B细胞活化因子在ITP中的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第Ⅰ部分BAFF及BR3-Fc融合蛋白在ITP中的机制研究
     免疫性血小板减少症(immune thrombocytopenia, ITP)是由于机体免疫失耐受,产生的抗血小板自身抗体与血小板表面特异性抗原结合,导致血小板在网状内皮系统过度破坏引起血小板减少。由自身反应性B细胞产生的自身抗体,主要是针对自身血小板膜糖蛋白Ⅱb/Ⅲa和/或Ⅰb/Ⅸ抗原的自身抗体,尤其是IgG抗体,在ITP的发病中起到重要的作用。此外,多种细胞免疫机制异常,如Th1极化、调节性T细胞数目降低或者抑制功能缺陷、细胞毒性T细胞(cytotoxic T lymphocyte, CTL)介导的血小板破坏等在ITP的发病中发挥重要作用。到目前为止,出现上述异常的原因尚未明确。ITP的主要治疗包括糖皮质激素、免疫球蛋白、抗-D和脾切除等,但仅有1/3的患者能够获得长期缓解。
     B细胞活化因子(B-cell activating factor, BAFF,亦称为BlyS,TALL-1,THANK, zTNF4 and TNFSF13B)是近年来发现的肿瘤坏死因子超家族(tumor necrosis factor super family, TNFSF)的新成员,它在B细胞发育、稳定及其自身反应性和T细胞共刺激等方面起到重要的作用。此外,BAFF在Th1介导的炎症应答中也起到重要的作用。目前研究发现BAFF主要与三个受体结合,B细胞成熟抗原(B-cell maturation antigen, BCMA,亦称TNFRSF17)、转膜激活剂、钙调节剂和亲环素配体相互作用物(transmembrane activator and calcium-modulating cyclophilin ligand interactor, TACI,亦称TNFRSF13B)和BAFF受体(BAFF receptor, BAFF-R,亦称BR3, TNFRSF13C)。BR3是B细胞存活最主要的受体,它广泛表达于包括未成熟B、过渡期B、成熟B、记忆B、生发中心B以及浆细胞在内的B细胞亚群。此外,体内和体外研究表明,表达于T细胞上的BR3与BAFF结合后能够刺激T细胞的增殖。
     许多研究表明,BAFF在自身免疫中发挥重要的作用。自身抗原结合的B细胞对BAFF介导的存活信号依赖增强。在许多自身免疫性疾病患者中,如风湿性关节炎(rheumatoid arthritis, RA)、系统性红斑狼疮(systemic lupus erythematosus, SLE)、干燥综合征(Sjogren's syndrome, S S)、多发性硬化(multiple sclerosis,MS)等,血浆BAFF表达水平异常升高。抑制BAFF信号通路可能是B细胞介导的自身反应性疾病一种有效的治疗方法。动物实验和临床试验研究表明应用BAFF阻断剂(如TACI-Ig,BAFF-R-Ig,BR3-Fc)阻断BAFF在某些自身免疫性疾病中是一种有效的治疗手段。
     目的:
     检测ITP患者BAFF表达以及rhBAFF和BR3-Fc对B细胞、T细胞、血小板、干扰素-γ(interferon-gamma,IFN-γ)、白介素-4(interleukin-4,IL-4)的作用,探讨BAFF和BR3-Fc在ITP发病中的可能机制
     方法:
     ◆BAFF检测部分抽取25例活动性ITP患者,20例稳定期患者和24例对照的外周血,分离血浆和单个核细胞
     ◆酶联免疫吸附实验(enzyme-linked immunoadsorbent assay, ELISA)法和实时定量聚合酶链反应(real-time polymerase chain reaction, RT-PCR检测BAFF蛋白和mRNA水平;改良单克隆抗体特异性俘获血小板抗原(immobilization of platelet antigens magnetic activated cell separation, MAIPA)检测抗GPIIb/Ⅲa和GPIb/IX自身抗体
     ◆体外部分抽取18例活动性ITP患者和15例对照的外周血15ml,分离单个核细胞和血小板,加入不同的细胞因子共同培养,分为3组:1640组(Ⅰ组)、rhBAFF 20ng/ml组(Ⅱ组)和rhBAFF+BR3-Fc组(Ⅲ组)。流式细胞术检测CD19+B细胞、CD4+T细胞、CD8+T细胞及血小板的凋亡;ELISA法检测培养上清中IFN-γ、IL-4和自身抗体的表达
     结果:
     ◆BAFF在活动性ITP中表达升高,稳定期患者与对照无显著性差异
     在活动性ITP患者中BAFF蛋白水平(均值±标准差,593.1±219.0 pg/ml)明显高于稳定期患者(432.5±121.4pg/ml, P<0.05)和正常对照(454.4±132.5pg/ml,P<0.05)。活动性ITP患者BAFF mRNA水平是稳定期患者和对照的3.1倍(P<0.01)和2.5倍(P<0.01)。而在稳定期患者无论BAFF蛋白还是mRNA水平均与正常对照无明显差异(P>0.05)。BAFF水平与GPIIb/IIIa和GPIb/Ⅸ无显著性相关。
     ◆RhBAFF促进CD19+存活,BR3-Fc纠正rhBAFF对其影响
     RhBAFF降低ITP患者CD19+细胞的凋亡(Ⅱ组:7.0±4.3%vsⅠ组:13.2±7.4%,P<0.05),加入BR3-Fc后CD19+细胞的凋亡升高,但与1640组无显著性差异(Ⅲ组:11.2±4.1%vsⅠ组:13.2±7.4%,P>0.05)。
     ◆RhBAFF促进CD8+存活,BR3-Fc纠正rhBAFF对其影响
     ITP患者中Ⅰ、Ⅱ、Ⅲ组CD8+细胞的凋亡率分别为6.5±3.2%,4.4±2.2%和6.3±2.9%。RhBAFF促进CD8+存活,BR3-Fc纠正rhBAFF对其影响。
     ◆RhBAFF和BR3-Fc对CD4+细胞凋亡无显著影响
     RhBAFF对CD4+细胞凋亡无显著影响。ITP患者中Ⅰ、Ⅱ、Ⅲ组CD8+细胞的凋亡率分别为8.6±4.5%,5.3±1.8%和8.2±3.8%。
