电流控制全平衡电流传输器及其电流模式滤波器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在超大规模集成电路的飞速发展过程中,电流模式电路在速度、带宽等方面显示了巨大的优势。作为电流模式电路中的基本模块,电流传输器具有频率范围宽、线性度好、转换速率高等优点。但是,以目前工艺实现的电流传输器,电流输入端存在一个不可忽略的寄生电阻,在电压传输中产生了误差,采用电流控制电流传输器是目前解决该问题的最佳途径。
     在超大规模集成电路中,由数字模块引起的噪声极大地影响了系统中的模拟模块,全平衡式结构的电流传输器,能有效地抑制这些以共模信号形式出现的噪声,并且,由全平衡结构的电流传输器构成的差分式滤波器也可将该噪声进行滤除。
     本文主要致力于研究具有全平衡结构的电流控制电流传输器及其在滤波器、放大器和普适电流传输器方面的应用。本论文首先阐述了电流传输器的发展历程及其在电流模式连续时间滤波器中的应用现状,详细介绍了各种电流传输器的端口特性、电路原理及典型电路实现,以及在电流模式二阶和高阶滤波器中的应用。在此基础上对全平衡结构的电流控制电流传输器及其构成的电流模式滤波器、放大器及普适电流传输器进行了创新性研究。本文主要的创新工作可概括如下:
     (1)本论文提出一个具有全平衡结构的电流控制电流传输器,即电流控制全平衡电流传输器(CFBCCⅡ),将偏置电流可控的电阻引入到全平衡结构的电流传输器中,使得电路既具有全平衡网络的优势,又能偏置电流可控。提出的CFBCCⅡ电路的所有端口均为差分式,引入的共模反馈单元能有效地抑制共模信号。该电路采用CMOS复合管构成的跨导线性环实现电压的传输,在无需苛刻的工艺条件下,消除了传统电流传输器的电压传输误差,电路本身具备的电阻特性减少了应用电路中无源元件的数目,更使得应用电路的多种参数能够实现电可调。
     (2)本论文提出3种基于CFBCCⅡ的二阶电流模式滤波器,包括一种基于单个CFBCCⅡ的多输入单输出滤波器和两种基于多个CFBCCⅡ的多输入多输出滤波器。其中基于单个CFBCCⅡ的多输入单输出滤波器为单端式结构,电路仅使用一个CFBCCⅡ2个接地无源元件,由于CFBCCⅡ自身的电阻特性,电路无需任何电阻,适当选择输入端口即可实现低通、带通、高通、带阻及全通5种滤波功能,滤波器的固有频率及品质因数独立可调。
     两种基于多个CFBCCⅡ的多输入多输出滤波器均为差分式结构,第一种结构的滤波器使用2个CFBCCⅡ和4对接地无源元件,第二种结构的滤波器使用3个CFBCCⅡ和2对接地无源元件,两种电路均能实现低通、带通及高通3种滤波功能,且固有频率和品质因数独立可调。
     采用chartered0.35μm工艺,对CFBCCⅡ电路、基于CFBCCⅡ的单端式多输入单输出滤波器以及基于3个CFBCCⅡ的差分式多输入多输出滤波器利用Candence软件进行版图设计,并参加MPW流片计划完成了流片实验。
     (3)本论文提出基于CFBCCⅡ的电流模式高阶椭圆滤波器,该滤波器的特点是:电路为差分式结构,能较好地抑制共模信号,滤波器的截止频率可由CFBCCⅡ的偏置电流进行调节,采用的跳耦法使得设计过程简单明了,并保留了无源RLC梯形滤波器的低灵敏度。
     (4)本论文在CFBCCⅡ电路的基础上提出了一个普适电流传输器,可以很方便的构成各种电流传输器,电路具有较强的普适性。作为CFBCCⅡ的应用,提出了基于CFBCCⅡ的2种差分式电流模式放大器及2种差分式电压模式放大器,放大器的放大增益均可通过CFBCCⅡ的偏置电流进行调节。
As the development in VLSI circuits, there is a growing interest in current mode circuits due to their better linearity, wider bandwidth, simpler architectures and lower supply voltage capabilities than their voltage-mode counterparts. As a basic building block of the current mode circuit, current conveyors can provide wider bandwidth and better accuracy compared with voltage mode operational amplifiers. However, current conveyors being implemented with the existing techniques suffer from the intrinsic resistance in the current input terminal, which leads to a relatively significant voltage tracking error in the voltage transfer, for the moment, current controlled current conveyors are the best solution to the problem.
