改进型复制缺陷性腺病毒(HDAd)转基因载体特异性及稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:自我复制缺陷性腺病毒(HDAd)和慢病毒(LV)是转基因治疗中极具吸引力的病毒载体。在质粒载体中的测试已经确认人工合成的启动子AUSEx3具有肌细胞特异性表达的特点。本实验以两种不同的病毒为模板构建含有启动子AUSEx3的基因载体,检测其组织特异性及转基因表达的稳定性。细胞核支架/基质结合区(Scaffold/matrix-attached regions, S/MAR)基因,在基因表达中具有非常重要的作用,能增加质粒转基因的表达水平,可以预防转基因沉默,通过构建含有S/MAR的HDAd,检测S/MAR在HDAd中是否仍具有防止转基因衰退的作用。
     方法:构建两种表达β-半乳糖苷酶的HDAd载体,分别受AUSEx3或者CMV(或CAG)启动子调控;构建两种表达绿色荧光蛋白(GFP)的慢病毒,分别受AUSEx3或者CMV调控,在非肌源性细胞(HeLa, Jurkat,293A, A549)、成肌细胞和肌管细胞中比较转基因的表达情况。构建两种表达GFP的HDAd载体,一个含有S/MAR基因,一个没有,在HeLa细胞中培养,比较GFP表达。
     结果:在非肌源性细胞中,AUSEx3调控转基因表达是CAG或CMV表达值的1%或更少,AUSEx3在A549细胞中表达范围是CAG或CMV表达值的5-12%。AUSEx3在成肌细胞表达为0.5%和29%,与CAG或CMV相比,具有显著差异性(p<0.05)。但在肌管细胞中,AUSEx3与CMV基因表达具有同样强度,说明AUSEx3在肌细胞中是个很强的启动子。在体内实验中,AUSEx3转基因在肺、肝和脾中的表达值是CAG表达值的2%或者更少,但在肌肉中是10%。胫骨前肌(tibialis anterior)注射AUSEx3-HDAd,28%的肌纤维β-半乳糖苷酶表达阳性。在慢病毒稳定性实验中,AUSEx3调控的GFP表达也比CMV持久。另一个实验中,持续的检测发现,具有S/MAR转基因的HeLa细胞GFP表达下降比例要比没有S/MAR转基因的HeLa细胞小且慢。
     结论:经过两种病毒载体(慢病毒载体和辅助腺病毒载体)测试证明,AUSEx3是很强的肌细胞特异性启动子。并且其基因片段小(504bp),非常适合作为肌源性转基因治疗的启动子。S/MAR在HDAd中具有防止基因沉默的作用。
Background Gutless adenovirus (HDAd) and lentiviral vectors (LV) are attractive vectors for gene therapy of muscle diseases. Because the organization of their DNA after transduction (episomal vs. integrated) differs, we have investigated if the strength, specificity and the stability of△USEx3, a novel muscle-specific promoter previously tested with plasmid, were maintained in the context of these vectors. Scaffold/matrix-attached regions (S/MAR) implicated in a variety of important functions related to gene expression Furthermore, the presence of this S/MAR in the plasmid backbone has been shown to increase transgene expression level and to prevent silencing. We will test the effects of incorporating into the HDAd a S/MAR, to test if it still prevent transgene silencing.
     Methods Two HDAds expressing β-galactosidase regulated either by△USEx3or the CMV enhancer/β-actin promoter (CAG), and two LVs expressing the green fluorescent protein regulated by△USEx3or CMV were constructed. Gene expression was compared in non-muscle cells (HeLa, Jurkat,293A, A549), C2C12myoblasts and myotubes. HDAds were also tested in mice after injection in the tibialis anterior muscle and intravenous injection. The Lvs was tested in different time point. Two HDAds,expressing GFP, with or without S/MAR, were transfected in HeLa cells and compared the GFP expression.
     Results In non-muscle cells, gene expression from△USEx3was1%or less the value of CAG and CMV, except in A549where it ranged between5-12%. In myoblasts, it was0.5%and29%the value of CAG and CMV respectively. In myotubes, AUSEx3was as strong as CMV, but10times weaker than CAG, a powerful promoter in muscle. In vivo, the activity of AUSEx3in the lung, liver and spleen was2%or less the CAG value, whereas in skeletal muscle it was10%. Despite the lower activity of AUSEx3,28%of muscle fibres of injected tibialis anterior were positive for β-galactosidase. The curve of the△USEx3is more stable in the context of LVs. With the time passed the HeLa cells with S/MAR decreased expression of the GFP protein was Slower and less pronounced.
     Conclusions△USEx3is a robust muscle-specific and stable promoter in the context of LV and HDAd.This, in conjunction with its small size (504bp), make it very attractive for gene therapy of muscle diseases. S/MAR in the HDAd still could prevent transgene silencing
引文
[1]Acsadi G, Lochmuller H, Jani A, et al. Dystrophin expression in muscles of mdx mice after adenovirus-mediated in vivo gene transfer. Hum.Gene Ther.1996; 7: 129-140.
    [2]al Yacoub N, Romanowska M, Haritonova N, et al. Optimized production and concentration of lentiviral vectors containing large inserts. J.Gene Med.2007; 9: 579-584.
    [3]Bachrach E, Li S, Perez AL, et al. Systemic delivery of human microdystrophin to regenerating mouse dystrophic muscle by muscle progenitor cells. Proc.Natl.Acad.Sci.U.S.A2004; 101:3581-3586.
    [4]Blain M, Zeng Y, Bendjelloul M, et al. Strong muscle-specific regulatory cassettes based on multiple copies of the human slow troponin Ⅰ gene upstream enhancer. Hum.Gene Ther.2010; 21:127-134.