     ◆RhBAFF促进血小板凋亡,BR3-Fc抑制其凋亡
     RhBAFF促进ITP患者血小板的凋亡(Ⅱ组:8.4±4.9%vsⅠ组:3.2±1.0%,P<0.051,加入BR3-Fc后血小板的凋亡降低(Ⅲ组:5.0±3.0%vsⅡ组:8.4±4.9%,P<0.05)。
     此外,我们应用线粒体膜电位检测试剂盒JC-1检测血小板凋亡进一步验证了我们的结果。
     ◆在ITP患者中各组IFN-γ均显著高于对照组,rhBAFF促进ITP患者IFN-γ分泌,而BR3-Fc抑制其表达
     ITP患者中Ⅰ、Ⅱ、Ⅲ组IFN-γ分别为74.0±12.5pg/ml、95.1±25.7pg/ml和82.4±17.4pg/ml, rhBAFF 20ng/ml组IFN-γ水平显著高于1640组,加入BR3-Fc后IFN-γ表达下降。IL-4低于最低检测值。
     结论:
     ◆BAFF在活动性ITP的表达升高,而稳定期患者无异常,与病情变化相关。
     ◆BAFF可能通过促进CD19+B和CD8+T细胞存活、促进血小板的凋亡、促进Th1类细胞因子分泌等机制在ITP的发病中起到重要的作用;BR3-Fc纠正了rhBAFF对上述细胞和因子的作用。
     ◆阻断ITP中过高的BAFF可能成为ITP治疗的一个新的靶点。
     第Ⅱ部分大剂量地塞米松疗法抑制ITP患者BAFF的表达
     ITP的治疗主要有糖皮质激素、免疫球蛋白、脾切除、达那唑及免疫抑制剂等,其中糖皮质激素是ITP的一线治疗药物。在过去50多年里,泼尼松一直是治疗ITP的首选,开始剂量1.0-1.5mg/kg/d,分次口服4-6周,此后逐渐减量至血小板在安全水平以上(血小板>30x109/L)的最低用量时给予维持治疗,约70%患者可获得缓解,而30%患者治疗无效,属于难治性ITP。该方法治疗有效率与剂量相关,长期应用副作用较大,并且减量过程中容易复发,此时给予重复治疗很难再取得持续缓解,应考虑换用其他治疗。脾切除是泼尼松治疗失败患者的第一选择,其长期缓解率为50%-70%,仍然有30%左右患者治疗无效,另外还有部分泼尼松治疗失败的患者由于年龄、基础疾病等因素而不能行脾切除手术治疗,这些难治性ITP患者的治疗一直是临床上非常棘手的问题。
     近年来大剂量地塞米松(High dose dexamethasone, HD-DXM)疗法较传统的强的松治疗取得了更好的疗效。与泼尼松相比,HD-DXM冲击治疗起效快、副反应轻微,效果相当于免疫球蛋白,但是花费明显减少。对于初诊的ITP患者,HD-DXM冲击治疗效果显著,80%以上有治疗反应,已经作为一线治疗选择。对于复发/难治性ITP患者HD-DXM冲击治疗总体有效率不高,只有部分患者有治疗反应。HD-DXM冲击治疗尚不能代替或避免脾切除,不过可以作为脾切除前的应急准备。
     研究表明在某些自身免疫性疾病中如SLE、大疱性类天疱疮中糖皮质激素能够显著降低患者BAFF表达水平。另一项研究表明DXM在体外能够抑制风湿性关节炎患者纤维母样滑膜细胞BAFF的表达,并且呈剂量和时间依赖性。而关于HD-DXM对ITP患者BAFF表达的影响目前尚未见报道。
     目的:
     研究大剂量地塞米松(HD-DXM)对ITP患者BAFF的作用,进一步探讨HD-DXM在ITP治疗中的可能机制
     方法:
     ◆留取20例ITP患者(应用激素治疗前2周各抽血一次)和24例对照的外周血3ml。分离血浆和单个核细胞。ELISA检测血浆BAFF蛋白水平,实时定量PCR检测PBMCs中BAFF mRNA水平。
     ◆其中10例ITP患者和14例对照抽血15ml,分离单个核细胞。加入不同浓度DXM,培养后分离上清检测BAFF、IFN-γ和IL-4,分离细胞实时定量PCR检测BAFF mRNA水平。CCK-8法检测淋巴细胞增殖。
     结果:
     ◆HD-DXM临床疗效
     80%患者(16/20)获得长期反应,15%患者(3/20)获得部分反应,5%患者(1/20)无反应。HD-DXM治疗2周后平均血小板数目是165×109/L(范围23-332×109/L)。
     ◆BAFF在活动性ITP(应用HD-DXM治疗前)明显升高,应用HD-DXM后,ITP患者BAFF水平明显降低
     活动性ITP患者中BAFF蛋白水平及其mRNA水平显著升高。应用HD-DXM后,ITP患者BAFF蛋白水平(均值297pg/ml,范围184-545pg/ml)明显低于用药前(均值597 pg/ml,范围300-1026pg/ml)和正常对照(均值454 pg/ml,208-804pg/ml, P<0.001); BAFF mRNA水平亦明显低于激素前患者(P<0.001)和对照组(P<0.001)。
     ◆BAFF变化与HD-DXM治疗反应密切相关
     应用HD-DXM后,20例患者中有18例BAFF水平明显低于治疗前水平,1例患者BAFF水平与治疗前相比无明显降低,1例BAFF水平略微升高。这两例患者均对HD-DXM治疗无反应,后来随访发现为难治性ITP,并进行脾切除。
     ◆DXM体外抑制BAFF的表达
     我们体外培养10例未治疗的ITP患者和11例对照PBMCs,加入不同浓度的DXM后体外培养72小时,我们发现DXM明显抑制BAFF的表达,并且呈剂量依赖性。
     ◆DXM体外抑制IFN-γ的表达
     我们体外培养ITP患者和对照PBMCs,加入不同浓度的DXM(OnM,7.8nM, 15.6nM,31.3nM,62.5nM,125nM,250nM1和10μg/ml PHA,于37℃含5%CO2孵箱孵育72小时后,收集上清,ELISA检测IFN-γ和IL-4表达,DXM能够显著抑制IFN-γ表达,并且呈剂量依赖性,而IL-4水平低于最低检测值。
     ◆DXM体外抑制淋巴细胞的增殖
     CCK-8法检测DXM对淋巴细胞增殖的影响,我们发现DXM明显抑制淋巴细胞增殖,并且呈剂量依赖性。
     ◆BAFF与ITP患者临床实验室指标相关性分析