     In the VLSI circuit, the noise, actually the common mode signals, aroused by the digital part would influence the analog part, while current conveyors with fully balanced structure can effectively suppress these noise, moreover, differential filters implemented by the fully balanced current conveyors can filter out the noise.
     This dissertation mainly focuses on the study of the realization of a current controlled current conveyor with fully balanced structure and its application in current mode filters, amplifiers and universal current conveyors. Firstly, the research situation of the development and filter application of current conveyor is summarized. The port characteristics, circuit principles and typical circuit realizations of current conveyor and its filter applications are introduced in detail. Then, the creative studies on the current controlled fully balanced current conveyor and its applications on filters, amplifiers and universal current conveyors are investigated. The main innovative work of this dissertation is as follows.
     (1) This dissertation proposed a current controlled fully balanced current conveyor (CFBCCII), the circuit introduces a current controlled resistance to the fully balanced current conveyor, the resulting circuit not only has the advantage of fully balanced structure, but also can be controlled by the bias current. All the terminals of CFBCCII are differential, and the circuit can restrain common mode signals effectively in virtue of the introduction of the common mode feedback block. The voltage input cell is implemented from a translinear loop composed of CMOS compound transistors, which can eliminate the voltage transfer errors in the conventional current conveyors. Moreover, the intrinsic resistance of CFBCCII lowers the number of the passive elements when implementing various application circuits, and the parameters of the application circuits can be tuned by the bias current.
     (2) The dissertation proposed3CFBCCII based second-order current-mode filters, including a multi-input single-output filter based on a single CFBCCII and two multi-input multi-output filters based on multi-CFBCCII. The multi-input single-output filter based on a single CFBCCII is single ended, the circuit employs one CFBCCII, two grounded passive elements. In virtue of CFBCCII, the filter does not need any resistors. Numerous filtering functions can be obtained depending on the status of the input current. The natural frequency and the quality factor can be tuned independently.
     The rest two filters are both differential, the first one employs2CFBCCIIs and4pairs of grounded passive elements, the second one uses3CFBCCIIs and2pairs of grounded passive elements, both filters can realize low-pass, ban-pass and all-pass filtering functions, the natural frequency and the quality factor are independently tuned.
     The layout design is also carried out for the CFBCCII circuit, CFBCCII based single ended multi-input single-output filter and the differential multi-input multi-output filter based on3CFBCCIIs, eventually, the above three circuits are taped out successfully with Chartered0.35μm process.
     (3) A current mode high order elliptic filter was proposed based on CFBCCII with leapfrog synthesis, this filter is differential, which can suppress common mode signals effectively, and the cutoff frequency can be controlled by the bias current of CFBCCIIs. The Leapfrog synthesis is simple and intuitive, moreover, the filter inherit the low sensitivities of passive RLC ladder filters.
     (4) This dissertation proposed a universal current conveyor based on CFBCCII, the proposed circuit can realize many kinds of current conveyors conveniently. Two kinds of current mode and voltage mode amplifiers based on CFBCCIIs are also proposed as the application of CFBCCII, the gains of the amplifiers can be adjusted by the bias current of CFBCCII.
