人脂肪干细胞基本生物学特性、表面抗原及成骨、成脂分化潜能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的研究人脂肪干细胞的基本生物学特性、表面抗原特点及其向成骨细胞和脂肪细胞诱导分化潜能。
     方法①取健康人腹部皮下脂肪组织,胶原酶消化法分离出脂肪干细胞,进行体外培养,观察其形态特征。②cck—8比色法检测1、3、6、10代脂肪干细胞活性,并绘制细胞生长曲线,计算群体倍增时间。③流式细胞仪检测第1、3、6代脂肪干细胞的细胞周期及表面抗原,SPSS11.0软件分析数据。④取第3代人脂肪干细胞,分别用成骨和成脂诱导培养液诱导其向成骨细胞和脂肪细胞分化,cck—8比色法检测诱导后的细胞活性,并绘制细胞生长曲线,计算群体倍增时间;RT-PCR检测人脂肪干细胞诱导后成骨细胞特异性骨钙蛋白(osteocalcin,OCN)、骨桥蛋白(osteopontin,OPN)及骨保护素(Osteoprotegerin,OPG)基因的表达和脂肪细胞特异性过氧化物酶体增殖物激活受体γ(PPARγ)基因与CCAAT增强子结合蛋白(C/EBPa)基因的表达,Western-blot进一步检测OPG蛋白的表达;碱性磷酸酶(ALP)染色、冯库萨(Von Kossa)染色、油红O染色定性鉴定其成骨和成脂分化潜能。
     结果①形态特征:原代及传代的人脂肪干细胞形态均类似成纤维细胞,生长能力旺盛。②生长曲线及倍增时间:1、3、6、10代人脂肪干细胞的生长曲线大致相同,呈近似“S”形,群体倍增时间约为36h。③细胞周期分析:第1、3、6代人脂肪干细胞中,超过80%的细胞都处于G0/G1期。④表面抗原:第1、3、6代脂肪干细胞表面抗原表达无明显区别,P>0.05。其中,CD10、CD13、CD55、CD59及CD71表达阳性,CD11b、CD14、CD18、CD34、CD45、CD56及HLA-DR表达阴性。⑤诱导分化:人脂肪干细胞经成骨诱导培养后,细胞增殖速度变慢,群体倍增时间延长至约66h,诱导14d后,RT-PCR检测到OCN、OPN基因的表达,同时,RT-PCR、Western-blot检测到OPG基因与蛋白的表达,ALP染色和Von Kossa染色阳性;人脂肪干细胞经成脂诱导后,细胞增殖速度同样变慢,群体倍增时间延长至约70h,诱导14d后,RT-PCR检测到PPARγ与C/EBPa基因的表达,油红O染色阳性。
     结论人腹部皮下脂肪组织可分离培养出脂肪干细胞,大多细胞处于静止期,表面抗原CD10、CD13、CD55、CD59、CD71表达呈阳性,CD11b、CD14、CD18、CD34、CD45、CD56、HLA-DR表达呈阴性,体外培养和传代对其表面抗原的表达无明显影响,能向成骨细胞和脂肪细胞诱导分化,有望成为组织工程理想的种子细胞来源之一。
Objective To investigate the basic biological characteristics of human adipose-derived stromal cells(hADSCs) and their surface protein expression,and to explore their osteogenic and adipogenic potential in vitro.
     Methods Human adipose tissue was obtained from the abdominal subcutaneous adipose tissue of health patients under the aseptic condition,then the hADSCs were isolated with typeⅠcollagenase digesting method and adherent method and cultured in DMEM containing 10%FBS.The phase-contrast microscope was used to observe hADSCs every day and the viability of 1st,3rd,6th,and 10th passages was assessed by cck-8.The growth cure and doubling time were drawn.Cell cycle and surface proteins include CD 10, CD11b,CD13,CD14,CD18,CD34,CD45,CD55,CD56,CD59,HLA-DR and CD71 on the 1st,3rd,and 6th passage were analyzed by flow cytometry technique,and the data obtained was statistically analyzed by computer with the software SPSS 11.0 for windows,hADSCs from the 3rd passages were induced into osteogenic and adipogenic lineages by different revulsant for 14 days.The viability of hADSCs after induced was also assessed by cck-8.To confirm osteogenesis,cells were examined by RT-PCR for the expression of several genes,including OCN,OPN and OPG and by von Kossa/alkaline phosphatase staining,and the OPG protein expression was further confirmed by Western blotting.Adipogenic differentiation was identified by RT-PCR for the expression of PPARγ,and C/EBPa genes and by Oil Red O staining of intracellular lipid droplets.