    [5]Broussau S, Jabbour N, Lachapelle G, et al. Inducible Packaging Cells for Large-scale Production of Lentiviral Vectors in Serum-free Suspension Culture. Mol.Ther.2008; 16:500-507.
    [6]Bushman F, Lewinski M, Ciuffi A, et al. Genome-wide analysis of retroviral DNA integration. Nat.Rev.Microbiol.2005; 3:848-858.
    [7]Calvo S, Vullhorst D, Venepally P, et al. Molecular dissection of DNA sequences and factors involved in slow muscle-specific transcription. Mol.Cell Biol.2001; 21:8490-8503.
    [8]Chabaud S, Sasseville AM, Elahi SM, et al. The ribonucleotide reductase domain of the R1 subunit of herpes simplex virus type 2 ribonucleotide reductase is essential for R1 antiapoptotic function. J.Gen.Virol.2007; 88:384-394.
    [9]Cordier L, Gao GP, Hack AA, et al. Muscle-specific promoters may be necessary for adeno-associated virus-mediated gene transfer in the treatment of muscular dystrophies. Hum.Gene Ther.2001; 12:205-215.
    [10]Cote J, Bourget L, Garnier A, et al. Study of adenovirus production in serum-free 293SF suspension culture by GFP-expression monitoring. Biotechnol.Prog.1997; 13:709-714.
    [11]DelloRusso C, Scott JM, Hartigan-O'Connor D, et al. Functional correction of adult mdx mouse muscle using gutted adenoviral vectors expressing full-length dystrophin. Proc.Natl.Acad.Sci.U.S.A2002; 99:12979-12984.
    [12]Deol JR, Danialou G, Larochelle N, et al. Successful Compensation for Dystrophin Deficiency by a Helper-dependent Adenovirus Expressing Full-length Utrophin. Mol.Ther.2007; 15:1767-1774.
    [13]Dormond E, Meneses-Acosta A, Jacob D, et al. An efficient and scalable process for helper-dependent adenoviral vector production using polyethylenimine-adenofection. Biotechnol.Bioeng.2009; 102:800-810.
    [14]Dudley RW, Lu Y, Gilbert R, et al. Sustained improvement of muscle function one year after full-length dystrophin gene transfer into mdx mice by a gutted helper-dependent adenoviral vector. Hum.Gene Ther.2004; 15:145-156.
    [15]Evans V, Foster H, Graham IR, et al. Human apolipoprotein E expression from mouse skeletal muscle by electrotransfer of nonviral DNA (plasmid) and pseudotyped recombinant adeno-associated virus (AAV2/7). Hum.Gene Ther. 2008; 19:569-578.
    [16]Gaillet B, Gilbert R, Broussau S, et al. High-level recombinant protein production in CHO cells using lentiviral vectors and the cumate gene-switch. Biotechnol.Bioeng.2010; 106:203-215.
    [17]Giberson AN, Davidson AR, Parks RJ. Chromatin structure of adenovirus DNA throughout infection. Nucleic Acids Res.2011.
    [18]Gilbert R, Dudley RW, Liu AB, et al. Prolonged dystrophin expression and functional correction of mdx mouse muscle following gene transfer with a helper-dependent (gutted) adenovirus-encoding murine dystrophin. Hum.Mol.Genet.2003; 12:1287-1299.
    [19]Gilbert R, Liu A, Petrof B, et al. Improved performance of a fully gutted adenovirus vector containing two full-length dystrophin cDNAs regulated by a strong promoter. Mol.Ther.2002; 6:501-509.
    [20]Gilbert R, Nalbantoglu J, Howell JM, et al. Dystrophin expression in muscle following gene transfer with a fully deleted ("gutted") adenovirus is markedly improved by trans-acting adenoviral gene products. Hum.Gene Ther.2001; 12: 1741-1755.
    [21]Gilbert R, Nalbantoglu J, Petrof BJ, et al. Adenovirus-mediated utrophin gene transfer mitigates the dystrophic phenotype of mdx mouse muscles. Hum.Gene Ther.1999; 10:1299-1310.
    [22]Hartigan-O'Connor D, Kirk CJ, Crawford R, et al. Immune evasion by muscle-specific gene expression in dystrophic muscle. Mol.Ther.2001; 4: 525-533.
    [23]Hauser MA, Robinson A, Hartigan-O'Connor D, et al. Analysis of muscle creatine kinase regulatory elements in recombinant adenoviral vectors. Mol.Ther. 2000; 2:16-25.
    [24]Ishii A, Hagiwara Y, Saito Y, et al. Effective adenovirus-mediated gene expression in adult murine skeletal muscle. Muscle Nerve 1999; 22:592-599.
    [25]Ishizaki M, Maeda Y, Kawano R, et al. Rescue from respiratory dysfunction by transduction of full-length dystrophin to diaphragm via the peritoneal cavity in utrophin/dystrophin double knockout mice. Mol.Ther.2011; 19:1230-1235.
    [26]Kawano R, Ishizaki M, Maeda Y, et al. Transduction of full-length dystrophin to multiple skeletal muscles improves motor performance and life span in utrophin/dystrophin double knockout mice. Mol.Ther.2008; 16:825-831.
    [27]Kimura E, Li S, Gregorevic P, et al. Dystrophin delivery to muscles of mdx mice using lentiviral vectors leads to myogenic progenitor targeting and stable gene expression. Mol.Ther.2010; 18:206-213.
    [28]Kobinger GP, Louboutin JP, Barton ER, et al. Correction of the dystrophic phenotype by in vivo targeting of muscle progenitor cells. Hum.Gene Ther.2003; 14:1441-1449.
    [29]Komatsu T, Haruki H, Nagata K. Cellular and viral chromatin proteins are positive factors in the regulation of adenovirus gene expression. Nucleic Acids Res.2011; 39:889-901.