引文
[1]陈贵灿,程军,张瑞智.模拟CMOS集成电路设计.西安:西安交通大学出版社,2002,1-5
    [2]Smith K C, Sedra A. The current conveyor-A new circuit building block. IEEE Proceedings,1968,56(8):1368-1369
    [3]Gilbert B. Translinear circuits:a proposed classification. Electronics letters, 1975,11(14):14-16
    [4]Wadsworth D C. Accurate current conveyor integrated circuit. Electronics Letters,1989,25:1251-1254
    [5]Smith K C and Sedra A S. Simple wideband linear voltage-to-frequency converter. Electron. Eng.40:1-4
    [6]Gilbert B. A new wide-band amplifier technique. IEEE Journal of Solid-State Circuits,1968,3(4):353-365
    [7]Wilson G. A monolithic junction FET-npn operational amplifier. IEEE Journal of Solid-State Circuits,1968,3(4):341-348
    [8]Bruun E. Class AB CMOS first-generation current conveyor. Electronics Letters,1995,31(6):422-423
    [9]Fabre A, Amrani H, Barthelemy H. A novel class AB first generation current conveyor. IEEE Transactions on Circuits and Systems II:Analog and Digital Signal Processing,1999,46(1):96-98
    [10]Smith K C',Sedra A S. A new simple wide-band current-measuring device. IEEE Transactions on Instrumentation and Measurement,1969,18(2):125-128
    [11]Brennan R L, Viswanathan T R and Hanson J V. The CMOS negative impedance converter. IEEE Journal of Solid-State Circuits,1988,23(5): 1272-1275
    [12]Sedra A, Smith K. A second-generation current conveyor and its applications. IEEE Transactions on Circuit Theory,1970,17(1):132-134
    [13]Smith K C, Sedra A S. Realization of the Chua Family of new non-linear network elements using the current conveyor. IEEE Transactions on Circuit Theory.1970,17(1):137-139
    [14]Sedra A S. A new approach to active network synthesis. PhD Thesis, University of Toronto, Canada,1969
    [15]Black, G G A, Friedmann, R T, and Sedra, A S. Gyrator implementation with integrable current conveyors, IEEE Journal of Solid-State Circuit,1971,6(6): 396-399
    [16]Sharif-Bakhtiar M, Aronhime P. A current conveyor realization using operational amplifiers. International Journal of Electronics,1978,45(3): 283-288
    [17]Senani R. Novel circuitimplementation of current conveyors using an OA and an OTA. Electronic Letters,1980,16(1):2-3
    [18]Huertas J L. Circuit implementation of current conveyor. Electronics Letters, 1980,16(6):225-226
    [19]Wilson B. High-performance conveyor implementation. Electronics Letters, 1984,20(24):990-991
    [20]Wilson B. Floating FDNR employing a new CCII-conveyor implementation, Electronincs Letters,1985,21 (21):996-997
    [21]Wilson B. Current-mode amplifiers. IEEE International Symposium on Circuits and Systems, Portland, USA,1989,3,1576-1579
    [22]Wilson B. A low-distortion bipolar feedback current amplifier technique. IEEE Proceedings,1981,69(11):1514-1515
    [23]Fabre, A. Translinear current conveyor implementation, International Journal of Electronics,1985,59(5):619-623
    [24]Normand G. Translinear current conveyors. International Journal of Electronics, 1985,59(6):771-777
    [25]Wilson B. Using current conveyors. Electronics and Wireless World,1986,92: 28-32
    [26]Wilson B. Analogue current-mode circuits. International Journal of Electrical Engineering Education,1989,26:206-233
    [27]Surakampontorn W, Thitimajshima P. Integrable electronically tunable current conveyors. IEE Proceedings G:Circuits, Devices and Systems,1988,135, (2): 71-77
    [28]Surakampontorn W, Riewruja V, Kumwachara K, Dejhan K. Accurate CMOS-based current conveyors. IEEE Transactions on Instrumentation and Measurement.1991,40(4):699-702
    [29]Pookaiyaudom S, Surakampontom W, Kuhanont T. Integrable electronically variable general-resistance converter-A versatile active circuit element. IEEE Transactions on Circuits and Systems,1978,25(6):344-353.
    [30]Cheng M C H, Toumazou C.3V MOS current conveyor cell for VLSI technology. Electronics Letters,1993,29(3),317-318
    [31]Fabre A, Barthelemy H. Composite second-generation current conveyor with reduced parasitic resistance. Electronics Letters,1994,30(5):377-378
    [32]Cha H W, Watanable K. Wideband CMOS current conveyor. Electronics Letters,1996,32(14):1245-1246.
    [33]Elwan H O, Soliman A M. A novel CMOS current conveyor realization with an electronically tunable current mode filter suitable for VLSI. IEEE Transactions on circuits and systems-II:Analog and Digital Signal Processing,1996,43(9): 663-670
    [34]Elwan H O, Soliman A M. Low-voltage Low-power CMOS current conveyor, IEEE Transactions on Circuits and Systems-I:Fundamental theory and applications,1997,44(9):828-835
    [35]Ismail A M, Soliman A M. Wideband CMOS current conveyor. Electronics Letters,1998,34(5):2368-2369
    [36]Awad I A, Soliman A M. New CMOS realization of the CCII-. IEEE transaction on circuits and systems-II:Analog and Digital Signal Processing, 1999,46(4):460-463
    [37]Yodprasit U. High-precision CMOS current conveyor. Electronics Letters,2000, 36(7):609-610
    [38]Ismail A M, Soliman A M. Low-power CMOS current conveyor. Electronics Letters,2000,36(1):7-8
    [39]Seguin F, Fabre A. New second generation current conveyor with reduced parasitic resistance and bandpass filter application. IEEE transactions on circuit and systems-I:Fundamental theory and applications,2001,48(6):781-785
    [40]Mita R, Palumbo G, Pennisi S.1.5V CMOS CCII+with high current-dring capability. IEEE transactions on circuits and systems-II:Analog and Digital Signal Processing,2003,50(4):187-190
    [41]Hassanein W S, Awad I A and Soliman A M. New high accuracy CMOS current conveyors. AEU-International Journal of Electronics and Communications, 2005.59(7):384-391.