     BAFF水平和血小板数目无显著性相关,且BAFF水平的变化和血小板数目的改变无显著性相关。
     结论:
     ◆HD-DXM抑制ITP患者血浆BAFF及其mRNA水平的表达;
     ◆DXM体外抑制BAFF、IFN-γ的表达和淋巴细胞的增殖。
     第Ⅲ部分白介素-21在ITP中的作用及其机制研究
     白介素-2家族主要包括IL-2、IL-4、IL-7、IL-9和IL-15,在促进和维持T淋巴细胞群中起主要作用。由这些细胞因子介导的详细的分子信号传递途径尚未完全澄清.然而JAK/STAT,MAPK和P13这三个主要的途径已经清楚。
     IL-21是IL-2家族的新成员,主要由活化的CD4+T细胞和自然杀伤T细胞表达,除此以外,近来发现IL-21还可以由Th17细胞表达。IL-21/IL-21R信号在天然免疫和获得性免疫应答中均起到重要的作用,它能够促进T细胞介导的体液免疫应答与抗体生成、增强NK细胞的自然杀伤能力、促进Th细胞向Th17细胞的分化、影响Th细胞向Th1/Th2细胞的分化等。在许多自身免疫性疾病中(如SLE,RA,SS等)IL-21和/或IL-21R表达异常。目前,未见关于IL-21/IL-21R在ITP患者中的报道。
     目的:
     通过对ITP患者外周血中表达IL-21的细胞亚群和Th17、Th1、Tc1细胞亚群的检测,探讨IL-21在ITP中的作用及可能机制
     材料与方法:
     ◆病例及正常对照的选择:活动性ITP患者26例,均符合ITP的诊断标准。正常对照21例,均为健康志愿者,无感染、无病毒性肝炎、无免疫性疾病及半年内未使用免疫抑制剂、抗HIV抗体阴性、肝肾功能正常,其年龄和性别均与ITP患者相匹配。
     ◆应用三色流式细胞术检测ITP患者和正常对照外周血中各细胞亚群的比例。三种细胞亚群的界定分别为:表达IL-21的细胞为CD3+CD8-IL-21+和CD3+CD8+IL-21+,Th17细胞为CD3+CD8-IL-17A+,Th1细胞为CD3+CD8-IFN-γ+,Tc1细胞为CD3+CD8+IFN-γ+
     ◆应用ELISA技术检测ITP患者和正常对照血浆中IL-21的表达水平。
     ◆应用改良的MAIPA技术(单克隆抗体特异性俘获血小板抗原技术)测定ITP患者体内的抗血小板膜GPⅡb/Ⅲa和Ib/Ⅸ自身抗体。
     结果:
     ◆IL-21在ITP中表达升高
     我们应用流式细胞术检测ITP患者外周血中IL-21的表达,发现IL-21表达于CD3+CD8-细胞和CD3+CD8+细胞上。ITP患者中CD3+CD8-IL-21+细胞亚群(4.4±0.8%)比例显著高于对照组(2.3±0.8%,P<0.001),相似的,ITP患者中CD3+CD8+IL-21+细胞亚群(0.8±0.5%)比例显著高于对照组(0.5±0.3%,P<0.05)。
     我们应用ELISA法检测ITP患者和对照血浆中IL-21的表达,我们发现ITP血浆IL-21水平(148.3±124.2pg/ml)高于对照组(78.0±32.0pg/ml,P<0.05)。
     ◆ITP患者中Th17、Th1、Tc1细胞亚群表达升高
     ITP患者外周血Th17细胞的比例(2.1±0.8%)明显高于正常对照组(1.2±0.5%,P<0.05)。ITP患者外周血Thl细胞的比例(18.6±2.3%)明显高于正常对照组(10.9±2.6%,P<0.001),并且ITP患者Tc1细胞的比例(21.4±8.4%)较正常对照组(11.4±3.8%)亦显著升高(P<0.001)。
     ◆各细胞亚群的相关性分析
     在ITP患者中,CD3+CD8-IL-21+细胞与Th17细胞(P<0.01)和Thl细胞(P<0.01)存在明显的正相关,而CD3+CD8+IL-21+细胞与Tc1细胞不存在相关性(P>0.05)。
     ◆抗血小板自身抗体与各细胞亚群的相关性分析
     应用MAIPA法检测抗血小板自身抗体,并与各细胞亚群进行相关性分析,我们发现自身抗体与各个细胞亚群均不存在相关性(P>0.05)。
     结论:
     ◆ITP患者中IL-21表达升高;
     ◆在ITP患者中,CD3+CD8-IL-21+细胞与Th17细胞和Th1细胞存在明显的正相关,提示CD3+CD8-IL-21+细胞、Th17细胞和Th1细胞可能通过相互作用而在ITP的发病中起到协同作用。
英文摘要ⅠThe effects of BAFF and BAFF-R-Fc fusion protein in immune thrombocytopenia
     Immune thrombocytopenia (ITP) is an autoimmune disorder in which the patients'immune system is activated by platelet autoantigens resulting in immune-mediated platelet destruction and/or suppression of platelet production. In addition, several abnormalities involving the cellular mechanisms of immune modulation such as Th1 bias, the decreased number or defective function of regulatory T cells and the platelet destruction by cytotoxic T cells (CTL) have been described.