    [30]Kumar M, Keller B, Makalou N, et al. Systematic determination of the packaging limit of lentiviral vectors. Hum.Gene Ther.2001; 12:1893-1905.
    [31]Li S, Kimura E, Fall BM, et al. Stable transduction of myogenic cells with lentiviral vectors expressing a minidystrophin. Gene Ther.2005; 12:1099-1108.
    [32]Li X, Eastman EM, Schwartz RJ, et al. Synthetic muscle promoters:activities exceeding naturally occurring regulatory sequences. Nat.Biotechnol.1999; 17: 241-245.
    [33]Liu YL, Mingozzi F, Rodriguez-Colon SM, et al. Therapeutic levels of factor IX expression using a muscle-specific promoter and adeno-associated virus serotype 1 vector. Hum.Gene Ther.2004; 15:783-792.
    [34]Matecki S, Dudley RW, Divangahi M, et al. Therapeutic gene transfer to dystrophic diaphragm by an adenoviral vector deleted of all viral genes. Am.J.Physiol Lung Cell Mol.Physiol 2004; 287:L569-L576.
    [35]Meneses-Acosta A, Dormond E, Jacob D, et al. Development of a suspension serum-free helper-dependent adenovirus production system and assessment of co-infection conditions. J.Virol.Methods 2008; 148:106-114.
    [36]Molnar MJ, Gilbert R, Lu Y, et al. Factors influencing the efficacy, longevity, and safety of electroporation-assisted plasmid-based gene transfer into mouse muscles. Mol.Ther.2004; 10:447-455.
    [37]Niwa H, Yamamura K, Miyazaki J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 1991; 108:193-199.
    [38]Palmer DJ, Ng P. Helper-dependent adenoviral vectors for gene therapy. Hum.Gene Ther.2005; 16:1-16.
    [39]Quenneville SP, Chapdelaine P, Skuk D, et al. Autologous transplantation of muscle precursor cells modified with a lentivirus for muscular dystrophy:human cells and primate models. Mol.Ther.2007; 15:431-438.
    [40]Reay DP, Bilbao R, Koppanati BM, et al. Full-length dystrophin gene transfer to the mdx mouse in utero. Gene Ther.2008; 15:531-536.
    [41]Reeves R, Gorman CM, Howard B. Minichromosome assembly of non-integrated plasmid DNA transfected into mammalian cells. Nucleic Acids Res. 1985; 13:3599-3615.
    [42]Ross PJ, Kennedy MA, Christou C, et al. Assembly of helper-dependent adenovirus DNA into chromatin promotes efficient gene expression. J.Virol.2011; 85:3950-3958.
    [43]Salva MZ, Himeda CL, Tai PW, et al. Design of tissue-specific regulatory cassettes for high-level rAAV-mediated expression in skeletal and cardiac muscle. Mol.Ther.2007; 15:320-329.
    [44]Sampaolesi M, Blot S, D'Antona G, et al. Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 2006; 444:574-579.
    [45]Talbot GE, Waddington SN, Bales O, et al. Desmin-regulated lentiviral vectors for skeletal muscle gene transfer. Mol.Ther.2010; 18:601-608.
    [46]Umana P, Gerdes CA, Stone D, et al. Efficient FLPe recombinase enables scalable production of helper-dependent adenoviral vectors with negligible helper-virus contamination. Nat.Biotechnol.2001; 19:582-585.
    [47]Vigna E, Cavalieri S, Ailles L, et al. Robust and efficient regulation of transgene expression in vivo by improved tetracycline-dependent lentiviral vectors. Mol.Ther.2002; 5:252-261.
    [48]Wang B, Li J, Fu FH, et al. Construction and analysis of compact muscle-specific promoters for AAV vectors. Gene Ther.2008; 15:1489-1499.
    [49]Boulikas,T. Chromatin domains and prediction of MAR sequences. Int. Rev. Cytol., (1995) 162A,279-388.
    [50]Glazko,G.V., Koonin,E.V., Rogozin,I.B., Shabalina,S.A. A significant fraction of conserved noncoding DNA in human and mouse consists of predicted matrix attachment regions. Trends Genet., (2003) 19,119-124.
    [51]Harraghy,N., Gaussin,A., Mermod,N. Sustained transgene expression using MAR elements. Curr. Gene Ther., (2008) 8,353-366.
    [52]Bode,J., Kohwi,Y., Dickinson,L., Joh,T., Klehr,D., Mielke,C., Kohwi-Shigematsu,T. Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science, (1992) 255,195-197.
    [53]Piechaczek,C., Fetzer,C., Baiker,A., Bode,J., Lipps,H.J. (1999) A vector based on the SV40 origin of replication and chromosomal S/MARs replicates episomally in CHO cells. Nucleic Acids Res.,27,426-428.
    [1]Hoffman,E.P. (2001) Dystrophinopathies. In Karpati,G, Hilton-Jones,D., Griggs,R.C. (eds.),Disorders of voluntary muscle. Cambridge University Press, Cambridge, UK, pp.385-432.
    [2]Blake,D.J., Weir,A., Newey,S.E., Davies,K.E. (2002) Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev.,82, 291-329.
    [3]Ervasti,J.M. (2007) Dystrophin, its interactions with other proteins, and implications for muscular dystrophy. Biochim. Biophys. Acta,1772,108-117.
    [4]Rando,T.A. (2001) The dystrophin-glycoprotein complex, cellular signaling, and the regulation of cell survival in the muscular dystrophies. Muscle Nerve,24, 1575-1594.
    [5]Petrof,B.J. (2002) Molecular pathophysiology of myofiber injury in deficiencies of the dystrophin-glycoprotein complex. Am. J. Phys, Med. Rehabil.,81, S162-S174.