    [42]Madian A, Mahmoud S, Soliman A. New 1.5-V CMOS second generation current conveyor based on wide range transconductor. Analog Integrated Circuits and Signal Processing,2006,49(3):267-279
    [43]Barthelemy H, Fillaud M, Bourdel S, et al. CMOS inverters based positive type second generation current conveyor. Analog Integrated Circuits and Signal Processing,2007,50(2):141-146
    [44]Moradzadeh H, Azhari S J. Low-voltage low-power rail-to-rail low-Rx wideband second generation current conveyor and a single resistance-controlled oscillator based on it. Circuits, Devices & Systems, IET, 2011,5(1):66-72
    [45]Pal K. Modified current conveyors and their applications. Microelectronics Journal,1989,20(4):37-40
    [46]Wu J, Masry E E. Current-mode ladder filters using multiple output current conveyors. IEE Proceedings on Circuits, Devices and Systems,1996,143(4): 218-224
    [47]郭静波,王基赞,戴逸松,等.基于MCCIⅠ的差分式电流模式连续时间滤波器.通信学报,1997,18(6):59-63
    [48]Wang C H, Zou D S,Yan J Z, et al. A MOCCII current-mode KHN filter and its non-ideal characteristic research.2001 4th International Conference on ASIC Proceedings,2001, Shanghai:289-292
    [49]王春华,闫健卓,沈光地.基于MOCCII的多环反馈电流模式滤波器的系统设计.通信学报,2002,23(4):11-16
    [50]王春华,沈光地.跨导线性MOCCII电路实现.电路与系统学报,2003,8(6):87-90
    [51]王春华,沈光地MOCCII的电路实现.电子测量与仪器学报,2003,17(3):22-26
    [52]Chiu W, Liu S I, Tsao H W, et al. CMOS differential difference current conveyors and their applications. IEE Proceedings G:Circuits, Devices and Systems,1996,143(2):91-96
    [53]Elwan H O, Soliman A M. Novel CMOS differential voltage current conveyor and its applications. IEE Proceedings G:Circuits Devices Systems,1997, 144(3):195-200
    [54]El-Adawy A A, Soliman A M, Elwan H O. A novel fully differential current conveyor and applications for analog VLSI. IEEE Transactions on Circuits and Systems II:Analog and Digital Signal Processing,2000,47(4):306-313
    [55]Alzaher H A, Elwan H O, Ismail M. CMOS fully differential second-generation current conveyor. Electronics Letters,2000,36(13):1095-1096
    [56]Alzaher H A, Elwan H, Ismail M. A CMOS fully balanced second-generation current conveyor. IEEE Transactions on Circuits and Systems Ⅱ:Analog and Digital Signal Processing,2003,50(6):278-287
    [57]Alzaher H A. CMOS highly linear fully differential current conveyor. Electronics Letters,2004,40(4):214-216
    [58]De Marcellis A, Ferri G, Guerrini N C, et.al. A novel low-voltage low-power fully differential voltage and current gained CCII for floating impedance simulations. Microelectronics Journal,2009,40(1):20-25
    [59]Hwang Y S, Liu W H, Tu S H, et.al. New building block:multiplication-mode current conveyor. Circuits, Devices & Systems, IET,2009,3(1):41-48
    [60]Fabre A, Saaid O, Wiest F, et al. Current controlled bandpass filter based on translinear conveyors. Electronics Letters,1995,31(20):1727-1728
    [61]Fabre A, Saaid O, Wiest F, et al. High frequency applications based on a new current controlled conveyor. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,,1996,43(2):82-91
    [62]Seguin F, Fabre A.2 GHz controlled current conveyor in standard 0.8μm BiCMOS technology. Electronics Letters,2001,37(6):329-330
    [63]Chaisricharoen R, Chipipop B, Sirinaovakul B. CMOS CCCII:Structures, characteristics, and considerations. AEU-International Journal of Electronics and Communications,2010,64(6):540-557
    [64]Psychalinos C, Souliotis G. Low-voltage current controlled current conveyor. Analog Integrated Circuits and Signal Processing,2010,63(1):129-135
    [65]Liu S I, Tsao H W, Wu J. Cascadable current-mode single CCII biquads. Electronics Letters,1990,26(24):2005-2006
    [66]Chang C M. Universal active current filters using single second-generation current conveyor. Electronics Letters,1991,27(18):1614-1617
    [67]王春华,郑洁如.单CCII电流模式滤波器.固体电子学研究与进展,1998,18(1):86-93
    [68]梁荣新,邱水生.一系列新的基于电流模式的二阶滤波器.电路与系统学报,2003,8(3):71-74
    [69]Chang C M, Chen P C. Universal active current filter with there input and one output using current conveyors. International Journal of Electronics,1991, 71(5):817-819
    [70]Chang C M, Chien C C, Wang H Y. Universal active current filter with three inputs using current conveyors-part2. International Journal of Electronics,1994, 76(1):87-89.