     B-cell activating factor (BAFF) (also known as BlyS, TALL-1, THANK, zTNF4 and TNFSF13B) belonging to the family of tumor necrosis factor (TNF) ligands is critical for the maintain of normal B-cell development, homeostasis, autoreactivity and T cell costimulation. In addition, it also augments certain Th1-associated inflammatory responses. BAFF binds to three receptors:B-cell maturation antigen (BCMA, TNFRSF17), transmembrane activator and calcium-modulating cyclophilin ligand (CAML) interactor (TACI, TNFRSF13B) and BAFF receptor (BR3/BAFF-R, TNFRSF13C). BR3, identified as the crucial receptor for B-cell survival, is expressed on a wide range of B-cell subsets, including immature, transitional, mature, memory and germinal center B cells, as well as on plasma cells. Furthermore, BAFF binding to BR3 on T cells has been shown to costimulate T-cell proliferation both in vitro and in vivo.
     Several lines of evidence suggested that BAFF may play an important role in autoimmunity. Autoantigen-binding B cells may have an increased dependence on the BAFF survival signal. In addition, elevated BAFF plasma level was observed in many patients with autoimmune diseases such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Sjogren's syndrome (SS), and multiple sclerosis (MS). Inhibition of BAFF signaling is a potentially therapeutic option for treatment of B cell-mediated autoimmune conditions. Data from animal tests and clinical trials had proved that blockade of BAFF by blocking reagents (TACI-Ig, BAFF-R-Ig, BR3-Fc) was effective therapeutic approach for some autoimmune diseases.
     Objective:
     To investigate the possible mechanism of BAFF and therapeutic effect of BR3-Fc in ITP, we measured the expression of plasma BAFF and BAFF mRNA, and the effects of rhBAFF and BR3-Fc on B cells, T cells, platelets, secretion of IFN-γand IL-4 were measured by flow cytometry and ELISA.
     Methods:
     ◆Forty-five patients diagnosed with ITP were selected for detection of plasma BAFF and BAFF mRNA. Of these patients, twenty-five patients were active ITP patients who had not been treated with GCs for at least one month prior to sampling whereas twenty patients were in remission. Twenty-four healthy controls matched for sex and age with the study population were voluntary blood donors.
     ◆The expression of plasma BAFF and BAFF mRNA in ITP patients and controls were measured by ELISA and RT-PCR, the levels of plasma anti-platelet autoantibodies (GPIIb/IIIa and GPIb/IX) were measured by MAIPA.
     ◆Peripheral blood mononuclear cells (PBMCs) and platelets from additional eighteen ITP patients with active disease and fifteen controls were selected for detection of apoptosis on CD19+, CD4+, CD8+ cells, platelets, secretion of cytokines (IFN-y and IL-4) and autoantibodies by flow cytometry and ELISA.