    [6]Lapidos,K.A., Kakkar,R., McNally,E.M. (2004) The dystrophin glycoprotein complex:signaling strength and integrity for the sarcolemma. Circ. Res.,94, 1023-1031.
    [7]Chamberlain,J.S. (2002) Gene therapy of muscular dystrophy. Hum. Mol. Genet., 11,2355-2362.
    [8]Nowak,K.J., Davies,K.E. (2004) Duchenne muscular dystrophy and dystrophin: pathogenesis and opportunities for treatment. EMBO Rep.,5,872-876.
    [9]Chakkalakal,J.V., Thompson,J., Parks,R.J., Jasmin,B.J. (2005) Molecular, cellular, and pharmacological therapies for Duchenne/Becker muscular dystrophies. FASEB J.,19,880-891.
    [10]Odom,G.L., Gregorevic,P., Chamberlain,J.S. (2007) Viral-mediated gene therapy for the muscular dystrophies:successes, limitations and recent advances. Biochim. Biophys. Acta,1772,243-262.
    [11]Wells,D.J. (2008) Treatments for muscular dystrophy:increased treatment options for Duchenneand related muscular dystropies. Gene Ther.,15, 1077-1078.
    [12]Peault,B., Rudnicki,M., Torrente,Y., Cossu,G, Tremblay,J.P., Partridge,T., Gussoni,E.,Kunkel,L.M., Huard,J. (2007) Stem and progenitor cells in skeletal muscle development,maintenance, and therapy. Mol. Ther.,15,867-877.
    [13]Edelstein,M.L., Abedi,M.R., Wixon,J. (2007) Gene therapy clinical trials worldwide to 2007-an update. J. Gene Med.,9,833-842.
    [14]Ghosh,S.S., Gopinath,P., Ramesh,A. (2006) Adenoviral vectors:a promising tool for gene therapy. Appl. Biochem. Biotechnol,133,9-29.
    [15]Kochanek,S. (1999) High-capacity adenoviral vectors for gene transfer and somatic gene therapy. Hum. Gene Ther.,10,2451-2459.
    [16]Parks,R.J. (2000) Improvements in adeno viral vector technology:overcoming barriers for gene therapy. Clin. Genet.,58,1-11.
    [17]Alba,R., Bosch,A., Chillon,M. (2005) Gutless adenovirus:last-generation adenovirus for gene therapy. Gene Ther.,12 Suppl 1, S18-S27.
    [18]Gilbert,R., Liu,A., Petrof,B., Nalbantoglu,J., Karpati,G. (2002) Improved performance of a fully gutted adenovirus vector containing two full-length dystrophin cDNAs regulated by a strong promoter. Mol. Then,6,501-509.
    [19]Gilbert,R., Dudley,R.W., Liu,A.B., Petrof,B.J., Nalbantoglu,J., Karpati,G. (2003) Prolonged dystrophin expression and functional correction of mdx mouse muscle following gene transfer with a helper-dependent (gutted) adenovirus-encoding murine dystrophin. Hum. Mol. Genet.,12,1287-1299.
    [20]Dudley,R.W., Lu,Y, Gilbert,R., Matecki,S., Nalbantoglu,J., Petrof,B.J., Karpati,G. (2004) Sustained improvement of muscle function one year after full-length dystrophin gene transfer into mdx mice by a gutted helper-dependent adenoviral vector. Hum. Gene Ther.,15,145-156.
    [21]Athanasopoulos,T., Graham,I.R., Foster,H., Dickson,G. (2004) Recombinant adeno-associated viral (rAAV) vectors as therapeutic tools for Duchenne muscular dystrophy (DMD). Gene Ther.,11 Suppl 1, S109-S121.
    [22]Blankinship,M.J., Gregorevic,P., Chamberlain,J.S. (2006) Gene therapy strategies for Duchenne muscular dystrophy utilizing recombinant adeno-associated virus vectors. Mol. Ther,13,241-249.
    [23]Clemens,P.R., Kochanek,S., Sunada,Y, Chan,S., Chen,H.H., Campbell,K.P., Caskey,C.T. (1996) In vivo muscle gene transfer of full-length dystrophin with an adenoviral vector that lacks all viral genes. Gene Ther.,3,965-972.
    [24]DelloRusso,C., Scott,J.M., Hartigan-O'Connor,D., Salvatori,G, Barjot,C., Robinson,A.S.,Crawford,R.W., Brooks,S.V., Chamberlain,J.S. (2002) Functional correction of adult mdx mouse muscle using gutted adenoviral vectors expressing full-length dystrophin. Proc. Natl. Acad. Sci.U. S. A,99, 12979-12984.
    [25]Matecki,S., Dudley,R.W., Divangahi,M., Gilbert,R., Nalbantoglu,J., Karpati,G, Petrof,B.J. (2004) Therapeutic gene transfer to dystrophic diaphragm by an adenoviral vector deleted of all viral genes. Am. J. Physiol Lung Cell Mol. Physiol,287, L569-L576.
    [26]Uchida,Y., Maeda,Y., Kimura,E., Yamashita,S., Nishida,Y., Arima,T., Hirano,T., Uyama,E., Mita,S., Uchino,M. (2005) Effective repetitive dystrophin gene transfer into skeletal muscle of adult mdx mice using a helper-dependent adenovirus vector expressing the coxsackievirus and adenovirus receptor (CAR) and dystrophin. J. Gene Med,7,1010-1022.
    [27]Kawano,R., Ishizaki,M., Maeda,Y., Uchida,Y., Kimura,E., Uchino,M. (2008) Transduction of full-length dystrophin to multiple skeletal muscles improves motor performance and life span in utrophin/dystrophin double knockout mice. Mol Ther.,16,825-831.