    [71]Chang C M. Universal active current filter with three inputs and one output using plus-type CCIIs. Electronics Letters,1997,33(14):1207-1208
    [72]Ozcan S, Cicekoglu O, Kuntman H. Multi-input single-output filter with reduced number of passive elements employing single current conveyor. Computers & Electrical Engineering,2003,29(1):45-53
    [73]王仕果,王春华.基于电流传输器的三输入单输出多功能滤波器.湘潭大学自然科学学报,2005,27(2):128-141
    [74]Chang C M. Novel universal current-mode filter with single input and three outputs using only five current conveyors. Electronics Letters,1993,29(23): 2005-2007
    [75]Chang C M. Current-mode lowpass, bandpass and highpass biquads using two CCIIs. Electronics Letters,1993,29(23):2020-2021
    [76]Fabre A, Alami M. Universal current mode biquad implemented from two second generation current conveyors. Circuits and Systems I:Fundamental Theory and Applications, IEEE Transactions on,1995,42(7):383-385
    [77]Papazoglou C A, Kanbakas C A. Noninteracting electronically tunable CCII-based current-mode biquadratic filters. IEE Proceedings G:Circuits, Devices and Systems,1997,144(3):178-184
    [78]Ozoguz S, Toker A, Cicekoglu O. High output impedance current-mode multifunction filter with minimum number of active and reduced number of passive elements. Electronics Letters,1998,34(19):1807-1809
    [79]Karybakas C A, Papazoglou A. Low-sensitive CCII-based biquadratic filters offering electronic frequency shifting. IEEE Transactions on Circuits and Systems Ⅱ:Analog and Digital Signal Processing,1999,46(5):527-539
    [80]Yuce E, Minaei S. Signal limitations of the current-mode filters employing current conveyors. AEU-International Journal of Electronics and Communications,2008,62(3):193-198
    [81]Senani R. Novel higher-order active filter design using current conveyors. Electronics Letters,1985,21(22):1055-1057
    [82]韩庆全,郭静波.电流模式全极点跳耦结构滤波器.电子科学学刊,1994,16(5):505-512
    [83]肖高标,吴杰.具有跳耦结构的电流模式低通滤波器设计.电子科学学刊,1996,18(2):213-216
    [84]郭继昌,李香萍,.张雅绮,等.高阶电流模式有源滤波器设计.天津大学学报:自然科学与工程技术版,2000,33(6):743-746
    [85]王春华,沈光地,徐晨等.用CCⅡ回转器设计梯形结构电流模式滤波器.电 子与信息学报,2001,23(5):516-520
    [86]Hwang Y, Chen J, Li J. New Current-mode all-pole and Elliptic Filters Employing Current Conveyors. Electrical Engineering,2007,89(6):457-459
    [87]Olcay Gunes E, Toker A, Ozoguz S. Insensitive current-mode universal filter with minimum components using dual-output current conveyors. Electronics Letters,1999,35(7):524-525
    [88]Wang H Y, Lee C T. Versatile insensitive current-mode universal biquad implementation using current conveyors. IEEE Transactions on Circuits and Systems Ⅱ:Analog and Digital Signal Processing,2001,48(4):409-413
    [89]CIcekoglu O. High Output Impedance Current-Mode Four-Function Filter with Reduced Number of Active and Passive Elements Using the Dual Output Current Conveyor. Analog Integrated Circuits and Signal Processing,2001, 28(2):201-204
    [90]王春华,沈光地MOCCⅡ电流模式二阶滤波器的系统设计.电路与系统学报,2004,9(3):65-68
    [91]王春华,沈光地.参数独立可调的MOCCⅡ电流模式滤波器.北京工业大学学报,2004,30(1):18-22
    [92]王春华,曹捷,李仁发.基于MOCCⅡ差分式二阶电流模式滤波器.电路与系统学报,2005,10(6):141-144
    [93]王春华,李仁发,何海珍等.单MOCCⅡ多功能电流模式二阶滤波器.仪器仪表学报,2006,27(11):1493-1496