     Results:
     ◆Elevated levels of plasma BAFF and BAFF mRNA in active ITP patients
     The level of plasma BAFF in ITP patients with active disease was significantly higher (mean±SD,593.1±219.0 pg/ml) than that in patients in remission (432.5±121.4pg/ml, P<0.05) and controls (454.4±132.5pg/ml, P<0.05). The relative amount of BAFF mRNA in patients with active disease was increased 3.1 and 2.5-fold compared to patients in remission (P<0.01) and healthy controls (P<0.01), respectively. No significant difference of plasma BAFF or BAFF mRNA between patients in remission and healthy controls was found (P>0.05).
     In addition, no association was found between the levels of BAFF and anti-platelet autoantibodies (P>0.05).
     ◆RhBAFF promotes the survival of CD19+ cells, BR3-Fc corrects its effect
     RhBAFF significantly decreased the annexin V% of CD19+ cells in ITP patients (groupⅡ:7.0±4.3% vs groupⅠ:13.2±7.4%, P<0.05) but not in controls. BR3-Fc corrected the effect of rhBAFF on apoptosis of CD19+ cells (groupIII:11.2±4.1% vs groupⅠ:13.2±7.4%, P>0.05).
     ◆RhBAFF promotes the survival of CD8+ cells, BR3-Fc corrects its effect
     RhBAFF significantly decreased the annexin V% of CD8+ cells in both ITP patients and controls. BR3-Fc corrected the effect of rhBAFF on apoptosis of CD8+ cells only in ITP patients. The annexin V% on CD8+ cells in ITP patients in group I, group II and group III were 6.5±3.2%,4.4±2.2%and 6.3±2.9%, respectively, The annexin V% on CD8+ cells in controls in group I, group II and groupIII were 10.5±2.7%,8.3±3.2%and 8.9±4.0%, respectively.
     ◆No significant effect of rhBAFF and BR3-Fc on apoptosis of CD4+ cells
     There was no significant effect of rhBAFF on annexin V% of CD4+ cells in both ITP patients and controls (P>0.05). The annexin V% of CD4+ cells in ITP patients in group I, group II and group III were 8.6±4.5%,5.3±1.8% and 8.2±3.8%, respectively.
     ◆RhBAFF promotes the apoptosis of platelets, BR3-Fc corrects its effect
     RhBAFF significantly increased apoptosis of platelets in ITP patients (group II: 8.4±4.9% vs group I:3.2±1.0%, P<0.05) but not in controls. BR3-Fc corrected the effect of rhBAFF on apoptosis of platelets(group III:5.0±3.0% vs group II:8.4± 4.9%, P<0.05). In order to further confirm the results, we also measured the apoptosis of platelets by mitochondrial membrane potential assay kit with JC-1 which was a more precise method for detection of platelet apoptosis. Similar results were found.
     ◆Effects of rhBAFF and/or BR3-Fc on secretion of cytokines by PBMCs
     The levels of IFN-γand IL-4 in supernatant were measured by ELISA. RhBAFF promoted the secretion of IFN-γin the presence of PHA (10μg/ml) (P<0.05) in ITP patients but not controls, and combination of BR3-Fc and rhBAFF reduced the level of IFN-γcompared with group rhBAFF (20ng/ml) (P<0.05). The mean±SD of group I was 74.0±12.5pg/ml, and it increased to 95.1±25.7pg/ml in group II, and reduced to 82.4±17.4pg/ml in groupⅢ, similar to that in group I. There was no detectable level of IFN-y when incubating cells without PHA. The level of IL-4 was below the detectable limit of the assay used.
     Conclusions:
     ◆The expression of BAFF is elevated in active ITP patients, and the expression of BAFF correlates to disease activity.
     ◆BAFF may play a pathogenic role in ITP by promoting the survival of CD19+ and CD8+ cells, increasing the apoptosis of platelets and the secretion of IFN-γ.
     ◆Blockade of BAFF by BR3-Fc might be a promising therapeutic approach for ITP.
     英文摘要ⅡHigh dose dexamethasone inhibit BAFF expression in patients with immune thrombocytopenia
     The treatment regimens for ITP include glucorticosteroids (GCs), intravenous immunoglobulin (IVIg), intravenous anti-D immunoglobulin, splenectomy, danazol and other immunosuppressive drugs in which GCs have been widely recognized as the most appropriate first line treatment. Recently, HD-DXM has been used as the first-line therapy for adult patients with ITP, which has a higher response rate than conventional prednisone doses Some studies have showed that the treatment with GCs induces a marked decrease in BAFF levels in patients with SLE and bullous pemphigoid. Recently, a study about the inhibition of DXM on BAFF in fibroblast-like synoviocytes from patients with RA has been reported, which showed DXM inhibited the expression of BAFF in a dose-and time-dependent manner. Up to date, there is no data about the effect of HD-DXM on BAFF expression.
     Objective:
     To investigate the effects of HD-DXM on BAFF expression and its possible mechanism
     Methods:
     ◆20 acitive ITP patients were enrolled in this study. Blood sampling was performed before and after treatment at the end of the second week with HD-DXM. Twenty-four healthy controls were voluntary blood donors.
     ◆The expression of plasma BAFF and BAFF mRNA in ITP patients and controls were measured by ELISA and RT-PCR.
     ◆Moreover, we evaluated the effects of DXM on BAFF expression, secretion of IFN-γand IL-4, and proliferation of lymphocytes by ELISA, real time quantitative PCR and cell proliferation assay [cell counting kit-8 (CCK-8)] respectively in in vitro experiment.