    [28]. Reay,D.P., Bilbao,R., Koppanati,B.M., Cai,L., O'Day,T.L., Jiang,Z., Zheng,H., Watchko,J.F., Clemens,P.R. (2008) Full-length dystrophin gene transfer to the mdx mouse in utero. Gene Ther.,15,531-536.
    [29]Deol,J.R., Danialou,G, Larochelle,N., Bouret,M., Moon,J.S., Liu,A.B., Gilbert,R., Petrof,B.J.,Nalbantoglu,J., Karpati,G. (2007) Successful Compensation for Dystrophin Deficiency by a Helper-dependent Adenovirus Expressing Full-length Utrophin. Mol. Then,15,1767-1774.
    [30]Guo,Z.S., Wang,L.H., Eisensmith,R.C., Woo,S.L. (1996) Evaluation of promoter strength for hepatic gene expression in vivo following adenovirus-mediated gene transfer. Gene Ther.,3,802-810.
    [31]Chen,P., Tian,J., Kovesdi,I., Bruder,J.T. (2008) Promoters influence the kinetics of transgeneexpression following adenovector gene delivery. J. Gene Med.,10, 123-131.
    [32]Brooks,A.R., Harkins,R.N., Wang,P., Qian,H.S., Liu,P., Rubanyi,G.M. (2004) Transcriptional silencing is associated with extensive methylation of the CMV promoter following adenoviral gene delivery to muscle. J. Gene Med.,6, 395-404.
    [33]. Gibney,E.R., Nolan,C.M. (2010) Epigenetics and gene expression. Heredity,105, 4-13.
    [34]Miranda,T.B., Jones,P.A. (2007) DNA methylation:the nuts and bolts of repression. J. Cell Physiol,213,384-390.
    [35]Bestor,T.H. (2000) Gene silencing as a threat to the success of gene therapy. J. Clin. Invest,105,409-411.
    [36]Argyros,O., Wong,S.P., Niceta,M., Waddington,S.N., Howe,S.J., Coutelle,C., Miller,A.D., Harbottle,R.P. (2008) Persistent episomal transgene expression in liver following delivery of a scaffold/matrix attachment region containing non-viral vector. Gene Ther.,15,1593-1605.
    [37]Minoguchi,S., Iba,H. (2008) Instability of retroviral DNA methylation in embryonic stem cells. Stem Cells,26,1166-1173.
    [38]Zhang,F., Frost,A.R., Blundell,M.P, Bales,O., Antoniou,M.N., Thrasher,A.J. (2010) A Ubiquitous Chromatin Opening Element (UCOE) Confers Resistance to DNA Methylationmediated Silencing of Lentiviral Vectors. Mol. Then,18, 1640-1649.
    [39]Kouzarides,T. (2007) Chromatin modifications and their function. Cell,128, 693-705.
    [40]Ross,P.J., Kennedy,M.A., Parks,R.J. (2009) Host cell detection of noncoding stuffer DNA contained in helper-dependent adenovirus vectors leads to epigenetic repression of transgene expression. J. Virol.,83,8409-8417.
    [41]Riu,E., Chen,Z.Y, Xu,H., He,C.Y, Kay,M.A. (2007) Histone modifications are associated with the persistence or silencing of vector-mediated transgene expression in vivo. Mol. Then,1348-1355.
    [42]Williams,S., Mustoe,T., Mulcahy,T., Griffiths,M., Simpson,D., Antoniou,M., Irvine,A.,Mountain,A., Crombie,R. (2005) CpG-island fragments from the HNRPA2B1/CBX3 genomic locus reduce silencing and enhance transgene expression from the hCMV promoter/enhancer in mammalian cells. BMC. Biotechnol,5,17.
    [43]Antoniou,M., Harland,L., Mustoe,T., Williams,S., Holdstock,J., Yague,E., Mulcahy,T., Griffiths,M., Edwards,S., Ioannou,P.A., et al. (2003) Transgenes encompassing dual-promoter CpG islands from the human TBP and HNRPA2B1 loci are resistant to heterochromatinmediated silencing. Genomics, 82,269-279.
    [44]Lindahl,A.M., Antoniou,M. (2007) Correlation of DNA methylation with histone modifications across the HNRPA2B1-CBX3 ubiquitously-acting chromatin open element (UCOE). Epigenetics.,2,227-236.
    [45]Talbot,G.E., Waddington,S.N., Bales,O., Tchen,R.C., Antoniou,M.N. (2010) Desmin-regulated lentiviral vectors for skeletal muscle gene transfer. Mol. Ther., 18,601-608.
    [46]Zhang,F., Thornhill,S.I., Howe,S.J., Ulaganathan,M., Schambach,A., Sinclair,J., Kinnon,C., Gaspar,H.B., Antoniou,M., Thrasher,A.J. (2007) Lentiviral vectors containing an enhancer-less ubiquitously acting chromatin opening element (UCOE) provide highly reproducible and stable transgene expression in hematopoietic cells. Blood,110,1448-1457.
    [47]Boulikas,T. (1995) Chromatin domains and prediction of MAR sequences. Int. Rev. Cytol.,162A,279-388.
    [48]Glazko,G.V., Koonin,E.V., Rogozin,I.B., Shabalina,S.A. (2003) A significant fraction of conserved noncoding DNA in human and mouse consists of predicted matrix attachment regions. Trends Genet.,19,119-124.
    [49]Harraghy,N., Gaussin,A., Mermod,N. (2008) Sustained transgene expression using MAR elements. Curr. Gene Ther.,8,353-366.
    [50]Bode,J., Kohwi,Y., Dickinson,L., Joh,T., Klehr,D., Mielke,C., Kohwi-Shigematsu,T. (1992) Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science,255,195-197.
    [51]Piechaczek,C., Fetzer,C., Baiker,A., Bode,J., Lipps,H.J. (1999) A vector based on the SV40 origin of replication and chromosomal S/MARs replicates episomally in CHO cells. Nucleic Acids Res.,27,426-428.