     Results①Morphous of primary and passage hADSCs:hADSCs were fibroblast-like and could rapidly expand.②Growth curve and doubling time of hADSCs:The growth curve of 1st,3rd,6th,and 10th passages were similar,and like "s" shape.The doubling time of hADSCs was about 36 hours.③The Cell cycle of hADSCs:The majority of cells under undifferentiated conditions were in G0/G1 phase(80%).④Surface marks of hADSCs:No significant difference among the 1st,3rd,and 6th passages could be demonstrated concerning the expression of these surface marks.Expressed proteins include CD10,CD13,CD55,CD59 and CD71,while CD11,CD14,CD18,CD34,CD45, CD56 or HLA-DR are not expressed by undifferentiated hADSCs,P>0.05.⑤After osteogenic induction for 14 days,the OCN,OPN and OPG genes were detected by RT-PCR, and the OPG protein expression was verified by Western-blot assay,too.As we know,no literature regarding OPG gene and protein expression has been published.The results for alkaline phosphatase and Von Kossa staining were also positive.In the adipogenic induction,PPARγ,and C/EBPa genes can also be detected by RT-PCR,and the results for Oil red O staining were positive.
     Conclusion hADSCs can be isolated from human abdominal subcutaneous adipose tissue and most stayed in G0/G1 phase,hADSCs can express the proteins include CD10, CD13,CD55,CD59 and CD71,and the present method we used to isolate and culture hADSCs has no obviously influence on the expression of the surface proteins.It has the potential to differentiate into osteogenic and adipogenic lineage and may be an ideal seed cell source for tissue engineering.
引文
1. Stosich M S, Mao J J. Adipose tissue engineering from human adult stem cells: clinical implications in plastic and reconstructive surgery.[J]. Plast Reconstr Surg, 2007,119(1):71-83845.
    2. Vacanti C A, Langer R, Schloo B, et al. Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation.[J]. Plast Reconstr Surg, 1991,88(5):753-759.
    3. Cao Y, Vacanti J P, Ma X, et al. Generation of neo-tendon using synthetic polymers seeded with tenocytes.[J]. Transplant Proc, 1994,26(6):3390-3392.
    4. Zuk P A, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies.[J]. Tissue Eng, 2001,7(2):211-228.
    5. Hong L, Peptan I, Clark P, et al. Ex vivo adipose tissue engineering by human marrow stromal cell seeded gelatin sponge.[J]. Ann Biomed Eng, 2005,33(4):511-517.
    6. Guilak F, Lott K E, Awad H A, et al. Clonal analysis of the differentiation potential of human adipose-derived adult stem cells.[J]. J Cell Physiol, 2006,206(1):229-237.
    7. Strem B M, Hicok K C, Zhu M, et al. Multipotential differentiation of adipose tissue-derived stem cells.[J]. Keio J Med, 2005,54(3):132-141.
    8. Dragoo J L, Choi J Y, Lieberman J R, et al. Bone induction by BMP-2 transduced stem cells derived from human fat.[J]. J Orthop Res, 2003,21(4):622-629.
    9. Rodriguez A M, Elabd C, Delteil F, et al. Adipocyte differentiation of multipotent cells established from human adipose tissue.[J]. Biochem Biophys Res Commun, 2004,315(2):255-263.
    10. Zuk P A, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells.[J]. Mol Biol Cell, 2002,13(12):4279-4295.
    11. Rangappa S, Fen C, Lee E H, et al. Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes.[J]. Ann Thorac Surg, 2003,75(3):775-779.
    12. Seo M J, Suh S Y, Bae Y C, et al. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo.[J]. Biochem Biophys Res Commun, 2005,328(1):258-264.
    13. Fraser J K, Wulur I, Alfonso Z, et al. Fat tissue: an underappreciated source of stem cells for biotechnology.[J]. Trends Biotechnol, 2006,24(4): 150-154.
    14. Rodriguez A M, Elabd C, Amri E Z, et al. The human adipose tissue is a source of multipotent stem cells.[J]. Biochimie, 2005,87(1):125-128.
    15. Mizuno H, Zuk P A, Zhu M, et al. Myogenic differentiation by human processed lipoaspirate cells.[J]. Plast Reconstr Surg, 2002,109(1): 199-2092101.
    16. Lee R H, Kim B, Choi I, et al. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue.[J]. Cell Physiol Biochem, 2004,14(4-6):311-324.
    17. Gronthos S, Franklin D M, Leddy H A, et al. Surface protein characterization of human adipose tissue-derived stromal cells.[J]. J Cell Physiol, 2001,189(1):54-63.