     Results:
     ◆Clinical therapeutic effect of HD-DXM
     Responses were reached in patients:CR in 16 (80%), R in 3 (15%), and NR in 1 (5%). The mean platelet count was 165×109/L (range 23 to 332×109/L) two weeks after the initiation of treatment.
     ◆Decreased expression of BAFF in active ITP patients with HD-DXM treatment
     Both plasma BAFF and its mRNA expression are elevated in active ITP patients before HD-DXM treatment. And plasma BAFF correlated with its mRNA levels in active ITP patients (r=0.45, P<0.01).
     After administration of HD-DXM, plasma BAFF levels in ITP patients were significantly decreased (297±120 pg/ml) compared with pretherapy (597±197 pg/ml, P<0.001), and lower than that of the normal controls (454±132 pg/ml, P<0.001).
     Similar results were found on BAFF mRNA levels. After administration of HD-DXM, the relative amount of BAFF mRNA was 0.32 fold and 0.13 fold of that of healthy controls (P<0.001) and untreated patients respectively (P<0.001).
     ◆Changes of BAFF correlated with clinical responses
     After administration of HD-DXM, eighteen of twenty patients had reduced plasma BAFF level, with two patients who relapsed shortly after discontinuation of the therapy and later received splenectomy had similar or even higher expression.
     ◆Expression of BAFF is inhibited by DXM in vitro
     Because BAFF is elevated in untreated ITP patients, and after administration of HD-DXM, it reduced significantly, we investigated whether DXM, a most used glucocorticoids for ITP therapy, is able to inhibit the expression of BAFF. We cultured PBMCs from 10 untreated ITP patients with active disease and 11 controls were adjusted to 1×106/ml in RPMI-1640 culture medium, cultured at a density of 1×106 cells/well in a 24-well culture plate and incubated with different concentrations of DXM at 37℃with 5% CO2, after 72h, cells were harvested for RT-PCR.The results showed that DXM suppressed the expression of BAFF in a dose-dependent manner.
     ◆Effects of DXM on the expression of IFN-γand IL-4
     PBMCs from active ITP patients and healthy controls were cultured with different concentrations of DXM (OnM,7.8nM,15.6nM,31.3nM,62.5nM,125nM, 250nM) at 37℃with 5% CO2, with 10μg/ml phytohemagglutinin (PHA). After 72h, supernatants were collected and levels of IFN-y and IL-4 were measured. When PHA was added, levels of IFN-y were available in all samples. A dose-dependent inhibition of IFN-y by DXM was obvious. The levels of plasma IL-4 were lower than the detection limits.
     ◆Effects of DXM on the proliferation of PBMCs
     After cultured with different concentrations of DXM (OuM,0.125uM,0.25uM, 0.5uM, 1uM,2uM and 4uM) for 72h, proliferation in active ITP patients and controls was assayed by CCK-8. The results showed DXM inhibited the proliferation of PBMCs of both patients and controls, reaching about 50% of inhibition with 0.5uM DXM, and about 75% inhibition with 2uM DXM in active ITP patients. Similar results in healthy controls were observed.
     ◆Correlation of BAFF with clinical and laboratory parameters in ITP patients
     Correlations between levels of BAFF and platelet counts were analyzed in ITP patients, and no significant associations were found (P>0.05). There was no significant correlation between changes of BAFF and platelets.
     Conclusions:
     ◆HD-DXM inhibits the expression of plasma BAFF and its mRNA levels in ITP patients;
     ◆DXM inhibits the expression of BAFF, IFN-y and proliferation of lymphocytes in vitro.
     英文摘要ⅢElevated interleukin-21 correlated to Th17 and Th1 cells in patients with immune thrombocytopenia
     IL-21, a recently discovered cytokine, was originally thought to be restricted to CD4+ T cells (Th1 and Th2 cells) and NKT cells, but it is now clear that IL-21 is also produced by Th17 cells. IL-21/IL-21R system is involved in the regulation of central functions of the immune system, including promoting T-cell-mediated humoral immune responses and antibody production, increasing the cytolytic potential of NK cells, promoting the differentiation of naive Th cells into Th17 cells. Data from mouse models have suggested that IL-21 promotes autoimmunity and blocking the action of IL-21 holds promises in a number of disease settings. IL-21 and/or IL-21 R are also implicated in the pathogenesis of some autoimmune diseases such as SLE, RA, SS in humans.
     Up to date, there is no data about IL-21 in patients with ITP. To further investigate the possible role of IL-21 in the pathogenesis of ITP, we measured the levels of IL-21 and correlated its levels to Th17 cells, Th1 cells and Tel cells. Objective:
     To investigate the possible role of IL-21, Th17, Th1 and Tc1 cells, as well as their relationship in the pathogenesis of ITP, and evaluated their clinical relevance
     Methods:
     ◆Patients and controls:Twenty-six adult chronic ITP patients were enrolled by diagnostic criteria for ITP. The control group consisted of twenty-one adult healthy volunteers matched for sex and age with the study population.
     ◆We examined the levels of CD3+CD8-IL-21+, CD3+CD8+IL-21+,Th17,Th1 and Tc1 cells in peripheral blood which was activated in vitro by PMA/ionomycin in short-term cultures in ITP patients and controls by flow cytometry through intracellular cytokines analysis. Th17 cells and Th1 cells were identified as those that were CD3+CD8-IL-17A+and CD3+CD8-IFN-γ+, and Tc1 cells were those that were CD3+CD8+IFN-γ+.
