重组人Beta-干扰素的CHO表达和无血清细胞培养的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要

Interferon (IFN) is a cytokine family which was discovered to be secreted by cells in response to viral infections. Interferon can be divided into two distinct types: type I and type. IFN-beta is a member of type I IFNs. It has 166 amino acids with a molecular weight of about 22,000 daltons. When binds to its receptors, IFN-beta induces several signal cascades, including the Jak-Stat pathway, the IRS pathway, the CrkL pathway and the p38 Map kinase pathway. Through these pathways, IFN-beta can mediate diverse biological activities such as antiviral infection, proliferation inhibition, apoptosis induction and immunomodulation.
    Multiple sclerosis (MS) is a chronic disease of the central nerve system, which is characterized by the progressive destruction of the myelin of nerves of the brain and spinal cord. So far there is no cure for MS. With the wide use of IFN-beta in the treatment of MS in the Western countries, however, the management of the disease has been improved significantly, though the mechanism of action of IFN-beta on MS remains to be investigated. At present, IFN-beta has become the benchmark for the treatment of MS. Three IFN-beta products (Betaseron(?), Avonex(?) and Rebif(?)) have been approved for the treatment of MS in the US and EU, and the global sale of these products has reached 4 billion US dollars in 2005.
    The IFN-beta on the market can be divided into two types: IFN-beta-1b and IFN-beta-1a. IFN-beta-1b is bacteria-derived and non-glycosylated, whereas IFN-1a is CHO-cell-produced and glycosylated. Because mammalian cells have a posttranslational modification system, IFN-beta obtained from CHO cell culture was similar to the native counterpart and showed better activity in antiviral, antiproliferative and immunomodulatory assays when compared with the non-glycosylated IFN-beta. In addition, the incidence of neutralizing antibodies to IFN-beta in patients receiving CHO-cell-derived IFN-beta was lower than in patients receiving bacteria-derived IFN-Beta
    It is hypothesized that IFN-beta has the activity of inhibiting cell proliferation and inducing apoptosis, the expression of IFN-beta in mammalian cells would potentially
引文
[1]. Derynck, R.; Content, J.; DeClercq, E.; Volckaert, G; Tavernier, J.; Devos, R.; Fiers, W., Isolation and structure of a human fibroblast interferon gene. Nature, 1980,285 (5766): 542-547.
    
    [2]. Taniguchi, T.; Ohno, S.; Fujii-Kuriyama, Y.; Muramatsu, M., The nucleotide sequence of human fibroblast interferon cDNA. Gene, 1980, 10 (1): 11-15.
    
    [3]. Uze, G; Lutfalla, G; Gresser, I., Genetic transfer of a functional human interferon alpha receptor into mouse cells: cloning and expression of its cDNA. Cell, 1990,60 (2): 225-234.
    
    [4]. Domanski, P.; Witte, M; Kellum, M.; Rubinstein, M.; Hackett, R.; Pitha, P.; Colamonici, O. R., Cloning and expression of a long form of the beta subunit of the interferon alpha beta receptor that is required for signaling. J Biol Chem, 1995, 270 (37): 21606-21611.
    
    [5]. Lutfalla, G; Holland, S. J.; Cinato, E.; Monneron, D.; Reboul, J.; Rogers, N. C; Smith, J. M.; Stark, G R.; Gardiner, K.; Mogensen, K. E.; et al., Mutant U5A cells are complemented by an interferon-alpha beta receptor subunit generated by alternative processing of a new member of a cytokine receptor gene cluster. Embo J, 1995, 14 (20): 5100-5108.
    
    [6]. Novick, D.; Cohen, B.; Rubinstein, M., The human interferon alpha/beta receptor: characterization and molecular cloning. Cell, 1994,77 (3): 391-400.
    
    [7]. Colamonici, O. R.; Domanski, P., Identification of a novel subunit of the type I interferon receptor localized to human chromosome 21. J Biol Chem, 1993,268 (15): 10895-10899.
    
    [8]. Darnell, J. E., Jr.; Kerr, I. M; Stark, G R., Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science, 1994, 264 (5164): 1415-1421.
    
    [9]. Uddin, S.; Fish, E. N.; Sher, D.; Gardziola, C; Colamonici, O. R.; Kellum, M.; Pitha, P. M.; White, M. F.; Platanias, L. C, The IRS-pathway operates distinctively from the Stat-pathway in hematopoietic cells and transduces common and distinct signals during engagement of the insulin or interferon-alpha receptors. Blood, 1997,90 (7): 2574-2582.
    
