy:recommendations for diagnosis and therapies. Cancer,100:892-899.
    [203]Vanderschueren D, Vandenput L, Boonen S, Van Herck E, Swinnen JV, Bouillon R.2000. An aged rat model of partial androgen deficiency:prevention of both loss of bone and lean body mass by low-dose androgen replacement. Endocrinology,141:1642-1647.
    [204]Guo N, Faller DV, Denis GV.2000. Activation induced nuclear translocation of RING3. J. Cell Sci., 113:3085-3091.
    [205]Kishi S, Segawa Y, Yamaquchi M.1994. Histomorphological confirmation of the preventive effect of beta-alanyl-L-histidinato zinc on bone loss in ovariectomized rats. Biol Pharm Bull,17(6):862-865.
    [206]Kishi S, Yamaquchi M.1994. Inhibitory effect of zinc compounds on osteoclast-like cell formation in mouse marrow cultures. Biochemical Pharmacology,48(6):1225-1230.
    [207]Yamaquchi M, Yamaquchi R.1986. Action of zinc on bone metabolism in rats. Increases in alkaline phosphatase activity and DNA content. Biochemical Pharmacology,35(5):773-777.
    [208]Itani O, Tsang R C.1996. Clinical chemistry:theory, analysis, and correlation. London:
    Mosby,528-524.
    [209]Calhoun N R, Smith J C, Becker K L.1974. The role of zinc in bone metabolism. Clin Orthop Relat Res,103:212-234.
    [210]Westmoreland N.1971. Connective tissue alterations in zinc deficiency. Fed Proc,30(3): 1001-1010.
    [211]Diaz-Gomez NM, Domenech E, Barroso F, Castells S, Cortabarria C, Jimenez A.2003. The effect of zinc supplementation on linear growth, body composition, and growth factors in preterm infants. Pediatrics, 111(5pt1):1002-1009.
    [212]Merialdi M, Caulfield L E, Zavaleta N, Figucroa A, Costigan KA, Dominici F, Dipietro JA. 2004. Randomized controlled trial of prenatal zinc supplementation and fetal bone growth. Am J Clin Nutr,79(5):826-830.
    [213]Gronholz MJ.2008. Prevention, diagnosis, and management of osteoporosis-related fracture: a multifactoral osteopathic approach. J. Am. Osteopath. Assoc.,108:575-585.
    [214]Doggrell S.2003. Present and future pharmacotherapy for osteoporosis. Drugs Today,39: 633-657.
    [215]Coldize GA.1997. Hormone replacement therapy increases the risk of breast cancer. Ann. NY Acad. Sci.,833:129-136.
    [216]Grady D, Herrington D, Bittner V, Blumenthal R, Davidson M, Hlatky M, Hsia J, Hulley S, Herd A, Khan S, Newby LK, Waters D, Vittinghoff E, Wenger N.2002. HERS research group. Cardiovascular disease outcomes during 6.8 years of hormone therapy. JAMA,288: 49-57.
    [217]Kohlstadt I.2006. Scientific Evidence for Musculoskeletal, Bariatric, and Sports Nutrition. Boca Raton, FL:CRC Press, pp.27-41.
    [218]Clarke BL, Khosla S,2008. Androgens and bone. Steroids,74:296-305.
    [219]Eyre LJ, Bland R, Bujalska IJ, Sheppard MC, Stewart PM, Hewison M.1998. Characterization of aromatase and 17-hydroxysteroid dchydrogenase expression in rat osteoblastic cells. J. Bone Miner. Res.,13:996-1004.
    [220]Shozu M, Simpson ER.1998. Aromatase expression of human osteoblast-like cells. Mol. Cell Endocrinol.,139:117-129.
    [221]Giustina A, Mazziotti G, Canalis E.2008. Growth hormone, insulin-like growth factors, and the skeleton. Endocr. Rev.,29:535-559.
    [222]Chiarelli F, Giannini C, Mohn A.2004. Growth, growth factors and diabetes. Eur. J. Endocrinol.,151:109-117.
    [223]Ueland T.2005. GH/IGF-I and bone resorption in vivo and in vitro. Eur. J. Endocrinol.,152:
    327-332.
    [224]Bikle D, Majumdar S, Laib A, Powell-Braxton L, Rosen C, Beamer W, Nauman E, Leary C, Halloran B.2001. The skeletal structure of IGF-I deficient mice. J. Bone Miner. Res.,16: 1320-1330.
    [225]Miyakoshi N, Kasukawa Y, Linkhart TA, Baylink DJ, Mohan S.2001. Evidence that anabolic effects of PTH on bone require IGF-I in growing mice. Endocrinology,142: 4349-4356.
    [226]Camacho-Hubner C, Woods KA, Miraki-Moud F, Hindsmarsh PC, Clark AJ, Hansson Y, Johnston A, Baxter RC, Savage MO.1999. Effects of recombinant hIGF-I therapy on the GH/IGF system of a patient with a partial IGF-I gene deletion. J. Clin. Endocrino. Metab.,84: 1611-1650.
    [227]Zhao G, Monier-Faugere MC, Langub MC, Geng Z, Nakayama T, Pike JW, Chernausek SD, Rosen CJ, Donahue LR, Malluche HH, Fagin JA, Clemens TL.2000. Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice:increased trabecular bone volume without increased osteoblast proliferation. Endocrinology,141: 2674-2682.
    [228]Jian GJ, Gronowicz G, Ledgard F, Clark SH, Lichtler AC, Kream BE.2000. Phenotypic characterization of transgenic mice with bone directed overexpression of IGF-I. J. Bone Miner. Res.,15:S157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700