    [52]Jenke,A.C., Stehle,I.M., Herrmann,F., Eisenberger,T., Baiker,A., Bode,J., Fackelmayer,F.O., Lipps,H.J. (2004) Nuclear scaffold/matrix attached region modules linked to a transcription unit are sufficient for replication and maintenance of a mammalian episome. Proc. Natl. Acad. Sci. U. S. A,101, 11322-11327.
    [53]Schaarschmidt,D., Baltin,J., Stehle,I.M., Lipps,H.J., Knippers,R. (2004) An episomal
    mammalian replicon:sequence-independent binding of the origin recognition complex. EMBO J.,23,191-201.
    [54]Stehle,I.M., Postberg,J., Rupprecht,S., Cremer,T., Jackson,D.A., Lipps,H.J. (2007)
    Establishment and mitotic stability of an extra-chromosomal mammalian replicon. BMC. Cell Biol.,8,33.
    [55]Jenke,A.C., Scinte ie,M.F., Stehle,I.M., Lipps,H.J. (2004) Expression of a transgene encoded on a non-viral episomal vector is not subject to epigenetic silencing by cytosine methylation. Mol. Biol. Rep.,31,85-90.
    [56]Rupprecht,S., Lipps,H.J. (2009) Cell cycle dependent histone dynamics of an episomal non-viral vector. Gene,439,95-101.
    [57]Stehle,I.M., Scinteie,M.F., Baiker,A., Jenke,A.C., Lipps,H.J. (2003) Exploiting a minimal system to study the epigenetic control of DNA replication:the interplay between transcription and replication. Chromosome. Res.,11, 413-421.
    [58]Sgourou,A., Routledge,S., Spathas,D., Athanassiadou,A., Antoniou,M.N. (2009) Physiological levels of HBB tran sgene expression from S/MAR element-based replicating episomal vectors. J. Biotechnol.,143,85-94.
    [59]Parks,R.J., Bramson,J.L., Wan,Y., Addison,C.L., Graham,F.L. (1999) Effects of stuffer DNA on transgene expression from helper-dependent adenovirus vectors. J. Virol.,73,8027-8034.
    [60]Ehrhardt,A., Kay,M.A. (2002) A new adenoviral helper-dependent vector results in long-term therapeutic levels of human coagulation factor IX at low doses in vivo. Blood,99,3923-3930.
    [61]Deconinck,N., Ragot,T., Marechal,G, Perricaudet,M., Gillis,J.M. (1996) Functional protection of dystrophic mouse (mdx) muscles after adenovirus-mediated transfer of a dystrophin minigene. Proc. Natl. Acad. Sci. U. S. A,93,3570-3574.
    [62]Yang,Y., Haecker,S.E., Su,Q., Wilson,J.M. (1996) Immunology of gene therapy with adenoviral vectors in mouse skeletal muscle. Hum. Mol. Genet.,5, 1703-1712.
    [63]Acsadi,G., Lochmuller,H., Jani,A., Huard,J., Massie,B., Prescott,S., Simoneau,M., Petrof,B.J., Karpati,G. (1996) Dystrophin expression in muscles of mdx mice after adenovirus-mediated in vivo gene transfer. Hum. Gene Ther.,7,129-140.
    [64]Ishii,A., Hagiwara,Y., Saito,Y, Yamamoto,K., Yuasa,K., Sato,Y, Arahata,K., Shoji,S., Nonaka,I., Saito,I., et al. (1999) Effective adenovirus-mediated gene expression in adult murine skeletal muscle. Muscle Nerve,22,592-599.
    [65]Pastore,L., Morral,N., Zhou,H., Garcia,R., Parks,R.J., Kochanek,S., Graham,F.L., Lee,B., Beaudet,A.L. (1999) Use of a liver-specific promoter reduces immune response to the transgene in adenoviral vectors. Hum. Gene Ther.,10, 1773-1781.
    [66]Hauser,M.A., Robinson,A., Hartigan-O'Connor,D., Williams-Gregory,D.A., Buskin,J.N., Apone,S., Kirk,C.J., Hardy,S., Hauschka,S.D., Chamberlain,J.S. (2000) Analysis of muscle creatine kinase regulatory elements in recombinant adenoviral vectors. Mol. Ther.,2,16-25.
    [67]Hartigan-O'Connor,D., Kirk,C.J., Crawford,R., Mule,J.J., Chamberlain,J.S. (2001) Immune evasion by muscle-specific gene expression in dystrophic muscle. Mol. Ther.,4,525-533.
    [68]Sun,B., Zhang,H., Franco,L.M., Brown,T., Bird,A., Schneider,A., Koeberl,D.D. (2005) Correction of glycogen storage disease type II by an adeno-associated virus vector containing a muscle-specific promoter. Mol. Ther.,11,889-898.
    [69]Cordier,L., Gao.G.P., Hack,A.A., McNally.E.M., Wilson,J.M., Chirmule,N., Sweeney,H.L. (2001) Muscle-specific promoters may be necessary for adeno-associated virus-mediated gene transfer in the treatment of muscular dystrophies. Hum. Gene Ther.,12,205-215.
    [70]Hagstrom,J.N., Couto,L.B., Scallan,C., Burton,M., McCleland,M.L., Fields,P.A., AiTuda,V.R., Herzog,R.W., High,K.A. (2000) Improved muscle-derived expression of human coagulation factor IX from a skeletal actin/CMV hybrid enhancer/promoter. Blood,95,2536-2542.
    [71]Corin,S.J., Levitt,L.K., O'Mahoney,J.V., Joya,J.E., Hardeman,E.C., Wade,R. (1995) Delineation of a slow-twitch-myofiber-specific transcriptional element by using in vivo somatic gene transfer. Proc. Natl. Acad. Sci. U. S. A,92, 6185-6189.