    [10]. Ahmad, S.; Alsayed, Y. M.; Druker, B. J.; Platanias, L. C, The type I interferon receptor mediates tyrosine phosphorylation of the CrkL adaptor protein. J Biol Chem, 1997, 272 (48): 29991-29994.
    
    [11]. Uddin, S.; Majchrzak, B.; Woodson, J.; Arunkumar, P.; Alsayed, Y; Pine, R.; Young, P. R.; Fish, E. N.; Platanias, L. C, Activation of the p38 mitogen-activated protein kinase by type I interferons. J Biol Chem, 1999,274 (42): 30127-30131.
    
    [12]. Compston, A.; Coles, A., Multiple sclerosis. Lancet, 2002,359 (9313): 1221-1231.
    [13]. Hong, J.; Tejada-Simon, M. V.; Rivera, V. M.; Zang, Y. C.; Zhang, J. Z., Anti-viral properties of interferon beta treatment in patients with multiple sclerosis. Muir Scler, 2002, 8 (3): 237-242.
    [14]. Misu, T.; Onodera, H.; Fujihara, K.; Matsushima, K.; Yoshie, O.; Okita, N.; Takase, S.; Itoyama, Y., Chemokine receptor expression on T cells in blood and cerebrospinal fluid at relapse and remission of multiple sclerosis: imbalance of Thl/Th2-associated chemokine signaling. J Neuroimmunol, 2001, 114 (1-2): 207-212.
    [15]. Zipp, F.; Weller, M.; Calabresi, P. A.; Frank, J. A.; Bash, C. N.; Dichgans, J.; McFarland, H. F.; Martin, R., Increased serum levels of soluble CD95 (APO-1/Fas) in relapsing-remitting multiple sclerosis. Ann Neurol, 1998, 43 (1): 116-120.
    [16]. Waiczies, S.; Weber, A.; Lunemann, J. D.; Aktas, O.; Zschendedein, R.; Zipp, E, Elevated Bcl-X(L) levels correlate with T cell survival in multiple sclerosis. J Neuroimmunol, 2002, 126 (1-2): 213-220.
    [17]. Sharief, M. K., Increased cellular expression of the caspase inhibitor FLIP in intrathecal lymphocytes from patients with multiple sclerosis. J Neuroimmunol, 2000, 111 (1-2): 203-209.
    [18]. Goeddel, D. V.; Shepard, H. M.; Yelverton, E.; Leung, D.; Crea, R.; Sloma, A.; Pestka, S., Synthesis of human fibroblast interferon by E. coli. Nucleic Acids Res, 1980, 8 (18): 4057-4074.
    [19]. Friesen, H. J.; Stein, S.; Evinger, M.; Familletti, P. C.; Moschera, J.; Meienhofer, J.; Shively, J.; Pestka, S., Purification and molecular characterization of human fibroblast interferon. Arch Biochem Biophys, 1981, 206 (2): 432-450.
    [20]. Mark, D. F.; Lu, S. D.; Creasey, A. A.; Yamamoto, R.; Lin, L. S., Site-specific mutagenesis of the human fibroblast interferon gene. Proc Natl Acad Sci U S A, 1984, 81 (18): 5662-5666.
    [21]. Demolder, J.; Fiefs, W.; Contreras, R., Human interferon-beta, expressed in Saccharomyces cerevisiae, is predominantly directed to the vacuoles. Influence of modified co-expression of secretion factors and chaperones. J Biotechnol, 1994, 32 (2): 179-189.
    [22]. Piggott, J. R.; Watson, M. E.; Doel, S. M.; Goodey, A. R.; Carter, B. L., The secretion and post translational modification of interferons from Saccharomyces cerevisiae. Curr Genet, 1987, 12(8): 561-567.
    [23]. Runkel, L.; Meier, W.; Pepinsky, R. B.; Karpusas, M.; Whitty, A.; Kimball, K.; Brickelmaier, M.; Muldowney, C.; Jones, W.; Goelz, S. E., Structural and functional differences between glycosylated and non-glycosylated forms of human interferon-beta (IFN-beta). Pharra Res, 1998, 15(4): 641-649.
    [24]. Herndon, R. M.; Rudick, R. A.; Munschauer, F. E., 3rd; Mass, M. K.; Salazar, A. M.; Coats,??M. E.; Labutta, R.; Richert, J. R.; Cohan, S. L.; Genain, C; Goodkin, D.; Toal, M.; Riester, K., Eight-year immunogenicity and safety of interferon beta-1a-Avonex treatment in patients with multiple sclerosis. Mult Scler, 2005, 11 (4): 409-419.
    