    [94]Keskin A U, Cam U. Insensitive high-output impedance minimum configuration SITO-type current-mode biquad using dual-output current conveyors and grounded passive components. AEU-International Journal of Electronics and Communications,2007,61(5):341-344
    [95]Horng J, Hou C, Chang C, et al. Current-Mode Universal Biquadratic Filter with Five Inputs and Two Outputs Using Two Multi-Output CCIIs. Circuits, Systems, and Signal Processing,2009,28(5):781-792
    [96]吴杰肖,高标,尹新.基于MOCC_S的电流模式滤波器.通信学报,1997,18(5):84-90
    [97]何怡刚.基于MOCC的电流模式连续时间滤波器.通信学报,2000,21(3):88-91
    [98]王春华,沈光地.基于MOCCⅡ多输入单输出n阶电流模式滤波器.通信学报,2004,25(2):138-143
    [99]宋树祥,严国萍,曹华.电流模式n阶MOCCⅡ-RC的全通滤波器设计.仪器 仪表学报,2008,29(9):1972-1976
    [100]石文孝,韩庆全.基于多输出端差动差分电流传送器跳耦结构滤波器.通信学报,2000,21(12):30-35
    [101]Chang C M, A1-Hashimi B M, Wang C L, et al. Single fully differential current conveyor biquad filters. IEE Proceedings G:Circuits, Devices and Systems,, 2003,150(5):394-398
    [102]Maheshwari S, Maheshwari S. Multi input multi output biquadratic universal filter using Dual-X Current Conveyor(DXCCII). In:2010 International Conference on Computer and Communication Technology (ICCCT), Jeju Island, 2010,626-629
    [103]Abuelma'Atti M T, Tasadduq N A. A novel single-input multiple-output current-mode current-controlled universal filter. Microelectronics Journal, 1998,29(11):901-905
    [104]Khan I A, Zaidi M H. Multifunctional translinear-C current-mode filter. International Journal of Electronics,2000,87(9):1047-1051
    [105]Minaei S, Turkoz S. New current-mode current-controlled universal filter with single input and three outputs. International Journal of Electronics,2001,88(8): 333-337
    [106]彭良玉,何怡刚,黄满池,等.电流模式N阶CCCII(±)-C低通滤波器的系统设计.电子学报,2003,31(8):1234-1236
    [107]Sagbas M, Fidanboylu K. Electronically tunable current-mode second-order universal filter using minimum elements. Electronics Letters,2004,40(1):2-4
    [108]王春华,王仕果,许海霞,等.基于MOCCCII电流模式二阶滤波器的结构化设计.云南大学学报(自然科学版),2005,27(4):294-299
    [109]Tangsrirat W, Surakampontorn W. Electronically Tunable Current-Mode Universal Filter Employing Only Plus-Type Current-Controlled Conveyors and Grounded Capacitors. Circuits, Systems, and Signal Processing,2006,25(6): 701-713
    [110]Tangsrirat W. Current-tunable current-mode multifunction filter based on dual-output current-controlled conveyors. AEU-International Journal of Electronics and Communications,2007,61(2):528-533
    [111]Tangsrirat W, Surakampontorn W. High output impedance current-mode universal filter employing dual-output current-controlled conveyors and grounded capacitors. AEU-International Journal of Electronics and Communications,2007,61(2):127-131
    [112]Yamacli S, Ozcan S, Kuntman H. Resistorless tuneable KHN-filter in current mode with CCCIIs and grounded capacitors. In 15th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Malte,2008,324-327
    [113]Jiraseree-amornkun A, Surakampontorn W. Efficient implementation of tunable ladder filters using multi-output current controlled conveyors. AEU International Journal of Electronics and Communications,2008,62(1):11-23
    [114]Siripruchyanun M, Jaikla W. Cascadable Current-Mode Biquad Filter and Quadrature Oscillator Using DO-CCCIIs and OTA. Circuits, Systems, and Signal Processing,2009,28(1):99-110
    [115]Yuce E. Current-mode electronically tunable biquadratic filters consisting of only CCCIIs and grounded capacitors. Microelectronics Journal,2009,40(12): 1719-1725