     ◆ELISA was used to detect the expression of IL-21 in plasma.
     ◆Anti-platelet autoantibodies were detected using the modified MAIPA assay.
     Results:
     ◆Elevated IL-21 in active ITP patients
     IL-21 was expressed on both CD3+CD8-T cells and CD3+CD8+T cells. The percentage of CD3+CD8-IL-21+T cells was significantly elevated in active ITP patients (mean±SD,4.4±0.8%) compared to healthy controls (2.3±0.8%, P<0.001). Similarly, elevated percentage of CD3+CD8+IL-21+T cells was found in active ITP patients (0.8±0.5%) compared to healthy controls (0.5±0.3%, P<0.05)
     We investigated plasma IL-21 by ELISA. The level of IL-21 was significantly increased in active ITP patients (148.3±124.2pg/ml) compared to controls (78.0±32.0pg/ml, P<0.05).
     ◆Increased expression of Th17, Th1 and Tc1 cells in active ITP patients treatment
     IL-17 was expressed on CD3+CD8-T cells and IFN-y was expressed on both CD3+CD8-T cells and CD3+CD8+T cells. ITP patients had significantly increased percentage of Th17 cells, Thl cells and Tc1 cells. The percentage of Th17 cells was significantly increased in ITP patients (2.1±0.8%) compared to controls (1.2±0.5%, P<0.05). Similarly, we found significantly increased percentage of Thl cells and Tc1 cells in ITP patients (Th1 cells:18.6±2.3%, Tc1 cells:21.4±8.4%) compared to controls (Th1 cells:10.9±2.6%, Tc1 cells:11.4±3.8%).
     ◆Correlation between CD3+CD8-IL-21+T cells, CD3+CD8+IL-21+T cells, Th17 cells, Th1 cells and Tc1 cells in active ITP patients
     We observed that the percentage of CD3+CD8-IL-21+T cells positively correlated to Th17 cells (P<0.01) and Thl cells (P<0.01). No significant correlation between CD3+CD8+IL-21+T cells and Tc1 cells was found (P>0.05).
     ◆Correlation of cells with autoantibodies in ITP patients
     The levels of CD3+CD8-IL-21+T cells, CD3+CD8+IL-21+T cells, Th17 cells, Th1 cells and Tc1 cells were not significantly different for patients who had positive MAIPA test compared to those with negative MAIPA test (P>0.05).
     Conclusions:
     ◆ITP patients have elevated IL-21 level;
     ◆Our results indicated a possible role of IL-21 in ITP patients correlated to Th17 and Th1 cells and blockade of IL-21 may be a reasonable therapeutic strategy for ITP especially those with active disease.
引文
1. Rodeghiero F, Stasi R, Gernsheimer T, et al. Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic purpura of adults and children:report from an international working group. Blood 2009; 113: 2386-2393.
    2. van der Harst D, de Jong D, Limpens J, et al. Clonal B-cell populations in patients with idiopathic thrombocytopenic purpura. Blood 1990; 76:2321-2326.
    3. Satoh T, Pandey JP, Okazaki Y, et al. Single nucleotide polymorphisms of the inflammatory cytokine genes in adults with chronic immune thrombocytopenic purpura. Br J Haematol 2004; 124:796-801.
    4. Solanilla A, Pasquet JM, Viallard JF, et al. Platelet-associated CD 154 in immune thrombocytopenic purpura. Blood 2005; 105:215-218.
    5. Olsson B, Andersson PO, Jernas M, et al. T-cell-mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura. Nat Med 2003; 9:1123-1124.
    6. O'Connor BP, Raman VS, Erickson LD, et al. BCMA Is Essential for the Survival of Long-lived Bone Marrow Plasma Cells.J Exp Med 2004; 199:91-98.
    7. Fabienne Mackay, Pascal Schneider, Paul Rennert, et al. BAFF and APRIL:A Tutorial on B Cell Survival. Annu Rev Immunol 2003; 21:231-264.
    8. Schiemann B, Gommerman JL. Vora K, et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 2001; 293:2111-2114.
    9. Huard B, Schneider P, Mauri D, et al. T cell costimulation by the TNF ligand BAFF. J Immunol 2001; 167:6225-6231.
    10. Sutherland AP, Ng LG, Fletcher CA, et al. BAFF augments certain Thl-associated inflammatory responses. J Immunol 2005; 174:5537-5544.
    11. Seyler TM, Park YW, Takemura S, et al. BLyS and APRIL in rheumatoid arthritis. J Clin Invest 2005; 115:3083-3092.
    12. Stohl W, Metyas S, Tan SM, et al. B lymphocyte stimulator overexpression in patients with systemic lupus erythematosus:longitudinal observations. Arthritis Rheum 2003; 48:3475-3486.
    13.Szodoray P and Jonsson R. The BAFF/APRIL system in systemic autoimmune diseases with a special emphasis on Sjogren's syndrome. Scand J Immunol 2005; 62:421-428.
    14. Thangarajh M, Gomes A, Masterman T, et al. Expression of B-cell-activating factor of the TNF family (BAFF) and its receptors in multiple sclerosis. J Neuroimmunol 2004; 152:183-190.