    [25]. Utsumi, J.; Mizuno, Y.; Hosoi, K.; Okano, K.; Sawada, R.; Kajitani, M.; Sakai, I.; Naruto, M.; Shimizu, H., Characterization of four different mammalian-cell-derived recombinant human interferon-beta 1s. Identical polypeptides and non-identical carbohydrate moieties compared to natural ones. Eur J Biochem, 1989, 181 (3): 545-553.
    
    [26]. Xu, Z. L.; Mizuguchi, H.; Ishii-Watabe, A.; Uchida, E.; Mayumi, T.; Hayakawa, T., Optimization of transcriptional regulatory elements for constructing plasmid vectors. Gene, 2001, 272(1-2): 149-156.
    
    [27]. Liu, Z.; Cashion, L. M.; Twu, J. J., A systematic comparison of relative promoter/enhancer activities in mammalian cell lines. Anal Biochem, 1997, 246 (1): 150-152.
    
    [28]. Kaufman, R. J.; Sharp, P. A.; Latt, S. A., Evolution of chromosomal regions containing transfected and amplified dihydrofolate reductase sequences. Mol Cell Biol, 1983, 3 (4): 699-711.
    
    [29]. Gurtu, V.; Yan, G; Zhang, G, IRES bicistronic expression vectors for efficient creation of stable mammalian cell lines. Biochem Biophys Res Commun, 1996,229 (1): 295-298.
    
    [30]. Fussenegger, M.; Mazur, X.; Bailey, J. E., pTRIDENT, a novel vector family for tricistronic gene expression in mammalian cells. Biotechnol Bioeng, 1998, 57 (1): 1-10.
    
    [31]. Lucas, B. K.; Giere, L. M.; DeMarco, R. A.; Shen, A.; Chisholm, V.; Crowley, C. W., High-level production of recombinant proteins in CHO cells using a dicistronic DHFR intron expression vector. Nucleic Acids Res, 1996, 24 (9): 1774-1779.
    
    [32]. Xiong, K. H.; Liang, Q. C; Xiong, H.; Zou, C. X.; Gao, G D.; Zhao, Z. W.; Zhang, H., Expression of chimeric antibody in mammalian cells using dicistronic expression vector. Biotechnol Lett, 2005,27 (21): 1713-1717.
    
    [33]. Bell, A. C; West, A. G; Felsenfeld, G, Insulators and boundaries: versatile regulatory elements in the eukaryotic. Science, 2001,291 (5503): 447-450.
    
    [34]. Fraser, P.; Grosveld, F., Locus control regions, chromatin activation and transcription. Curr Opin Cell Biol, 1998, 10 (3): 361-365.
    
    [35]. Hart, C. M.; Laemmli, U. K., Facilitation of chromatin dynamics by SARs. Curr Opin Genet Dev, 1998, 8 (5): 519-525.
    
    [36]. Zahn-Zabal, M.; Kobr, M.; Girod, P. A.; Imhof, M.; Chatellard, P.; de Jesus, M; Wurm, F; Mermod, N., Development of stable cell lines for production or regulated expression using matrixattachment regions. J Biotechnol, 2001, 87 (1): 29-42.
    [37]. Kim, J. M.; Kim, J. S.; Park, D. H.; Kang, H. S.; Yoon, J.; Baek, K.; Yoon, Y., Improved recombinant gene expression in CHO cells using matrix attachment regions. J Biotechnol, 2004, 107 (2): 95-105.
    
    [38]. Kim, J. D.; Yoon, Y; Hwang, H. Y; Park, J. S.; Yu, S.; Lee, J.; Baek, K.; Yoon, J., Efficient selection of stable Chinese hamster ovary (CHO) cell lines for expression of recombinant proteins by using human interferon beta SAR element. Biotechnol Prog, 2005, 21 (3): 933-937.
    