    [72]Nakayama,M., Stauffer,J., Cheng,J., Banerjee-Basu,S., Wawrousek,E., Buonanno,A. (1996) Common core sequences are found in skeletal muscle slow-and fast-fiber-type-specific regulatory elements. Mol. Cell Biol.,16, 2408-2417.
    [73]Calvo,S., Vullhorst,D., Venepally,P., Cheng,J., Karavanova,I., Buonanno,A. (2001) Molecular dissection of DNA sequences and factors involved in slow muscle-specific transcription. Mol. Cell Biol.,21,8490-8503.
    [74]Blain,M., Zeng,Y, Bendjelloul,M., Hallauer,P.L., Kumar,A., Hastings,K.E., Karpati,G, Massie,B., Gilbert,R. (2010) Strong muscle-specific regulatory cassettes based on multiple copies of the human slow troponin I gene upstream enhancer. Hum. Gene Ther.,21,127-134.
    [75]Larochelle,N., Lochmuller,H., Zhao,J., Jani,A., Hallauer,P., Hastings,K.E., Massie,B., Prescott,S., Petrof,B.J., Karpati,G, Nalbantoglu,J. (1997) Efficient muscle-specific transgene expression after adenovirus-mediated gene transfer in mice using a 1.35 kb muscle creatine kinase promoter/enhancer. Gene Ther., 4,465-472.
    [76]Larochelle,N., Oualikene,W., Dunant,P., Massie,B., Karpati,G, Nalbantoglu,J., Lochmuller,H. (2002) The short MCK1350 promoter/enhancer allows for sufficient dystrophin expression in skeletal muscles of mdx mice. Biochem. Biophys. Res. Commun.,292,626-631.
    [77]Acsadi,G, Jani,A., Massie,B., Simoneau,M., Holland,P., Blaschuk,K., Karpati,G. (1994) A differential efficiency of adenovirus-mediated in vivo gene transfer into skeletal muscle cells of different maturity. Hum. Mol. Genet.,3,579-584.
    [78]Huard,J., Lochmuller,H., Acsadi,G., Jani,A., Holland,P., Guerin,C., Massie,B., Karpati,G. (1995) Differential short-term transduction efficiency of adult versus newborn mouse tissues by adenoviral recombinants. Exp. Mol. Pathol.,62, 131-143.
    [79]Feero,W.G., Rosenblatt,J.D., Huard,J., Watkins,S.C., Epperly,M., Clemens,P.R., Kochanek,S., Glorioso,J.C., Partridge,T.A., Hoffman,E.P. (1997) Viral gene delivery to skeletal muscle:insights on maturation-dependent loss of fiber infectivity for adenovirus and herpes simplex type 1 viral vectors. Hum. Gene Ther.,8,371-380.
    [80]Kafri,T., Morgan,D., Krahl,J., Sarvetnick,N., Sherman,L., Verma,I. (1998) Cellular immune response to adenoviral vector infected cells does not require de novo viral gene expression:implications for gene therapy. Proc. Natl. Acad. Sci. U.S. A,95,11377-11382.
    [81]Brunetti-Pierri,N., Palmer,D.J., Beaudet,A.L., Carey,K.D., Finegold,M., Ng,P. (2004) Acute toxicity after high-dose systemic injection of helper-dependent adenoviral vectors into nonhuman primates. Hum. Gene Ther.,15,35-46.
    [82]Nicklin,S.A., Wu,E., Nemerow,G.R., Baker,A.H. (2005) The influence of adenovirus fiber structure and function on vector development for gene therapy. Mol. Ther.,12,384-393.
    [83]Sharma,A., Li,X., Bangari,D.S., Mittal,S.K. (2009) Adenovirus receptors and their implications in gene delivery. Virus Res.,143,184-194.
    [84]Bergelson,J.M., Krithivas,A., Celi,L., Droguett,G., Horwitz,M.S., Wickham,T., Crowell,R.L., Finberg,R.W. (1998) The murine CAR homolog is a receptor for coxsackie B viruses and adenoviruses. J. Virol.,72,415-419.
    [85]Tomko,R.P., Xu,R., Philipson,L. (1997) HCAR and MCAR:the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc. Natl. Acad. Sci. U. S. A,94,3352-3356.
    [86]Nalbantoglu,J., Larochelle,N., Wolf,E., Karpati,G, Lochmuller,H., Holland,P.C. (2001) Musclespecific overexpression of the adenovirus primary receptor car overcomes low efficiency of gene transfer to mature skeletal muscle. J. Virol., 75,4276-4282.
    [87]Nalbantoglu,J., Pari,G, Karpati,G, Holland,P.C. (1999) Expression of the primary coxsackie and adenovirus receptor is downregulated during skeletal muscle maturation and limits the efficacy of adenovirus-mediated gene delivery to muscle cells. Hum. Gene Ther.,10,1009-1019.
    [88]Larochelle,N., Teng,Q., Gilbert,R., Deol,J.R., Karpati,G, Holland,P.C., Nalbantoglu,J. (2010) Modulation of coxsackie and adenovirus receptor expression for gene transfer to normal and dystrophic skeletal muscle. J. Gene Med.,12,266-275.
    [89]Jakubczak,J.L., Rollence,M.L., Stewart,D.A., Jafari,J.D., Von Seggern,D.J., Nemerow,G.R., Stevenson,S.C., Hallenbeck,P.L. (2001) Adenovirus type 5 viral particles pseudotyped with mutagenized fiber proteins show diminished infectivity of coxsackie B-adenovirus receptorbearing cells. J. Virol.,75, 2972-2981.