    18. Festy F, Hoareau L, Bes-houtmann S, et al. Surface protein expression between human adipose tissue-derived stromal cells and mature adipocytes.[J]. Histochem Cell Biol, 2005,124(2):l 13-121.
    19. De U D, Alfonso Z, Zuk P A, et al. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow.[J]. Immunol Lett, 2003,89(2-3):267-270.
    20. Aust L, Devlin B, Foster S J, et al. Yield of human adipose-derived adult stem cells from liposuction aspirates.[J]. Cytotherapy, 2004,6(1):7-14.
    21. Yoshimura K, Shigeura T, Matsumoto D, et al. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates.[J]. J Cell Physiol, 2006,208(1):64-76.
    22. Mitchell J B, Mcintosh K, Zvonic S, et al. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers.[J]. Stem Cells, 2006,24(2):376-385.
    23 .Miranville A, Heeschen C, Sengenes C, et al. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells.[J]. Circulation, 2004,110(3):349-355.
    24. Wagner W, Wein F, Seckinger A, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood.[J]. Exp Hematol, 2005,33(11):1402-1416.
    25. Choi Y S, Cha S M, Lee Y Y, et al. Adipogenic differentiation of adipose tissue derived adult stem cells in nude mouse.[J]. Biochem Biophys Res Commun, 2006,345(2):631-637.
    26. Brzoska M, Geiger H, Gauer S, et al. Epithelial differentiation of human adipose tissue-derived adult stem cells. [J]. Biochem Biophys Res Commun, 2005,330(1): 142-150.
    27. Sengenes C, Lolmede K, Zakaroff-girard A, et al. Preadipocytes in the human subcutaneous adipose tissue display distinct features from the adult mesenchymal and hematopoietic stem cells.[J]. J Cell Physiol, 2005,205(1): 114-122.
    28. Lian J, Stewart C, Puchacz E, et al. Structure of the rat osteocalcin gene and regulation of vitamin D-dependent expression. [J]. Proc Natl Acad Sci U S A, 1989,86(4):1143-1147.
    29. Reinholt F P, Hultenby K, Oldberg A, et al. Osteopontin--a possible anchor of osteoclasts to bone.[J]. Proc Natl Acad Sci U S A, 1990,87(12):4473-4475.
    30. Simonet W S, Lacey D L, Dunstan C R, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density.[J]. Cell, 1997,89(2):309-319.
    31. Spiegelman B M. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor.[J]. Diabetes, 1998,47(4):507-514.
    1. Stosich M S, Mao J J. Adipose tissue engineering from human adult stem cells: clinical implications in plastic and reconstructive surgery.[J]. Plast Reconstr Surg, 2007,119(1):71-83845.
    2. Zuk P A, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies.[J]. Tissue Eng, 2001,7(2):211-228.
    3. Hong L, Peptan I, Clark P, et al. Ex vivo adipose tissue engineering by human marrow stromal cell seeded gelatin sponge.[J]. Ann Biomed Eng, 2005,33(4):511-517.
    4. Guilak F, Lott K E, Awad H A, et al. Clonal analysis of the differentiation potential of . human adipose-derived adult stem cells.[J]. J Cell Physiol, 2006,206(1):229-237.
    5. Strem B M, Hicok K C, Zhu M, et al. Multipotential differentiation of adipose tissue-derived stem cells.[J]. Keio J Med, 2005,54(3): 132-141.
    6. Gronthos S, Franklin D M, Leddy H A, et al. Surface protein characterization of human adipose tissue-derived stromal cells.[J]. J Cell Physiol, 2001,189(1):54-63.
    7. Festy F, Hoareau L, Bes-houtmann S, et al. Surface protein expression between human adipose tissue-derived stromal cells and mature adipocytes.[J]. Histochem Cell Biol, 2005,124(2): 113-121.
    8. De U D, Alfonso Z, Zuk P A, et al. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow.[J]. Immunol Lett, 2003,89(2-3):267-270.
    9. Aust L, Devlin B, Foster S J, et al. Yield of human adipose-derived adult stem cells from liposuction aspirates.[J]. Cytotherapy, 2004,6(1):7-14.
    10.Yoshimura K, Shigeura T, Matsumoto D, et al. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates.[J]. J Cell Physiol, 2006,208(1):64-76.
    11. Mitchell J B, Mcintosh K, Zvonic S, et al. Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers.[J]. Stem Cells, 2006,24(2):376-385.
    12. Trischmann T M, Schepers K G, Civin C I. Measurement of CD34+ cells in bone marrow by flow cytometry.[J]. J Hematother, 1993,2(3):305-313.