    [39]. Girod, P. A.; Zahn-Zabal, M.; Mermod, N., Use of the chicken lysozyme 5' matrix attachment region to generate high producer CHO cell lines. Biotechnol Bioeng, 2005, 91 (1): 1-11.
    
    [40]. Kwaks, T. H.; Barnett, P.; Hemrika, W.; Siersma, T.; Sewalt, R. G; Satijn, D. P.; Brons, J. E; van Blokland, R.; Kwakman, P.; Kruckeberg, A. L.; Kelder, A.; Otte, A. P., Identification of anti-repressor elements that confer high and stable protein production in mammalian cells. Nat Biotechnol, 2003,21 (5): 553-558.
    
    [41]. Running Deer, J.; Allison, D. S., High-level expression of proteins in mammalian cells using transcription regulatory sequences from the Chinese hamster EF-1 alpha gene. Biotechnol Prog, 2004,20 (3): 880-889.
    
    [42]. Williams, S.; Mustoe, T.; Mulcahy, T.; Griffiths, M.; Simpson, D.; Antoniou, M.; Irvine, A.; Mountain, A.; Crombie, R., CpG-island fragments from the HNRPA2B1 /CBX3 genomic locus reduce silencing and enhance transgene expression from the hCMV promoter/enhancer in mammalian cells. BMC Biotechnol, 2005, 5 (1): 17.
    
    [43]. Leahy, P.; Carmichael, G G; Rossomando, E. E, Transcription from plasmid expression vectors is increased up to 14-fold when plasmids are transfected as concatemers. Nucleic Acids Res, 1997, 25 (2): 449-450.
    
    [44]. Monaco, L.; Tagliabue, R.; Giovanazzi, S.; Bragonzi, A.; Soria, M. R., Expression of recombinant human granulocyte colony-stimulating factor in CHO dhfr- cells: new insights into the in vitro amplification expression system. Gene, 1996, 180 (1-2): 145-150.
    
    [45]. Goergen, J. L.; Monaco, L., Generation of high-recombinant- protein-producing Chinese hamster ovary (CHO) cells. Methods Mol Biol, 2004, 267: 477-483.
    
    [46]. Niwa, H.; Yamamura, K.; Miyazaki, J., Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene, 1991, 108 (2): 193-199.
    
    [47]. Bai, Y.; Wang, Y; Zhang, H. R.; Zhou, L. J.; Lu, Y. Q.; Yu, L. Z., [Significantly improvement of antibody expression level in CHO cells through downregulation of the DHFR gene inexpression vector]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 2003, 19(1): 62-64,67.
    [48]. Sautter, K.; Enenkel, B., Selection of high-producing CHO cells using NPT selection marker with reduced enzyme activity. Biotechnol Bioeng, 2005, 89 (5): 530-538.
    
    [49]. Urlaub, G; Chasin, L. A., Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc Natl Acad Sci U S A, 1980, 77 (7): 4216-4220.
    
    [50]. Barnes, L. M.; Bentley, C. M.; Dickson, A. J., Advances in animal cell recombinant protein production: GS-NS0 expression system. Cytotechnology, 2000,32 (2): 109-123.
    
    [51]. Barnes, L. M.; Bentley, C. M.; Dickson, A. J., Stability of protein production from recombinant mammalian cells. Biotechnol Bioeng, 2003, 81 (6): 631-639.
    
    [52]. Bebbington, C. R.; Renner, G; Thomson, S.; King, D.; Abrams, D.; Yarranton, G T., High-level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker. Biotechnology (N Y), 1992, 10 (2): 169-175.
    
    [53]. Wang, Z.; Wei, B.; Tian, S.; Zhang, Y; Wang, X.; Chu, Y; Ruan, L., [Dual gene amplification and selection system with dihydrofolate reductase and glutamine synthetase genes effectively increase the foreign gene expression]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi, 2002, 16 (1): 59-61.
    
    [54]. Kaufman, R. J., Selection and coamplification of heterologous genes in mammalian cells. Methods Enzymol, 1990, 185: 537-566.
    
    [55]. Yoshikawa, T.; Nakanishi, F.; Ogura, Y; Oi, D.; Omasa, T.; Katakura, Y; Kishimoto, M.; Suga, K., Amplified gene location in chromosomal DNA affected recombinant protein production and stability of amplified genes. Biotechnol Prog, 2000, 16 (5): 710-715.
    