    15.Fabris M, Grimaldi F, Villalta D, et al. BLyS and April serum levels in patients with autoimmune thyroid diseases. Autoimmun Rev 2010; 9 165-169.
    16. Ng LG, Sutherland AP, Newton R, et al. B Cell-Activating Factor Belonging to the TNF Family (BAFF)-R Is the Principal BAFF Receptor Facilitating BAFF Costimulation of Circulating T and B Cells. J Immunol 2004; 173:807-817.
    17. Sasaki Y, Casola S, Kutok JL, et al. TNF Family Member B Cell-Activating Factor (BAFF) Receptor-Dependent and-Independent Roles for BAFF in B Cell Physiology. J Immunol 2004; 173:2245-2252.
    18. Carter RH, Zhao H, Liu X, et al. Expression and occupancy of BAFF-R on B-cells in systemic lupus erythematosus. Arthritis Rheum 2005; 52:3943-3954.
    19. Matsushita T, Hasegawa M, Yanaba K, et al. Enhanced BAFF Signaling in Systemic Sclerosis B Lymphocytes. Arthritis Rheum 2006; 54:192-201.
    20. Gorman JD, Sack KE and Davis JC Jr. Treatment of ankylosing spondylitis by inhibition of tumor necrosis factor a. N Engl J Med 2002; 346:1349-1356.
    21. Vugmeyster Y, Seshasayee D, Chang W, et al. A soluble BAFF antagonist, BR3-Fc, decreases peripheral blood B cells and lymphoid tissue marginal zone and follicular B cells in cynomolgus monkeys. Am J Pathol 2006; 168:476-489.
    22. Gross JA, Dillon SR, Mudri S, et al. TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease. Impaired B cell maturation in mice lacking BLyS. Immunity 2001; 15:289-302.
    23.Furie R, Stohl W, Ginzler EM, et al. Biologic activity and safety of belimumab, a neutralizing anti-B-lymphocyte stimulator (BLyS) monoclonal antibody:a phase I trial in patients with systemic lupus erythematosus. Arthritis Res Ther 2008; 10: R109.
    24. Tak PP, Thurlings RM, Rossier C, et al. Atacicept in patients with rheumatoid arthritis:results of a multicenter, phase I b, double-blind, placebo-controlled, dose-escalating, single-and repeated-dose study. Arthritis Rheum 2008; 58:61-72.
    25.Ramanujam M, Wang X, Huang W, et al. Similarities and differences between selective and nonselective BAFF blockade in murine SLE. J Clin Invest 2006; 116: 724-734.
    26. Rodeghiero F, Stasi R, Gernsheimer T, et al. Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic purpura of adults and children:report from an international working group. Blood 2009; 113: 2386-2393.
    27.叶任高主编.内科学.北京:人民卫生出版社,2003; 659-660.
    28.Neylon AJ, Saunders PW, Howard MR, et al. Clinically significant newly presenting autoimmune thrombocytopenic purpura in adults:a prospective study of a population-based cohort of 245 patients. Br J Haematol 2003; 122:966-974.
    29. Segal JB and Powe NR. Prevalence of immune thrombocytopenia:analyses of administrative data. J Thromb Haemost 2006; 4:2377-2383.
    30. Ruggeri M, Fortuna S and Rodeghiero F. Heterogeneity of terminology and clinical definitions in adult idiopathic thrombocytopenic purpura:a critical appraisal from a systematic review of the literature. Haematologica 2008; 93: 98-103.
    31. Chong BH and Ho SJ. Autoimmune thrombocytopenia. J Thromb Haemost 2005; 3:1763-1772.
    32. Semple JW, Milev Y, Cosgrave D, et al. Differences in serum cytokine levels in acute and chronic autoimmune thrombocytopenic purpura:relationship to platelet phenotype and antiplatelet T-cell reactivity. Blood 1996; 87:4245-4254.
    33. Semple JW and Freedman J. Increased antiplatelet T helper lymphocyte reactivity in patients with autoimmune thrombocytopenia. Blood 1991; 78:2619-2625.
    34. Sakakura M, Wada H, Tawara I, et al. Reduced Cd4+Cd25+T cells in patients with idiopathic thrombocytopenic purpura. Thromb Res 2007; 120:187-193.
    35. Yu J, Heck S, Patel V, et al. Defective circulating CD25 regulatory T cells in patients with chronic immune thrombocytopenic purpura. Blood 2008; 112:1325-1328.
    36. Stasi R, Cooper N, Del Poeta G, et al. Analysis of regulatory T-cell changes in patients with idiopathic thrombocytopenic purpura receiving B cell-depleting therapy with rituximab. Blood 2008; 112:1147-1150.
    37. Zhang F, Chu XX, Wang L, et al. Cell-mediated lysis of autologous platelets in chronic idiopathic thrombocytopenic purpura. Eur J Haematol 2006; 76:427-431.
    38. Zhao CH, Li XF, Zhang F, et al. Increased cytotoxic T-lymphocyte-mediated cytotoxicity predominant in patients with idiopathic thrombocytopenic purpura without platelet autoantibodies. Haematologica 2008; 93:1428-1430.
    39. Emmerich F, Bal G, Barakat A, et al. High-level serum B-cell activating factor and promoter polymorphisms in patients with idiopathic thrombocytopenic purpura. