钙调神经磷酸酶参与肺癌骨转移的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肺癌是发病率和死亡率都非常高的恶性肿瘤,导致肺癌患者死亡的主要原因是肺癌细胞的远处转移,骨骼是肺癌患者最常见的转移部位,约30%的肺癌患者会发生骨转移。肺癌骨转移可导致疼痛、骨折、脊髓压迫、截瘫、高钙血症等,严重影响着患者的生活质量。目前临床对于肺癌骨转移的治疗效果仍然不令人满意,需要研发新的治疗方法,肺癌骨转移机制研究是探索预防和治疗骨转移有效方法的关键。
     钙调神经磷酸酶(Calcineurin, CaN)是能够参与多种细胞功能调节的多功能信号酶。最近研究发现CaN参与了胰腺癌和结肠癌的形成,并且研究发现CaN具有致骨转移的潜能:对肿瘤细胞、破骨细胞和成骨细胞均有影响,而肿瘤骨转移的发生是这三种细胞相互作用的结果。因此,CaN可能在恶性肿瘤骨转移发生中发挥了重要作用。我们前期的研究结果发现钙调神经磷酸酶在骨转移小细胞肺癌细胞系SBC-5和非骨转移小细胞肺癌细胞系SBC-3中表达有明显差异。而此两种肺癌细胞有相同的遗传背景却有不同的骨转移潜能。由此推测该基因可能参与了肺癌骨转移的发生。本研究的目的是讨钙调神经磷酸酶在肺癌骨转移发生中可能的作用。本研究为所获国家自然科学基金课题的一部分。
     研究内容和结果如下:
     第一部分:CnAα在肺癌组织中的表达
     1.采用RT-PCR方法对发生骨转移肺癌组织和非骨转移肺癌组织钙调神经磷酸酶Aα同工酶(CnAα)mRNA水平的研究发现:与非骨转移肺癌组织相比,钙调神经磷酸酶Aα同工酶(CnAα)在发生骨转移的肺癌组织表达增高。
     2.通过免疫组织化学检测肺癌组织中CnAα的表达,CnAα在发生骨转移的小细胞肺癌组织中表达增强,且主要表达在肿瘤细胞的胞核中,而在非骨转移的小细胞肺癌组织主要表达在胞浆。
     第二部分: CnAα的表达及其对肺癌细胞增殖和侵袭的影响
     1.通过RT-PCR和Western blot鉴定SBC-5表达CnAα而SBC-3细胞中未发现CnAα的表达。
     2.为了进一步探讨钙调神经磷酸酶在肺癌骨转移中的作用和机制,我们通过稳定转染构建了稳定高表达外源性钙调神经磷酸酶的细胞系SBC-3/CnAα和空载体对照细胞系SBC-3/neo。
     3. MTT和软琼脂克隆形成实验提示CnAα提高了肺癌细胞的增殖能力。
     4.流式细胞仪检测细胞周期显示与对照细胞相比SBC-3/CnAα细胞在G1期显著减低,在S期比例显著升高。结果提示钙调神经磷酸酶分子能够提高细胞的增殖能力;流式细胞仪检测细胞凋亡结果显示与对照细胞SBC-3/neo相比,高表达钙调神经磷酸酶的细胞SBC-3/CnAα凋亡率显著降低。
     5.细胞迁移实验显示:与对照细胞相比,高表达钙调神经磷酸酶细胞的迁移能力显著增强;细胞的侵袭实验结果显示,高表达钙调神经磷酸酶的细胞侵袭能力显著增强。
     第三部分:利用NOD/SCID鼠探讨CnAα对肺癌骨转移的影响
     1.通过尾静脉注射肿瘤细胞SBC-3/CnAα和SBC-3/neo入NOD/SCID体内,每只NOD/SCID鼠注射2.0×106个肿瘤细胞,注射肿瘤细胞四周后,老鼠被通过注射戊巴比妥进行腹腔麻醉,然后拍摄X光片观察发现了骨转移发生。
     综上所述,肺癌组织标本CnAα在肺癌骨转移组显著高于肺癌非骨转移组,并且在骨转移肺癌组织肿瘤细胞主要分布在细胞核,而在非骨转移肺癌组织主要分布在细胞浆;体外是实验CnAα显著促进了肺癌细胞增殖,抑制了细胞的凋亡,并且CnAα显著增强肺癌细胞的迁移和侵袭能力;动物实验发现显著高表达CnAα稳定转染细胞(SBC-3/CnAα)发生了可见骨转移。研究提示,CnAα有促进肺癌骨转移的作用。
Lung cancer is the leading morbidity and mortality of malignance. Distant metastasis of lung cancer cells is the main cause of patient death. Bone is common site in lung cancer patients, and more than 30% patients will happen bone metastasis. Bone metastasis usually leads to pain, fracture, spinal compression, paraplegia and hypercalcinemia. These complications make life quality of patients very poor. Now, clinical treatment effect of bone metastasis still didn’t please patients.Therefore, effective therapeutic methods for bone metastasis of lung cancer are urgently needed. Understanding the mechanism of bone metastases is therefore critical for the design of effective strategies to prevent and treat bone metastasis.
     Calcineurin(CaN) is multifunctional signal enzyme which involves in regulating function of various cells. A novel role for calcineurin (CaN) has been reported recently regarding the oncogenic potential in pancreatic and colorectal cancer. Recently, an emerging role for CaN is provided with bone metastasis potential: it affects tumor cells, osteoclast and osteoblast. It is the interaction of these three kinds of cells leading to bone metastasis. So, CaN may play important roles in bone metastasis of different human malignancies. Our study previously demonstrated that the distribution of CaN was significantly different between SBC-5 cells which can lead to bone metastasis and SBC-3 cells which can not lead to bone metastasis. The SBC-5 cells and SBC-3 cells have similar genetic background but different potential of bone metastasis. Thus, we speculated that CaN might be responsible for bone metastasis in small cell lung cancer.The aim of this study was to investigate the putative causal role CaN could play in the development of lung cancer with bone metastases. This study is a part of subject financed by National Natural Science Foundation of China.
     The objectives and results of the study are as follows:
     Part one: CnAαexpression in lung cancer tissues.
     1. CnAαwas overexpressed in small cell lung cancer tissue with bone metastasis as compared to small cell lung cancer with non-bone metastasis control samples by RT-PCR.
     2. We performed immunostaining on small cell lung cancer tissue sections. Strong nuclear staining of tumor cells was observed in small cell lung cancer tissues with bone metastasis. Conversely, cytoplasm staining of tumor cells was observed in small cell lung cancer tissues with non-bone metastasis.
     Part two: CnAαexpression in lung cancer cells and its effects on biological behavior of lung cancer cell in vitro.
     1. CnAαwas expressed in small cell lung cancer with bone metastasis cell line (SBC-5), but not in small cell lung cancer with non-bone metastasis cell line (SBC-3) by RT-PCR and Western blot.
     2. In order to further illustrate the function and mechanism of CnAαon bone metastasis, we established two clones, SBC-3/CnAαwhich expressed exogenous CnAαand SBC-3/neo as empty vector (control) by stable transfection.
     3. MTT assay and soft agar colony formation assay indicate that CnAαenhanced proliferation ability of lung cancer cells.
     4. Flow cytometry indicated SBC-3/CnAαcells had a relative lower proportion in the G1 phase and a higher proportion in S phase, as compared to SBC-3/neo cells. Results indicated that CnAαincrease cell proliferation ability. Cell apoptosis was detected by flow cytometry. The number of apoptotic cells of SBC-3/CnAαwas significantly lower compared to SBC-3/neo cells
     5. Cell migration assay indicated that CnAα-transfected cells increased migration compared with control-transfected cells. Cell invasion assay indicated CnAαtransfectants increased invasion compared with control transfectants.
     Part three: CnAαeffect on lung cancer with bone metastasis was examined by NOD/SCID mice.
     1. NOD/SCID mice were inoculated with SBC-3/CnAαand SBC-3/neo, 2.0×106 mouse into the tail vein. Four weeks after tumor cell inoculation, the mice were anesthetized by i.p. injection of pentobarbital and X-ray photographs of the mice were taken to determine bone metastasis. Bone metastasis was discovered.
     In conclusion, CnAαwas overexpressed in lung cancer tissues with bone metastasis as compared to tumors with non-bone metastases. Strong nuclear staining of tumor cells was observed in small cell lung cancer tissues with bone metastasis. Conversely, cytoplasmic staining of tumor cells was observed in small cell lung cancer tissues with non-bone metastasis. In vitro it was demonstrated that the CnAαgene obviously promoted cell proliferation and inhibited cell apoptosis. Transfection with the CnAαgene promoted cell migration and invasion. Animal experiment found bone metastasis by intravenous injection of SBC-3/CnAαcells in a mouse model. The study indicated that CnAαpromoted generation of bone metastasis.
引文
[1] Shields PG, Hards CC. Cancer risk and low-penetrance susceptipility genes in gene environment interaction [J]. J Clin Oncol,2008,18(11):2309-2315.
    [2] Jenal A, Siegel R, Ward E, et a1.Cancer statistics,2008[J].CA Cancer J Clin2008,58(2):71-96
    [3] Wang ZJ. Epidemiology of lung cancer[J]. CHINA J CANCER PREV TREAT.2002,9(1):1-5.
    [4] Wu HS, Li AD, Orlando VIEIRA. Survey in prevention and treatment about lung cancer in Macao [J].Chinese Journal of Cancer,2000,22(1):83-84.
    [5] Sellers TA,Elston RC, Stewart C, et al. Familial risk of cancer among randomly selected cancer probands[J]. Genet Epidemiol, 1988,5(6):381-391.
    [6] Amos CI, Caponaso NE, Weston A. Host factors in lung cancer risk: a review of interdisciplinary studies[J]. Cancer Epidemiol Biomarkers Prev. 1992,1(6):505-513.
    [7] De Bruyn PP. Structural substrates of bone marrow function. Seminars in Hematology. 1981,18(3):179-193.
    [8] Yoneda T. Arterial microvascularization and breast cancer colonization in bone. Histology and Histopathology. 1997,12(4):1145-1149.
    [9] Mastro AM, Gay CV, Welch DR. The skeleton as a unique environment for breast cancer cells. Clin Exp Metastasis. 2003, 20: 275-284.
    [10] Fidler IJ. Critical factors in the biology of human cancer metastasis. twenty-eighth G.H.A. Clowes memorial award lecture. Cancer Research.1990,50(19):6130-6138.
    [11] Liotta LA. Cancer cell invasion and metastasis. Scientific American. 1992,266(2):54-59, 62-63.
    [12] Albelda SM, Buck CA. Integrins and other cell adhesion molecules. FASEBJournal.1990,4:2868-2880.
    [13] Yoneda T, Hiraga T. Crosstalk between cancer cells and bone microenvironment in bone metastasis. Biochem Biophys Res Commun. 2005, 328:679-687.
    [14] Phadke PA, Mercer RR, Harms JF, et al.: Kinetics of metastatic breast cancer cell trafficking in bone. Clin CancerRes. 2006, 12: 1431-1440.
    [15] Schneider A, Kalikin LM, Mattos AC, et al. Bone turnover mediates prefert- ial localization of prostate cancer in the skeleton. Endocrinology. 2005,146:1727- 1736.
    [16] Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate thepre-metastatic niche. Nature. 2005, 438:820-827.
    [17] Pirtskhalaishvili G, Nelson JB. Endothelium-derived factors as paracrine mediators of prostate cancer progression. Prostate. 2000, 44:77-87.
    [18] Zhang JH, Wang J, Tang J, et al. Bone sialoproteinpromotes bone metastasis of a non-bone-seeking clone of human breast cancer cells. Anticancer Res. 2004, 24:1361-1368.
    [19] Stewart DA, Cooper CR, Sikes RA: Changes in extracellular matrix (ECM) and ECM-associated proteins in the metastatic progression of prostate cancer. Reprod Biol Endocrinol 2004,2:2.
    [20] Hauschka PV, Mavrakos AE, Iafrati MD, et al. Growth factors in bone matrix. Isolation of multiple types by affinity chromatography on heparin- sepharose. J Biol Chem. 1986, 261:12665-12674.
    [21] Feeley BT, Gamradt SC, Hsu WK, et al. Influence of BMPs on theformation ofosteoblastic lesions in metastatic prostate cancer. J BoneMiner Res. 2005, 20:2189-2199.
    [22] Guise TA, Kozlow WM, Heras-Herzig A, et al. Molecular mechanisms of breast cancer metastases to bone. Clin Breast Cancer. 2005,Suppl 2:S46-S53.
    [23] Yin JJ, Pollock CB, Kelly K. Mechanisms of cancer metastasis to the bone. Cell Res.2000, 15:57-62.
    [24] Winslow MM, Pan M, Starbuck M, et al. Calcineurin/NFAT Signaling in Os- teoblasts Regulates Bone Mass[J].Developmental Cell, 2006,10:771-782.
    [25] Boyce BF, Yoneda T, Guise TA. Factors regulating the growth of Metastatic cancer in bone [J]. Endocrine-Related Cancer. 1999,6 (3) 333–347
    [26] Roodman GD. Mechanisms of bone metastasis. N Engl J Med.2004, 350(16): 1655 -1664.
    [27] Lee Y, Schwarz E, Davies M, et al. Differences in the cytokine profiles associated with prostate cancer cell induced osteoblastic and osteolytic lesions in bone. J Orthop Res.2006,21:62-72.
    [28] Roodman GD. Regulation of osteoclast differentiation. Ann NY Acad Sci. 2006,1068:100-109.
    [29] Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature .2003,423:337-342.
    [30] Hofbauer LC, Neubauer A, Heufelder AE. Receptor activator of nuclear factor-kappaB ligand and osteoprotegerin: potential implications for the pathogenesis and treatment of malignant bone diseases. Cancer.2001,92:460-470.
    [31] Wittrant Y, Theoleyre S, Chipoy C, et al. RANKL/RANK/OPG: new therapeutic targets in bone tumours and associated osteolysis. Biochim Biophys Acta . 2004,1704:49-57.
    [32] Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine thatregulates osteoclast differentiation and activation. Cell. 1998,93:165-176.
    [33] Ikeda T, Kasai M, Utsuyama M, et al. Determination of three isoforms of the receptor activator of nuclear factor kappaB ligand and their differential expression in bone and thymus. Endocrinology.2001,142:1419-1426.
    [34] Anderson DM, Maraskovsky E, Billingsley WL, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature.1997,390:175-179.
    [35] Boyce BF, Yamashita T, Yao Z, et al. Roles for NF-kappaB and c-Fos in osteoclasts. J Bone Miner Metab.2005,Suppl:11-15.
    [36] Simonet WS, Lacey DL, Dunstan CR, et al. Osteoprotegerin:a novel secreted protein involved in the regulation of bone density. Cell. 1997,89:309-319.
    [37] Yasuda H, Shima N, Nakagawa N, et al.Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA .1998,95:3597-3602.
    [38] Guise TA, Yin JJ, Taylor SD, et al. Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest .1996,98:1544-1549.
    [39] Zhang J, Dai J, Yao Z, et al. Soluble receptor activator of nuclear factor kappaB Fc diminishes prostate cancer progression in bone. Cancer Res. 2003,63:7883-7890.
    [40] Huang L, Cheng YY, Chow LT, et al. Tumour cells produce receptor activator of NF-kappaB ligand (RANKL) in skeletal metastases. J Clin Pathol 2002, 55:877-878.
    [41] Bendre MS, Margulies AG, Walser B, et al. Tumor-derived interleukin-8 stimulates osteolysis independent of the receptor activator of nuclear factor-kappaB ligand pathway. Cancer Res.2005,65:11001-11009.
    [42] Kudo O, Sabokbar A, Pocock A, et al.Interleukin-6 and interleukin-11 support human osteoclast formation by a RANKL-independent mechanism. Bone.2003,32:1-7.
    [43] Itonaga I, Sabokbar A, Sun SG, et al.Transforming growth factor-beta induc- es osteoclast formation in the absence of RANKL. Bone.2004,34:57-64.
    [44] Blanchard F, Duplomb L, Baud’huin M, et al. The dual role of IL-6-type cytokines on bone remodeling and bone tumors. Cytokine Growth Factor Rev. 2009;20:19–28.
    [45] O’Brien CA, Gubrij I, Lin SC, et al. STAT3 activation in stromal/osteoblastic cells is required for induction of the receptor activator of NF-kappaB ligand and stimulation of osteoclastogenesis by gp130-utilizing cytokines or interleukin-1 but not 1, 25-dihydroxyvitamin D3 or parathyroid hormone. J Biol Chem. 1999;274:19301–8.
    [46] Guillen C, de Gortazar AR, Esbrit P. The interleukin-6/soluble interleukin-6 receptor system induces parathyroid hormone-related protein in human osteoblastic cells. Calcif Tissue Int. 2004;75:153–9.
    [47] Erices A, Conget P, Rojas C, et al. Gp130 activation by soluble interleukin-6 receptor/interleukin-6 enhances osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells. Exp Cell Res. 2002;280:24–32.
    [48] Kim K, Lee J, Kim JH, et al. Protein inhibitor of activated STAT-3 modulates osteoclastogenesis by down-regulation of NFATc1 and osteoclast-associated receptor. J Immunol. 2007;178:5588–94.
    [49] Bommert K, Bargou RC, Stuhmer T. Signalling and survival pathways in multiple myeloma. Eur J Cancer. 2006;42:1574–80.)
    [50] Itoh S, Udagawa N, Takahashi N, et al. A critical role for interleukin-6 family-mediated Stat3 activation in osteoblast differentiation and bone formation.Bone. 2006;39:505–12.
    [51] Gunn WG, Conley A, Deininger L, et al. A crosstalk between myeloma cells and marrow stromal cells stimulates production of DKK1 and interleukin-6: a potential role in the development of lytic bone disease and tumor progression in multiple myeloma. Stem Cells. 2006;24:986–91.
    [52] Legendre F, Dudhia J, Pujol JP, Bogdanowicz P. JAK/STAT but not ERK1/ERK2 pathway mediates interleukin (IL)-6/soluble IL-6R down-regulation of Type II collagen, aggrecan core, and link protein transcription in articular chondrocytes. Association with a down-regulation of SOX9 expression. J Biol Chem. 2003;278:2903–12.
    [53] Mundy GR.Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer.2002;2:584-593.
    [54] Loberg RD, Logothetis CJ, Keller ET, et al. Pathogenesis and treatment of prostate cancer bone metastases: targeting the lethal phenotype. J Clin Oncol. 2005;23:8232-8241.
    [55] Hall CL, Kang S, MacDougald OA,et al. Role of Wnts in prostate cancer bone metastases. Journal of Cellular Biochemistry.2006;97(4):661–672
    [56] Nelson JB, Nguyen SH, Wu-Wong JR, et al. New bone formation in an osteoblastic tumor model is increased by endothelin-1 overexpression and decreased by endothelin A receptor blockade. Urology.1999; 53:1063-1069.
    [57] Bodine PV, Komm BS.Wnt signaling and osteoblastogenesis.Rev Endocr Metab Disord. 2006;7:33-39.
    [58] Chen G, Shukeir N, Potti A, et al. Up-regulation of Wnt-1 and beta-catenin production in patients with advanced metastatic prostate carcinoma: potential pathogenetic and prognostic implications. Cancer. 2004;101:1345-1356.
    [59] Krishnan V, Bryant HU, Macdougald OA. Regulation of bone mass by Wnt signaling. J Clin Invest. 2006;116:1202–9.
    [60] Glass DA, Bialek P, Ahn JD, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell. 2005;8:751–64.
    [61] Sun P, Xiong H, Kim TH, et al. Positive inter-regulation between beta-catenin/T cell factor-4 signaling and endothelin- 1 signaling potentiates proliferation and survival of prostate cancer cells. Mol Pharmacol. 2006;69:520–31.
    [62] Komori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89:755–64.
    [63] Tian E, Zhan F, Walker R, et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med. 2003;349:2483–94.
    [64] Hall CL, Bafico A, Dai J, et al. Prostate cancer cells promote osteoblastic bone metastases through Wnts. Cancer Res. 2005;65:7554–60.
    [65] Dai J,Hall CL, Escara-Wilke J,et al. Prostate Cancer Induces Bone Metastasis through Wnt-Induced Bone Morphogenetic Protein-Dependent and Independent Mechanisms. Cancer Res. 2008;68(14):5785–94
    [66] Jung K, Stephan C, Semjonow A, et al. Serum osteoprotegerin and receptor activator of nuclear factor-kappa B ligand as indicators of disturbed osteoclastogenesisin patients with prostate cancer. J Urol. 2003;170:2302–5.
    [67] Corey E, Brown LG, Kiefer JA, et al. Osteoprotegerin in prostate cancer bone metastasis. Cancer Res. 2005;65:1710–8.
    [68] Yin JJ, Mohammad KS, Kakonen SM, et al. A causal role for endothelin-1 in the pathogenesis of osteoblastic bone metastases. Proc Natl Acad Sci USA.2003;100: 10954-10959.
    [69] Nelson JB: Endothelin receptor antagonists. World J Urol.2005;23:19-27.
    [60] Stern PH, Tatrai A, Semler DE, et al. Endothelin receptors, second messengers, and actions in bone. J Nutr. 1995;Suppl:2028S-2032S.
    [70] Stern PH, Tatrai A, Semler DE, et al. Endothelin receptors, second messengers, and actions in bone. J Nutr. 1995;Suppl:2028S-2032S.
    [71] Clines GA, Mohammad KS, Bao Y, et al. Dickkopf homolog 1mediates endothelin-1-stimulated new bone formation. Mol Endocrinol. 2007;21:486–98.