    [56]. Yoshikawa, T.; Nakanishi, R; Itami, S.; Kameoka, D.; Omasa, T.; Katakura, Y; Kishimoto, M.; Suga, K., Evaluation of stable and highly productive gene amplified CHO cell line based on the location of amplified genes. Cytotechnology, 2000, 33 (1-3): 37-46.
    
    [57]. Kim, S. J.; Lee, G M., Cytogenetic analysis of chimeric antibody-producing CHO cells in the course of dihydrofolate reductase-mediated gene amplification and their stability in the absence of selective pressure. Biotechnol Bioeng, 1999,64 (6): 741-749.
    
    [58]. Barnes, L. M.; Bentley, C. M.; Dickson, A. J., Molecular definition of predictive indicators of stable protein expression in recombinant NS0 myeloma cells. Biotechnol Bioeng, 2004, 85 (2): 115-121.
    
    [59]. Kim, N. S.; Kim, S. J.; Lee, G M., Clonal variability within dihydrofolate reductase-mediated gene amplified Chinese hamster ovary cells: stability in the absence ofselective pressure. Biotechnol Bioeng, 1998, 60 (6): 679-688.
    [60]. Kagawa, Y.; Takasaki, S.; Utsumi, J.; Hosoi, K.; Shimizu, H.; Kochibe, N.; Kobata, A., Comparative study of the asparagine-linked sugar chains of natural human interferon-beta 1 and recombinant human interferon-beta 1 produced by three different mammalian cells. J Biol Chem, 1988, 263 (33): 17508-17515.
    [61]. McCormick, E; Trahey, M.; Innis, M.; Dieckmann, B.; Ringold, G, Inducible expression of amplified human beta interferon genes in CHO cells. Mol Cell Biol, 1984, 4 (1): 166-172.
    [62]. Utsumi, J.; Yamazaki, S.; Kawaguchi, K.; Kimura, S.; Shimizu, H., Stability of human interferon-beta 1: oligomeric human interferon-beta 1 is inactive but is reactivated by monomerization. Biochim Biophys Acta, 1989, 998 (2): 167-172.
    [63]. Orru, S.; Amoresano, A.; Siciliano, R.; Napoleoni, R.; Finocchiaro, O.; Datola, A.; De Luca, E.; Sirna, A.; Pucci, P., Structural analysis of modified forms of recombinant IFN-beta produced under stress-simulating conditions. Biol Chem, 2000, 381 (1): 7-17.
    [64]. Spearman, M.; Rodriguez, J.; Huzel, N.; Butler, M., Production and glycosylation of recombinant beta-interferon in suspension and cytopore microcarrier cultures of CHO cells. Biotechnol Prog, 2005, 21 (1): 31-39.
    [65]. Fan, H.; Ralston, J.; Dibiase, M.; Faulkner, E.; Russell Middaugh, C., Solution behavior of IFN-beta-1a: an empirical phase diagram based approach. J Pharm Sci, 2005, 94 (9): 1893-1911.
    [66]. Chu, L.; Blumentals, I.; Maheshwari, G, Production of recombinant therapeutic proteins by mammalian cells in suspension culture. Methods Mol Biol, 2005, 308: 107-121.
    [67]. Sinacore, M. S.; Drapeau, D.; Adamson, S. R., Adaptation of mammalian cells to growth in serum-free media. Mol Biotechnol, 2000, 15 (3): 249-257.
    [68]. Satomi, H.; Wang, B.; Fujisawa, H.; Otsuka, E, Interferon-beta from melanoma cells suppresses the proliferations of melanoma cells in an autocrine manner. Cytokine, 2002, 18 (2):108-115.
    [69]. Platanias, L. C.; Uddin, S.; Bruno, E.; Korkmaz, M.; Ahmad, S.; Alsayed, Y.; Van Den Berg, D.; Druker, B. J.; Wickrema, A.; Hoffman, R., CrkL and CrklI participate in the generation of the growth inhibitory effects of interferons on primary hematopoietic progenitors. Exp Hematol, 1999,27 (8): 1315-1321.
    [70]. Verma, A.; Deb, D. K.; Sassano, A.; Uddin, S.; Varga, J.; Wickrema, A.; Platanias, L. C., Activation of the p38 mitogen-activated protein kinase mediates the suppressive effects of type I interferons and transforming growth factor-beta on normal hematopoiesis. J Biol Chem, 2002, 277 (10): 7726-7735.[71]. Mayer, I. A.; Verma, A.; Grumbach, I. M.; Uddin, S.; Lekmine, E; Ravandi, E; Majchrzak, B.; Fujita, S.; Fish, E. N.; Platanias, L. C., The p38 MAPK pathway mediates the growth inhibitory effects of interferon-alpha in BCR-ABL-expressing cells. J Biol Chem, 2001, 276 (30): 28570-28577.
    [72]. Sanceau, J.; Hiscott, J.; Delattre, O.; Wietzerbin, J., IFN-beta induces sedne phosphorylation of Stat-1 in Ewing's sarcoma cells and mediates apoptosis via induction of IRF-1 and activation of caspase-7. Oncogene, 2000, 19 (30): 3372-3383.
    [73]. Duane, I.; Brian, M.; E., S. A. Methods for adapting cells for increased product production through exposure to ammonia. 5, 156, 964, U. S. Patent, 1992.
    [74]. Schumpp, B.; Schlaeger, E. J., Growth study of lactate and ammonia double-resistant clones of HL-60 cells. Cytotechnology, 1992, 8 (1): 39-44.
    [75]. Mather, J. P.; Roberts, P. E., Introduction to cell and tissue culture: theory and technique. Plenum Press: New York, 1998.[1]. Uze, G; Lutfalla, G; Gresser, I., Genetic transfer of a functional human interferon alpha receptor into mouse cells: cloning and expression of its cDNA. Cell, 1990,60 (2): 225-234.
    