    13. Bensinger W, Singer J, Appelbaum F, et al. Autologous transplantation with peripheral blood mononuclear cells collected after administration of recombinant granulocyte stimulating factor.[J]. Blood, 1993,81(11):3158-3163.
    14. Wagner W, Wein F, Seckinger A, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood.[J]. Exp Hematol, 2005,33(11):1402-1416.
    15. Choi Y S, Cha S M, Lee Y Y, et al. Adipogenic differentiation of adipose tissue derived adult stem cells in nude mouse.[J]. Biochem Biophys Res Commun, 2006,345(2):631-637.
    16. Sengenes C, Lolmede K, Zakaroff-girard A, et al. Preadipocytes in the human subcutaneous adipose tissue display distinct features from the adult mesenchymal and hematopoietic stem cells.[J]. J Cell Physiol, 2005,205(1):l 14-122.
    17. Rodriguez A M, Elabd C, Amri E Z, et al. The human adipose tissue is a source of multipotent stem cells.[J]. Biochimie, 2005,87(1): 125-128.
    18. Guilak F, Lott K E, Awad H A, et al. Clonal analysis of the differentiation potential of human adipose-derived adult stem cells.[J]. J Cell Physiol, 2006,206(1):229-237.
    19. Zuk P A, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells.[J]. Mol Biol Cell, 2002,13(12):4279-4295.
    20. Sen A, Lea-currie Y R, Sujkowska D, et al. Adipogenic potential of human adipose derived stromal cells from multiple donors is heterogeneous.[J]. J Cell Biochem, 2001,81(2):312-319.
    21. Halbleib M, Skurk T, De L C, et al. Tissue engineering of white adipose tissue using hyaluronic acid-based scaffolds. I: in vitro differentiation of human adipocyte precursor cells on scaffolds.[J]. Biomaterials, 2003,24(18):3125-3132.
    22. Von H D, Zachariah S, Heschel I, et al. Human preadipocytes seeded on freeze-dried collagen scaffolds investigated in vitro and in vivo.[J]. Biomaterials, 2001,22(5):429-438.
    23. Kaplan F S, Hahn G V, Zasloff M A. Heterotopic Ossification: Two Rare Forms and What They Can Teach Us.[J]. J Am Acad Orthop Surg, 1994,2(5):288-296.
    24. Halvorsen Y D, Franklin D, Bond A L, et al. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells.[J]. Tissue Eng,2001,7(6):729-741.
    25. Dragoo J L, Lieberman J R, Lee R S, et al. Tissue-engineered bone from BMP-2-transduced stem cells derived from human fat.[J]. Plast Reconstr Surg,2005,115(6):1665-1673.
    26. Dragoo J L, Choi J Y, Lieberman J R, et al. Bone induction by BMP-2 transduced stem cells derived from human fat.[J]. J Orthop Res, 2003,21(4):622-629.
    27. Cowan C M, Shi Y Y, Aalami O O, et al. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects.[J]. Nat Biotechnol, 2004,22(5):560-567.
    28. Li H, Dai K, Tang T, et al. Bone regeneration by implantation of adipose-derived stromal cells expressing BMP-2.[J]. Biochem Biophys Res Commun, 2007,356(4):836- 842.
    29. Winter A, Breit S, Parsch D, et al. Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells.[J]. Arthritis Rheum, 2003,48(2):418-429.
    30. Erickson G R, Gimble J M, Franklin D M, et al. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo.[J]. Biochem Biophys Res Commun, 2002,290(2):763-769.
    31. Dragoo J L, Samimi B, Zhu M, et al. Tissue-engineered cartilage and bone using stem cells from human infrapatellar fat pads.[J]. J Bone Joint Surg Br, 2003,85(5):740-747.
    32. Erickson G R, Gimble J M, Franklin D M, et al. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo.[J]. Biochem Biophys Res Commun, 2002,290(2):763-769.
    33. Dragoo J L, Carlson G, Mccormick F, et al. Healing full-thickness cartilage defects using adipose-derived stem cells.[J]. Tissue Eng, 2007,13(7): 1615-1621.
    34. Estes B T, Wu A W, Guilak F. Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6.[J]. Arthritis Rheum, 2006,54(4): 1222-1232.
    35. De U D, Morizono K, Elbarbary A, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow.[J]. Cells Tissues Organs, 2003,174(3):101-109.
    36. Woodbury D, Schwarz E J, Prockop D J, et al. Adult rat and human bone marrow stromal cells differentiate into neurons.[J]. J Neurosci Res, 2000,61(4):364-370.