    [72] Nelson JB, Hedican SP, George DJ, et al. Identification of endothelin-1 in the pathophysiology of metastatic adenocarcinoma of the prostate. Nat Med. 1995;1:944–9.
    [73] Yin JJ, Mohammad KS, Kakonen SM, et al. A causal role for endothelin-1 in the pathogenesis of osteoblastic bone metastases.Proc Natl Acad Sci. U S A 2003;100:10954–9.
    [74] Granchi S, Brocchi S, Bonaccorsi L, et al. Endothelin-1 production by prostate cancer cell lines is up-regulated by factors involved in cancer progression and down-regulated by androgens.Prostate. 2001;49:267–77.
    [75] Chang H, Brown CW, Matzuk MM. Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocrine Reviews.2002; 23:787-823.
    [76] Kawabata M, Imamura T, Miyazono K. Signal transduction by bone morphogenetic proteins. Cytokine Growth Factor Rev. 1998;9(1):49-61.
    [77] Israel DI, Nove J, Kerns KM, et al. Heterodimeric bone morphogenetic proteins show enhanced activity in vitro and in vivo. Growth Factors.1996; 13:291-300.
    [78] Aono A, Hazama M, Notoya K, et al. Potent ectopic bone-inducing activity of bone morphogenetic protein-4/7 heterodimer. Biochemical and Biophysical Research Communications.1995;210:670-677.
    [79] Zhu W, Kim J, Cheng C, et al. Noggin regulation of bone morphogenetic protein (BMP) 2/7 heterodimer activity in vitro. Bone. 2006;39:61-71.
    [80] Reddi AH. Bone morphogenetic proteins: an unconventional approach to isolation of first mammalian morphogens. Cytokine Growth Factor Reviews. 1997;8:11-20.
    [81] Wozney JM, Rosen V. Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair. Clinical Orthopaedics and Related Research.1998; (346):26-37.
    [82] Wozney JM. Overview of bone morphogenetic proteins. Spine.2002;27: S2-8.
    [83] Zhao G. Consequences of knocking out BMP signaling in the mouse. Genesis. 2003;35:43–56.
    [84] Lieberman JR, Daluiski A, Einhorn TA.The role of growth factors in the repair of bone. Biology and clinical applications. J Bone Joint Surg Am. 2002; 84-A:1032-1044.
    [85] Bentley H, Hamdy FC, Hart KA, et al. Expression of bone morphogenetic proteins in human prostatic adenocarcinoma and benign prostatic hyperplasia. Br J Cancer. 1992;66:1159-1163.
    [86] Feeley BT, Liu NQ, Conduah AH, et al. Mixed metastatic lung cancer lesions in bone are inhibited by noggin overexpression and RANK-Fc administration. J Bone Miner Res. 2006;21:1571-1580.
    [87] Brubaker KD, Corey E, Brown LG, et al. Bone morphogenetic proteinsignaling in prostate cancer cell lines. J Cell Biochem. 2004;91:151-160.
    [88] Masuda H, Fukabori Y, Nakano K, et al. Increased expression of bone morphogenetic protein-7 in bone metastatic prostate cancer. Prostate. 2003;54:268-274.
    [89] Bobinac D, Maric I, Zoricic S, et al. Expression of bone morphogenetic proteins in human metastatic prostate and breast cancer. Croat Med J. 2005; 46:389-396.
    [90] Alarmo EL, Korhonen T, Kuukasjarvi T, et al. Bone morphogenetic protein 7 expression associates with bone metastasis in breast carcinomas. Annals of Oncology.2008;19:308-314.
    [91] Bunyaratavej P, Hullinger TG, Somerman MJ. Bone morphogenetic proteins secreted by breast cancer cells upregulate bone sialoprotein expression in preosteoblast cells. Experimental Cell Research.2000;260:324-333.
    [92] Roland SI. Calcium studies in ten cases of osteoblastic prostatic metastasis. J Urol.1958;79:339-342.
    [93] Whang PG, Schwarz EM, Gamradt SC, et al. The effects of RANK blockade and osteoclast depletion in a model of pure osteoblastic prostate cancer metastasis in bone. J Orthop Res. 2005;23:1475-1483.
    [94] Kiefer JA, Vessella RL, Quinn JE, et al.The effect of osteoprotegerin administration on the intra-tibial growth of the osteoblastic LuCaP 23.1 prostate cancer xenograft. Clin Exp Metastasis.2004;21:381-387.
    [95] Takayanagi H, Kim S, Koga T, et al. Induction and Activation of the Transcr- iption Factor NFATc1(NFAT2)Integrate RANKL Signaling in Terminal Different- iation of Osteoclasts[J]. Developmental Cell.2002;3:889-901.
    [96] Ito A, Hashimoto T, Hirai M, et al. The complete primary structure of calci-neurin A, a calmodulin binding protein homologous with protein phosphatases 1 and 2A[J]. Biochem Biophys Res Commun.1989;163:1492–1497.
    [97] Kuno T, Takeda T, Hirai M, et al. Evidence for a second isoform of the cata- lytic subunit of calmodulin-dependent protein phosphatase 2(calcineurin A)[J].B- iochem Biophys Res Commun.1989;163:1492-1497.
    [98] Muramatsu T, Giri P. R, Higuchi S, et al. Molecular cloning of a calmodul- in-dependent phosphosphatase from murine testis: identification of a developen- tally expressed nonneural isoenzyme[J]. Proc Natl Acad Sci.USA 1992;89:529- 533.
    [99] Chang C. D, Mukai H, Kuno T, et al. cDNA cloning of an alternatively spli- ced isoform of the regulatory subunit of Ca2+/calmodulin-dependent proteinphos- phatase (calcineurin Ba2)[J]. Biochim Biophys Acta. 1994;1217:174–180.
    [100] Mukai H, Chang CD, Tanaka H, et al. cDNA cloning of a novel testis-spec- ific calcineurin B-like protein[J]. Biochem Biophys Res Commun.1991;179: 1325–1330.
    [101] Winslow MM, Pan M, Starbuck M, et al. Calcineurin/NFAT Signaling in Osteoblasts Regulates Bone Mass[J].Developmental Cell.2006;10:771-782.
    [102] Takayanagi H, Kim S, Koga T, et al. Induction and Activation of the Trans- cription Factor NFATc1(NFAT2)Integrate RANKL Signaling in Terminal Differ- entiation of Osteoclasts[J]. Developmental Cell.2002;3:889-901.
    [103] Teitelbaum S.L. Bone resorption by osteoclasts. Science. 2000;289:1504–1508.
    [104] Tondravi M.M, McKercher S.R, Anderson K, et al. Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Nature.1997; 386:81–84.
    [105] Weilbaecher K.N, Motyckova G, Huber W.E, et al. Linkage of M-CSF sig-naling to Mitf, TFE3,and the osteoclast defect in Mitfmi/mi mice. Mol. Cell.2001;8:749–758.
    [106] McGill G.G, Horstmann M, Widlund H.R, et al. Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell.2002;109:707–718.
    [107] Grigoriadis A.E, Wang Z.Q, Cecchini M.G, et al. c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling.Science.2002; 266:443–448.
    [108] Franzoso G, Carlson L, Xing L, et al. Requirement forNF-κB in osteoclast and B-cell development.Genes Dev. 1997;11:3482–3496.
    [109] Hirotani H, Tuohy NA, Woo JT, et al. The Calcineurin/Nuclear Factor of Activated T Cells Signaling Pathway Regulates Osteoclastogenesis in RAW-264. 7 Cells[J]. The Journal of Chemistry. 2004;279(14):13984-13992.
    [110] Awumey EM, Moong BS, Sodam BR, et al. Molecular and Functional Ev- idence for Calcineurin-Aαandβisoforms in the Osteoclast; Novel Insights into Cyclosporin A Action on Bone Resorption[J]. Biochemical and Biophysical Res- earch Commnication. 1999;254:248-252.
    [111] Sun L, Peng YZ, Zaidi N, et al. Evidence that calcineurin is required for the genesis of bone-resorbing osteoclasts[J]. Am J Physiol Renal Physiol.2006; 292:F285-F291.
    [112] Sun L, Moonga BS, Lu M, et al. Molecular cloning, expression, and func- tion of osteoclastic calcineurin Aα[J].Am J Physiol Physiol.2003;285:F575-F583.
    [113] Sun L, Blair HC, Peng YZ, et al. Calcineurin regulates bone formation by the osteoblast[J]. PNAS.2005;102(47):17130-17135.
    [114] Winslow MM, Pan M, Starbuck M, et al. Calcineurin/NFAT Signaling In Osteoblasts Regulates Bone Mass[J]. Developmental Cell. 2006;10:771-782.
    [115] Stern PH. The Calcineurin-NFAT Pathway and Bone: Intriguing New Fin- dings[J]. Molecular interventions. 2006;6(4):193-196.
    [116] Koga T, Matsui Y, Asagiri M, et al. NFAT and Osterix cooperatively reg- ulate bone formation[J]. Nat. Med.2005;11:880–885.
    [117] Sant CV, Wang G, Anderson MG, et al. Endothelin signaling in osteoblas- ts:global genome view and implication of the calcineurin/NFAT pathway [J]. Mol Cancer Ther,.2007;6(1):253-261.
    [118] Yeo H, Beck LH, Thompson SR, et al. Conditional Disruption of Calcineu- rin B1 in Osteoblasts Increases Bone Formation and Reduces Bone Resorption[J]. The Journal of Biological Chemistry. 2007;282(48):35318-35327.
    [119] Buchholz M, Ellenrieder V. An Emerging Role forCa2+/Calcineurin/NFAT Signaling in Cancerogenesis[J]. Cell Cycle.2007;6(1): 16-19.
    [120] Buchholz M, Schatz A, Wagner M, et al. Overexpression of c-myc in pancr- eatic cancer caused by ectopic activeation of NFATc1 and the Ca2+/calcineurin signaling pathway[J]. The EMBO Journal.2006;25(15):3714-3724.
    [121] Medyouf H, Alcalde H, Berthier C, et al. Targeting calcineurin Activation as a therapeutic strategy for T-cell acute lymphoblastic leukemia [J].Nature Medicine, 2007, 13(6):736-741.
    [122] Müller MR, Rao A. Linking calcineurin activity to leukemogenesis[J]. Nature Medicine. 2007;13(6):669-671.
    [123] Duque J, Fresno M, Iniguez MA. Expression and function of the nuclear factor of activated T cells in colon carcinoma cells: Involvement in the regulation of cyclooxygenase-2[J]. J Biol Chem.2005;280:8686-8693.
    [124] Yoeli-Lerner M, Yiu GK, Rabinovitz I, et al. Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT[J].Mol Cell. 2005;20:539-550.
    [125] Yamamoto M, Suzuki Y, Kihira H, et al. Expressions of four major protein Ser/Thr phosphatases in human primary leukemic cells[J]. Leukemia. 1999;13(4):595-600.
    [126] Eckstein LA, Van Quill KR, Bui SK, et al. Cyclosporin A Inhibits Calcin- eurin / Nuclear Factor of Activated T-Cells Signaling and Induces Apoptosis in Retinoblastoma Cells[J]. IOVS. 2005;46(3):782-790.
    [127] Wang YL, Wang Y, Tong L, et al. Overexpression of calcineurin B subu- nit(CnB) enhances the oncogenic potential of HEK293 cells[J]. Cancer Sci.2008;99(6):1100-8
    [128] Grimaud E, Soubigou L, Couillaud S, et al.Receptor activator of nuclear factor kappaB ligand (RANKL)/osteoprotegerin (OPG) ratio is increased in severe osteolysis. Am J Pathol. 2003;163:2021-2031.
    [129] Body JJ, Greipp P, Coleman RE, et al. A phase I study of AMGN-0007, a recombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases. Cancer. 2003;Suppl:887-892.
    [130] Neville-Webbe HL, Cross NA, Eaton CL, et al. Osteoprotegerin (OPG) produced by bone marrow stromal cells protects breast cancer cells from TRAIL-induced apoptosis. Breast Cancer Res Treat. 2004;86:269-279.
    [131] Abrahamsen B, Teng AY.Technology evaluation: denosumab, Amgen. Curr Opin Mol Ther. 2005;7:604-610.
    [132] Body JJ, Facon T, Coleman RE, et al. A study of the biological receptor activator of nuclear factor-kappaB ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer. Clin Cancer Res. 2006; 12:1221-1228.
    [133] Carducci MA, Jimeno A. Targeting bone metastasis in prostate cancer withendothelin receptor antagonists. Clin Cancer Res. 2006;12:6296s-6300s.
    [134] Murphy G. Atrasentan for metastatic hormone refractory prostate cancer. Issues Emerg Health Technol. 2005;77:1-4.
    [135] Yoneda T, Sasaki A, Dunstan C, et al. Inhibition of osteolytic bone metastasis of breast cancer by combined treatment with the bisphosphonate ibandronate and tissue inhibitor of the matrix metalloproteinase-2. J Clin Invest. 1997;99:2509-2517.
    [136] Dunehoo AL, Anderson M, Majumdar S, et al. Cell adhesion molecules for targeted drug delivery. J Pharm Sci. 2006; 95:1856-1872.
    [137] Harms JF, Welch DR, Samant RS, et al. A small molecule antagonist of the alpha(v)beta3 integrin suppresses MDA-MB-435 skeletal metastasis. Clin Exp Metastasis.2004;21:119-128.
    [138] Kang Y, Siegel PM, Shu W, et al.A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003;3:537-549.
    [139] Smid M, Wang Y, Klijn JG, et al. Genes associated with breast cancer metastatic to bone. J Clin Oncol. 2006;24:2261-2267.
    [140] van‘t Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415:530-536.
    [141] Kominsky SL, Davidson NE. A‘bone’fide predictor of metastasis? Predicting breast cancer metastasis to bone. J Clin Oncol. 2006;24:2227-2229.
    [142] Cui R, Takahashi F, Ohashi R, et al. Abrogation of the interaction between osteopontin andαvβ3 integrin reduces tumor growth of human lung cancer cells in mice. Lung Cancer. 2007; 57: 302-310.
    [143] Ogino H, Yano S, Kakiuchi S, et al. Follistatin Suppresses the Production of Experimental Multiple-Organ Metastasis by Small Cell Lung Cancer Cells in Natural Killer Cell-Depleted SCID Mice. Clin Cancer Res. 2008; 14(3):660-667
    [144] Liu J, Farmer JD Jr, Lane WS, et al. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. 1991; 66:807-815
    [145] McCaffrey PG, Perrino BA, Soderling TR. NFATp, a T lymphocyte DNA- binding protein that is a target for calcineurin and immunosuppressive drugs. J boil Chem.1993;268:3747-3752.
    [146] Aperia A, Ibarra F, Svensson LB, et al. Calcineurin mediates alpha-adrenergic stimulation of Na+, K+-ATPase activity in renal tubule cells. Proc natl Acad Sci. 1992;89:7394-7397.
    [147] Luan S, Li W, Rusnak F, et al. Immunosuppressants implicate protein phosphatase regulation of K+ channels in guard cells. Proc natl Acad Sci. 1993;90:2202-2206
    [148] Al Daraji WI, Grant KR, Ryan K, et al. Localization of calcineurin/NFAT in human skin and psoriasis and inhibition of calcineurin/NFAT activation in human keratinocytes by cyclosporin A. J Invest Dermatol. 2002; 118:779–788
    [149] Klee CB, Krinks MH. Purification of cyclic 3', 5'-nucleotide phosphodiesterase inhibitory protein by affinity chromatography on activator protein coupled to Sepharose. Biochemistry.1978; 17(1):120-126.
    [150] Giri PR, Marietta CA, Higuchi S, et al. Molecular and phylogenetic analysis of calmodulin-dependent protein phosphatase (calcineurin) catalytic subunit genes. DNA Cell Biol. 1992; 11(5):415-24
    [151] Yokoyama N, Furuyama S, Wang JH. Demonstration of Calmodulin- stimulated Phosphatase Isozymes by Monoclonal Antibodies. The Journal Of Biolocical Chemistry.1990; 265(14):8170-8175
    [152] Muramatsu T, Giri PR, Higuchi S, et al. Molecular cloning of a calmodulin-dependent phosphatase from murine testis: Identification of a developmentally expressed nonneural isoenzyme. Proc Nati Acad Sci USA.1992;89:529-533.
    [153] Usuda N, Arai H, Sasaki H, et al. Differential Subcellular Localization of Neural Isoforms of the Catalytic Subunit of Calmodulin-dependent Protein Phosphatase (Calcineurin) in Central Nervous System Neurons: Immunohistochemistry on Formalin-fixed Paraffin Sections Employing Antigen Retrieval by Microwave Irradiation. The Journal of Histochemistry and Cytochktry. 1996; 44(1):13-18.
    [154] Al-Daraji WI, Grant KR, Ryan K, et al. Cyclosporine A inhibits colorectal cancer proliferation probably by regulating expression levels of c-Myc, p21WAF1/CIP1 and proliferating cell nuclear antigen. Cancer Letters.2009; 285:66–72.
    [155] Terada N, Lucas JJ, Gelfand EW. Differential regulation of the tumor suppressor molecules, retinoblastoma susceptibility gene product (Rb) and p53, during cell cycle progression of normal human T cells. J Immunol. 1991;147: 698–704
    [156] Tomono M,Toyoshima K, Ito M, et al. Inhibitors of calcineurin block expression of cyclins A and E induced by fibroblast growth factor in Swiss 3T3 fibroblasts. Arch Biochem Biophys.1998; 353: 374–378
    [157] Lipskaia L, Lompre AM. Alteration in temporal kinetics of Ca2+ signaling and control of growth and proliferation[J]. Biol Cell. 2004;96: 55–68.
    [158] Mosieniak G, Pyrzynska B, Kaminska B. Nuclear factor of activated T cells (NFAT) as a new component of the signal transduction pathway in glioma cells. J Neurochem . 1998;71: 134– 141.
    [159] Amati B, Alevizopoulos K, Vlach J. Myc and the cell cycle. Front Biosci. 1998; 3: d250–d268.
    [160] Mizunuma M, Hirata D, Miyahara K, et al. Role of calcineurin and Mpk1in regulating the onset of mitosis in budding yeast. Nature. 1998;392: 303–306
    [161] Sugiura R, Sio SO, Shuntoh H, et al. Molecular genetic analysis of the calcineurin signaling pathways. CMLS.2001; 58: 278–288.
    [162] Ryeom S, Baek KH, Rioth MJ, et al. Targeted Deletion of the Calcineurin Inhibitor DSCR1 Suppresses Tumor Growth. Cancer Cell. 2008;13: 420–431.
    [163] Wakabayashi K, Kambe F, Cao X, et al. Inhibitory effects of cyclosporin A on calcium mobilization-dependent interleukin-8 expression and invasive potential of human glioblastoma U251MG cells. Oncogene. 2004; 23(41):6924-32.
    [164] Du MR, Zhou WH, Dong L, et al. Cyclosporin A Promotes Growth and Invasiveness In Vitro of Human First-Trimester Trophoblast Cells Via MAPK3/MAPK1-Mediated AP1 and Ca2t/Calcineurin/NFAT Signaling Pathways. BIOLOGY OF REPRODUCTION.2008;78: 1102–1110 .
    [165] Miki T, Yano S, Hanibuchi M, et al. Parathyroid hormone-related protein (PTHrP) is responsible for production of bone metastasis, but not visceral metastasis, by human small cell lung cancer SBC-5 cells in natural killer cell-depleted SCID mice. Int J Cancer. 2004; 108:511–515
    [166] Roodman GD. Biology of Osteoclast Activation in Cancer. Journal of Clinical Oncology.2001; 19(15): 3562-3571
    [167] Miki T, Yano S, Hanibuchi M, et al. Bone metastasis model with multiorgan dissemination of human small-cell lung cancer (SBC-5) cells in natural killer cell-depleted SCID mice. Oncol Res. 2000; 12 (5):209-217.
    [168] Johnson RA, Boyce BF, Mundy GR, et al. Tumors producing human tumor necrosis factor induced hypercalcemia and osteoclastic bone resorption in nudemice. Endocrinology.1989; 124:1424-1427.
    [169] Pfeilschifter J, Chenu C, Bird A, et al. Interleukin-1 and tumor necrosis factor stimulate the formation of human osteoclast-like cells in vitro. J Bone Miner Res.1989;4:113-118.
    [170] Cozzolino F, Torcia M, Aldinucci D, et al. Production of Interleukin-1 by Bone Marrow Myeloma Cells. Blood.1989; 74:380-387.
    [171] Kurihara N, Bertolini D, Suda T, et al. IL-6 stimulates osteoclast-like multinucleated cell formation in long-term human marrow cultures by inducing IL-1 release. J Immunol. 1990;144:4226-4230.
    [172] Black K, Garrett IR, Mundy GR. Chinese hamster ovarian cells transfected with the murine interleukin-6 gene cause hypercalcemia as well as cachexia, leukocytosis and thrombocytosis in tumor-bearing nude mice. Endocrinology. 1991;28:2657-2659.
    [173] Uy HL, Mundy GR, Boyce BF, et al. Tumor necrosis factor enhances parathyroid hormone-related protein- induced hypercalcemia and bone resorption without inhibiting bone formation in vivo. Cancer Res.1997; 57:3194-3199.
    [174] Han JH, Choi SJ, Kurihara N, et al. Macrophage inflammatory protein-1{alpha} is an osteoclastogenic factor in myeloma that is independent of receptor activator of nuclear factor {kappa}B ligand. Blood. 2001; 97: 3349-3353.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700