    [2]. Domanski, P.; Witte, M.; Kellum, M.; Rubinstein, M.; Hackett, R.; Pitha, P.; Colamonici, O. R., Cloning and expression of a long form of the beta subunit of the interferon alpha beta receptor that is required for signaling. J Biol Chem, 1995, 270 (37): 21606-21611.
    
    [3] Lutfalla, G; Holland, S. J.; Cinato, E.; Monneron, D.; Reboul, J.; Rogers, N. C; Smith, J. M.; Stark, G R.; Gardiner, K.; Mogensen, K. E.; et al., Mutant USA cells are complemented by an interferon-alpha beta receptor subunit generated by alternative processing of a new member of a cytokine receptor gene cluster. Embo J, 1995,14 (20): 5100-5108.
    
    [4]. Novick, D.; Cohen, B.; Rubinstein, M., The human interferon alpha/beta receptor: characterization and molecular cloning. Cell, 1994,77 (3): 391-400.
    
    [5]. Colamonici, O. R.; Domanski, P., Identification of a novel subunit of the type I interferon receptor localized to human chromosome 21. J Biol Chem, 1993, 268 (15): 10895-10899.
    
    [6]. Darnell, J. E., Jr.; Kerr, I. M.; Stark, G R., Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science, 1994, 264 (5164): 1415-1421.
    
    [7]. Uddin, S.; Fish, E. N.; Sher, D.; Gardziola, C; Colamonici, O. R.; Kellum, M.; Pitha, P. M.; White, M. F.; Platanias, L. C, The IRS-pathway operates distinctively from the Stat-pathway in hematopoietic cells and transduces common and distinct signals during engagement of the insulin or interferon-alpha receptors. Blood, 1997,90 (7): 2574-2582.
    
    [8]. Ahmad, S.; Alsayed, Y. M.; Druker, B. J.; Platanias, L. C, The type I interferon receptor mediates tyrosine phosphorylation of the CrkL adaptor protein. J Biol Chem, 1997, 272 (48): 29991-29994.
    
    [9]. Uddin, S.; Majchrzak, B.; Woodson, J.; Arunkumar, P.; Alsayed, Y.; Pine, R.; Young, P. R.; Fish, E. N.; Platanias, L. C, Activation of the p38 mitogen-activated protein kinase by type I interferons. J Biol Chem, 1999, 274 (42): 30127-30131.
    
    [10]. Derynck, R.; Content, J.; DeClercq, E.; Volckaert, G; Tavernier, J.; Devos, R.; Fiers, W., Isolation and structure of a human fibroblast interferon gene. Nature, 1980, 285 (5766): 542-547.
    