    [116]赵玉山,周跃庆,王萍.电流模式电子电路.天津:天津大学出版社,2001,51-86
    [117]Sedra A S, Roberts G W and Gohh F. The current conveyor:history progress and new results. IEE Proceedings G:Circuits, Devices and Systems,1990,137 (2):78-87
    [118]姚玉洁,冯军,尹洪,等.模拟集成电路设计——电流模法.北京:高等教育出版社,1996,69-70
    [119]Wadsworth D C. Accurate current conveyor topology and monolithic implementation. IEE Proceedings G:Circuits, Devices and Systems,1990, 137(2):88-94
    [120]Sackinger E, Guggenbuhl W. A versatile building block:the CMOS differential difference amplifier. IEEE Journal of Solid-State Circuits,1987,22(2):287-294
    [121]凌燮亭,秦巍,胡波CMOS电流控制电流转换器及其应用.电子学报,1999,27(8):34-37
    [122]Fabre A. Third-generation current conveyor:a new helpful active element. Electronics Letters,1995,31(5):338-339
    [123]Ozoguz S, Acar C. Universal current-mode filter with reduced number of active and passive components. Electronics Letters,1997,33(11):948-949
    [124]Fabre, O. Saaid and H. Barthelemy. On the frequency limitations of circuits based on second generation current conveyors. Analog Integrated Circuits and Signal Processing,1995,7(2):113-129
    [125]Wang C H, She Z X, Liu H G. New CMOS current-controlled second generation current conveyors. In:IEEE 2008 International Conference on Circuits and Systems for Communications, Shanghai,2008,333-337
    [126]Seevinck E, Wassenaar R F. A versatile CMOS linear transconductor/square-law function. IEEE Journal of Solid-State Circuits,1987,22(3):366-377
    [127]陆坚,王瑜.集成电路闩锁效应测试.电子与封装,2007,7(12):11-15
    [128]Barthelemy, H., Fabre, A. A second generation current-controlled conveyor with negative intrinsic resistance. Circuits and Systems I:Fundamental Theory and Applications, IEEE Transactions on,2002,49(1):63-65
    [129]江金光,何怡刚,吴杰.基于电流传送器的椭圆函数滤波器设计.电路与系统学报,2000,5(1):34-37
    [130]Wang C H, Xu J, Keskin A U, et al. A new current-mode current-controlled SIMO-type universal filter. AEU-International Journal of Electronics and Communications,2011,65(3):231-234
    [131]吴杰,肖高标,尹新.基于MOCCs的电流模式滤波器.通信学报,1997,18(5):84-90.
    [132]吴杰.运算跨导放大器(OTA)椭圆高通滤波器设计.通信学报,1993,14(5):28-36
    [133]Ozoguz S, Toker A. Tunable Ladder-Type Realization of Current-Mode Elliptic Filters. AEU-International Journal of Electronics and Communications,2002, 56(3):193-199
    [134]Becvar D, Vrba K, Zeman V, et al. Novel universal active block:a universal current conveyor. In:IEEE International Symposium on Circuits and Systems (ISCAS), Geneva,2000,3:471-474.
    [135]Fabre A. Dual translinear voltage/current convertor. Electronics Letters,1983, 19(24):1030-1031.
    [136]Bruun E, Haxthausen E U. Current conveyor based EMG amplifier with shutdown control. Electronics Letters,1991,27(23):2172-2174
    [137]Barthelemy H. Frequency analysis of voltage amplifier using inductive-CCII based opamps. In:Proceedings of the 44th IEEE Midwest Symposium on Circuits and Systems (MWSCAS), Dayton, Aug.13-17,2001:1298-300
    [138]Hassan T M, Mahmoud S A. New CMOS DVCC realization and applications to instrumentation amplifier and active-RC filters. AEU-International Journal of Electronics and Communications,2010,64(1):47-55

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700