    [90]Thirion,C., Larochelle,N., Volpers,C., Dunant,P., Stucka,R., Holland,P., Nalbantoglu,J., Kochanek,S., Lochmuller,H. (2002) Strategies for muscle-specific targeting of adenoviral gene transfer vectors. Neuromuscul. Disord.,12 Suppl 1, S30-S39.
    [91]Wickham,T.J. (2003) Ligand-directed targeting of genes to the site of disease. Nat. Med.,9,135-139.
    [92]. Wickham,T.J. (2000) Targeting adenovirus. Gene Ther.,7,110-114.
    [93]Morrison,J., Briggs,S.S., Green,N.K., Thoma,C., Fisher,K.D., Kehoe,S., Seymour,L.W. (2009) Cetuximab retargeting of adenovirus via the epidermal growth factor receptor for treatment of intraperitoneal ovarian cancer. Hum. Gene Ther.,20,239-251.
    [94]Li,H.J., Everts,M., Yamamoto,M., Curiel,D.T., Herschman,H.R. (2009) Combined transductional untargeting/retargeting and transcriptional restriction enhances adenovirus gene targeting and therapy for hepatic colorectal cancer tumors. Cancer Res.,69,554-564.
    [95]Terashima,T., Oka,K., Kritz,A.B., Kojima,H., Baker,A.H., Chan,L. (2009) DRG-targeted helperdependent adenoviruses mediate selective gene delivery for therapeutic rescue of sensory neuronopathies in mice. J. Clin. Invest,119, 2100-2112.
    [96]Zorzano,A., James,D.E., Ruderman,N.B., Pilch,P.F. (1988) Insulin-like growth factor I binding and receptor kinase in red and white muscle. FEBS Lett.,234, 257-262.
    [97]Livingston,N., Pollare,T., Lithell,H., Arner,P. (1988) Characterisation of insulin-like growth factor I receptor in skeletal muscles of normal and insulin resistant subjects. Diabetologia,31,871-877.
    [98]Zeng,Y, Pinard,M., Jaime,J., Bourget,L., Uyen,L.P.,O'Connor-McCourt,M.D., Gilbert,R., Massie,B.(2008) A ligand-pseudoreceptor system based on de novo designed peptides for the generation of adenoviral vectors with altered tropism. J. Gene Med.,10,355-367.
    [99]Clemmons,D.R. (2009) Role of IGF-I in skeletal muscle mass maintenance. Trends Endocrinol. Metab,20,349-356.
    [100]Howell,J.M., Lochmuller,H., O'Hara,A., Fletcher,S., Kakulas,B.A., Massie,B., Nalbantoglu,J., Karpati,G. (1998) High-level dystrophin expression after adenovirus-mediated dystrophin minigene transfer to skeletal muscle of dystrophic dogs:prolongation of expression with immunosuppression. Hum. Gene Ther.,9,629-634.
    [101]O'Hara,A.J., Howell,J.M., Taplin,R.H., Fletcher,S., Lloyd,F., Kakulas,B., Lochmuller,H., Karpati,G. (2001) The spread of transgene expression at the site of gene construct injection. Muscle Nerve,24,488-495.
    [102]Herweijer,H., Wolff,J.A. (2007) Gene therapy progress and prospects: hydrodynamic gene delivery. Gene Ther.,14,99-107.
    [103]. Zhang,G., Ludtke,J.J., Thioudellet,C., Kleinpeter,P., Antoniou,M., Herweijer,H., Braun,S., Wolff,J.A. (2004) Intraarterial delivery of naked plasmid DNA expressing full-length mouse dystrophin in the mdx mouse model of duchenne muscular dystrophy. Hum. Gene Ther.,15,770-782.
    [104]Danialou,G., Comtois,A.S., Matecki,S., Nalbantoglu,J., Karpati,G., Gilbert,R., Geoffroy,P., Gilligan,S., Tanguay,J.F., Petrof,B.J. (2005) Optimization of regional intraarterial naked DNAmediated transgene delivery to skeletal muscles in a large animal model. Mol. Ther.,11,257-266.
    [105]Hegge,J.O., Wooddell,C.I., Zhang,G., Hagstrom,J.E., Braun,S., Huss,T., Sebestyen,M.G., Emborg,M.E., Wolff,J.A. (2010) Evaluation of hydrodynamic limb vein injections in nonhuman primates. Hum. Gene Ther.,21,829-842.
    [106]Cho,W.K., Ebihara,S., Nalbantoglu,J., Gilbert,R., Massie,B., Holland,P., Karpati,G, Petrof,B.J. (2000) Modulation of Starling forces and muscle fiber maturity permits adenovirus-mediated gene transfer to adult dystrophic (mdx) mice by the intravascular route. Hum. Gene Ther.,11,701-714.
    [107]Zhang,G., Wooddell,C.I., Hegge,J.O., Griffm,J.B., Huss,T., Braun,S., Wolff,J.A. (2010)Functional efficacy of dystrophin expression from plasmids delivered to mdx mice by hydrodynamic limb vein injection. Hum. Gene Ther.,21,221-237.
    [108]Umana,P., Gerdes,C.A., Stone,D., Davis,J.R., Ward,D., Castro,M.G, Lowenstein,P.R. (2001)Efficient FLPe recombinase enables scalable production of helper- dependent adenoviral vectorswith negligible helper-virus contamination. Nat. Biotechnol.,19,582-585.
    [109]Dormond,E., Meneses-Acosta,A., Jacob,D., Durocher,Y., Gilbert,R., Perrier,M., Kamen,A.(2009) An efficient and scalable process for helper-dependent adenoviral vector productionusing polyethylenimine-adenofection. Biotechnol. Bioeng.,102,800-810.
    [110]Hillgenberg,M., Schnieders,F., Loser,P., Strauss,M. (2001) System for efficient helperdependentminimal adenovirus construction and rescue. Hum. Gene Ther., 12,643-657.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700