    [11]. Taniguchi, T; Ohno, S.; Fujii-Kuriyama, Y; Muramatsu, M., The nucleotide sequence of human fibroblast interferon cDNA. Gene, 1980, 10 (1): 11-15.
    [12]. Levy, D. E.; Garcia-Sastre, A., The virus battles: IFN induction of the antiviral state and mechanisms of viral evasion. Cytokine Growth Factor Rev, 2001, 12 (2-3): 143-156.
    [13]. Ishida, H.; Ohkawa, K.; Hosui, A.; Hiramatsu, N.; Kanto, T.; Ueda, K.; Takehara, T.; Hayashi, N., Involvement of p38 signaling pathway in interferon-alpha-mediated antiviral activity toward hepatitis C vires. Biochem Biophys Res Commun, 2004, 321 (3): 722-727.
    [14]. Jatiani, S. S.; Mittal, R., Expression of the antiviral protein MxA in cells transiently perturbs endocytosis. Biochem Biophys Res Commun, 2004, 323 (2): 541-546.
    [15]. Reichelt, M.; Stertz, S.; Krijnse-Locker, J.; Haller, O.; Kochs, G., Missorting of LaCrosse virus nucleocapsid protein by the interferon-induced MxA GTPase involves smooth ER membranes. Traffic, 2004, 5 (10): 772-784.
    [16]. Satomi, H.; Wang, B.; Fujisawa, H.; Otsuka, E, Interferon-beta from melanoma cells suppresses the proliferations of melanoma cells in an autocrine manner. Cytokine, 2002, 18 (2): 108-115.
    [17]. Platanias, L. C.; Uddin, S.; Bruno, E.; Korkmaz, M.; Ahmad, S.; Alsayed, Y.; Van Den Berg, D.; Druker, B. J.; Wickrema, A.; Hoffman, R., CrkL and CrklI participate in the generation of the growth inhibitory effects of interferons on primary hematopoietic progenitors. Exp Hematol, 1999, 27 (8): 1315-1321.
    [18]. Verma, A.; Deb, D. K.; Sassano, A.; Uddin, S.; Varga, J.; Wickrema, A.; Platanias, L. C., Activation of the p38 mitogen-activated protein kinase mediates the suppressive effects of type Ⅰ interferons and transforming growth factor-beta on normal hematopoiesis. J Biol Chem, 2002, 277 (10): 7726-7735.
    [19]. Mayer, I. A.; Verma, A.; Grumbach, I. M.; Uddin, S.; Lekmine, E; Ravandi, E; Majchrzak, B.; Fujita, S.; Fish, E. N.; Platanias, L. C., The p38 MAPK pathway mediates the growth inhibitory effects of interferon-alpha in BCR-ABL-expressing cells. J Biol Chem, 2001, 276 (30): 28570-28577.
    [20]. Sanceau, J.; Hiscott, J.; Delattre, O.; Wietzerbin, J., IFN-beta induces serine phosphorylation of Stat-1 in Ewing's sarcoma cells and mediates apoptosis via induction of IRF-1 and activation of caspase-7. Oncogene, 2000, 19 (30): 3372-3383.
    [21]. Chawla-Sarkar, M.; Lindner, D. J.; Liu, Y. E; Williams, B. R.; Sen, G. C.; Silverman, R. H.; Borden, E. C., Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis. Apoptosis, 2003, 8 (3): 237-249.
    [22]. Biron, C. A., Interferons alpha and beta as immune regulators—a new look. Immunity, 2001, 14 (6): 661-664.[23]. Yang, C. H.; Murti, A.; Pfeffer, S. R.; Kim, J. G.; Donner, D. B.; Pfeffer, L. M., Interferon alpha /beta promotes cell survival by activating nuclear factor kappa B through phosphatidylinositol 3-kinase and Akt. J Biol Chem, 2001, 276 (17): 13756-13761.
    [24]. Wang, K.; Scheel-Toellner, D.; Wong, S. H.; Craddock, R.; Caamano, J.; Akbar, A. N.; Salmon, M.; Lord, J. M., Inhibition of neutrophil apoptosis by type 1 IFN depends on cross-talk between phosphoinositol 3-kinase, protein kinase C-delta, and NF-kappa B signaling pathways. J Immunol, 2003, 171 (2): 1035-1041.