    37. Neuhuber B, Gallo G, Howard L, et al. Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype.[J]. J Neurosci Res, 2004,77(2): 192-204.
    38. Lu P, Blesch A, Tuszynski M H. Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact?[J]. J Neurosci Res, 2004,77(2): 174-191.
    39. Ashjian P H, Elbarbary A S, Edmonds B, et al. In vitro differentiation of human processed lipoaspirate cells into early neural progenitors.[J]. Plast Reconstr Surg, 2003,111(6):1922-1931.
    40. Lu D, Li Y, Wang L, et al. Intraarterial administration of marrow stromal cells in a rat model of traumatic brain injury.[J]. J Neurotrauma, 2001,18(8):813-819.
    41. Mahmood A, Lu D, Lu M, et al. Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. [J]. Neurosurgery, 2003,53(3):697-7027023.
    42. Kang S K, Lee D H, Bae Y C, et al. Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats.[J]. Exp Neurol, 2003,183(2):355-366.
    43. Kang S K, Jun E S, Bae Y C, et al. Interactions between human adipose stromal cells and mouse neural stem cells in vitro.[J]. Brain Res Dev Brain Res, 2003,145(1):141-149.
    44. Mahmood A, Lu D, Chopp M. Marrow stromal cell transplantation after traumatic brain injury promotes cellular proliferation within the brain.[J]. Neurosurgery, 2004,55(5):1185-1193.
    45. Garcia R, Aguiar J, Alberti E, et al. Bone marrow stromal cells produce nerve growth factor and glial cell line-derived neurotrophic factors.[J]. Biochem Biophys Res Commun, 2004,316(3):753-754.
    46. Chen J, Zhang Z G, Li Y, et al. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats.[J]. Circ Res, 2003,92(6):692-699.
    47. Li Y, Chen J, Chen X G, et al. Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery.[J]. Neurology, 2002,59(4):514-523.
    48. Bacou F, El A R, Daussin P A, et al. Transplantation of adipose tissue-derived stromal cells increases mass and functional capacity of damaged skeletal muscle.[J]. Cell Transplant, 2004,13(2): 103-111.
    49. Mizuno H, Zuk P A, Zhu M, et al. Myogenic differentiation by human processed lipoaspirate cells.[J]. Plast Reconstr Surg, 2002,109(1):199-2092101.
    50. Rodriguez A M, Pisani D, Dechesne C A, et al. Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse.[J]. J Exp Med, 2005,201(9): 1397-1405.
    51. Gaustad K G, Boquest A C, Anderson B E, et al. Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes.[J]. Biochem Biophys Res Commun, 2004,314(2):420-427.
    52. Rangappa S, Fen C, Lee E H, et al. Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes.[J]. Ann Thorac Surg, 2003,75(3):775-779.
    53. Planat-benard V, Menard C, Andre M, et al. Spontaneous cardiomyocyte differentiation from adipose tissue stroma ceIls.[J]. Circ Res, 2004,94(2):223-229.
    54. Lee W C, Rubin J P, Marra K G. Regulation of alpha-smooth muscle actin protein expression in adipose-derived stem cells.[J]. Cells Tissues Organs, 2006,183(2):80-86.
    55. Rodriguez L V, Alfonso Z, Zhang R, et al. Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells.[J]. Proc Natl Acad Sci U S A, 2006,103(32): 12167-12172.
    56. Miranville A, Heeschen C, Sengenes C, et al. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells.[J]. Circulation, 2004,110(3):349-355.
    57. Seo M J, Suh S Y, Bae Y C, et al. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo.[J]. Biochem Biophys Res Commun, 2005,328(1):258-264.
    58. Cousin B, Andre M, Arnaud E, et al. Reconstitution of lethally irradiated mice by cells isolated from adipose tissue.[J]. Biochem Biophys Res Commun, 2003,301(4): 1016-1022.
    59. Lendeckel S, Jodicke A, Christophis P, et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report.[J]. J Craniomaxillofac Surg, 2004,32(6):370-373.
    60. Garcia-olmo D, Garcia-arranz M, Garcia L G, et al. Autologous stem cell transplantation for treatment of rectovaginal fistula in perianal Crohn's disease: a new cell-based therapy.[J]. Int J Colorectal Dis, 2003,18(5):451-454.
    61. Garcia-olmo D, Garcia-arranz M, Herreros D, et al. A phase I clinical trial of the treatment of Crohn's fistula by adipose mesenchymal stem cell transplantation.[J]. Dis Colon Rectum, 2005,48(7):1416-1423.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700