    [25]. Cook, S. J.; Rubinfeld, B.; Albert, I.; McCormick, E, RapV12 antagonizes Ras-dependent activation of ERK1 and ERK2 by LPA and EGF in Rat-1 fibroblasts. Embo J, 1993, 12 (9): 3475-3485.
    [26]. Uddin, S.; Lekmine, F.; Sharma, N.; Majchrzak, B.; Mayer, I.; Young, P. R.; Bokoch, G. M.; Fish, E. N.; Platanias, L. C., The Racl/p38 mitogen-activated protein kinase pathway is required for interferon alpha-dependent transcrpfional activation but not serine phosphorylation of Stat proteins. J Biol Chem, 2000, 275 (36): 27634-27640.
    [27]. Li, Y.; Sassano, A.; Majchrzak, B.; Deb, D. K.; Levy, D. E.; Gaestel, M.; Nebreda, A. R.; Fish, E. N.; Platanias, L. C., Role of p38alpha Map kinase in Type Ⅰ interferon signaling. J Biol Chem, 2004, 279 (2): 970-979.
    [28]. Compston, A.; Coles, A., Multiple sclerosis. Lancet, 2002, 359 (9313): 1221-1231.
    [29]. Lublin, E D.; Reingold, S. C., Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology, 1996, 46 (4): 907-911.
    [30]. Hong, J.; Tejada-Simon, M. V.; Rivera, V. M.; Zang, Y. C.; Zhang, J. Z., Anti-viral properties of interferon beta treatment in patients with multiple sclerosis. Mult Scler, 2002, 8 (3): 237-242.
    [31]. Misu, T.; Onodera, H.; Fujihara, K.; Matsushima, K.; Yoshie, O.; Okita, N.; Takase, S.; Itoyama, Y., Chemokine receptor expression on T cells in blood and cerebrospinal fluid at relapse and remission of multiple sclerosis: imbalance of Th1/Th2-associated chemokine signaling. J Neuroiramunol, 2001, 114 (1-2): 207-212.
    [32]. Jiang, H.; Milo, R.; Swoveland, P.; Johnson, K. P.; Panitch, H.; Dhibjalbut, S., Interferon-Beta-1b Reduces Interferon Gamma-Induced Antigen-Presenting Capacity of Human Glial and B-Cells. Journal of Neuroimmunology, 1995, 61 (1): 17-25.
    [33]. Byrnes, A. A.; McArthur, J. C.; Karp, C. L., Interferon-beta therapy for multiple sclerosis induces reciprocal changes in intedeukin-12 and intedeukin-10 production. Ann Neurol, 2002, 51 (2): 165-174.[34]. Zipp, E; Weller, M.; Calabresi, P. A.; Frank, J. A.; Bash, C. N.; Dichgans, J.; McFarland, H. E; Martin, R., Increased serum levels of soluble CD95 (APO-1/Fas) in relapsing-remitting multiple sclerosis. Ann Neurol, 1998, 43 (1): 116-120.
    [35]. Waiczies, S.; Weber, A.; Lunemann, J. D.; Aktas, O.; Zschendedein, R.; Zipp, F., Elevated Bcl-X(L) levels correlate with T cell survival in multiple sclerosis. J Neuroimmunol, 2002, 126 (1-2): 213-220.
    [36]. Shadef, M. K., Increased cellular expression of the caspase inhibitor FLIP in intrathecal lymphocytes from patients with multiple sclerosis. J Neuroimmunol, 2000, 111 (1-2): 203-209.
    [37]. Sharief, M. K.; Semra, Y. K.; Seidi, O. A.; Zoukos, Y., Interferon-beta therapy downregulates the anti-apoptosis protein FLIP in T cells from patients with multiple sclerosis. J Neuroimmunol, 2001, 120 (1-2): 199-207.
    [38]. Gniadek, P.; Aktas, O.; Wandinger, K. P.; Bellmann-Strobl, J.; Wengert, O.; Weber, A.; von Wussow, P.; Obert, H. J.; Zipp, F., Systemic IFN-beta treatment induces apoptosis of peripheral immune cells in MS patients. J Neuroimmunol, 2003, 137 (1-2): 187-196.
    [39]. Rep, M. H.; Schrijver, H. M.; van Lopik, T.; Hintzen, R. Q.; Roos, M. T.; Ader, H. J.; Polman, C. H.; van Lier, R. A., Interferon (IFN)-beta treatment enhances CD95 and intedeukin 10 expression but reduces interferon-gamma producing T cells in MS patients. J Neuroimmunol, 1999, 96 (1): 92-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700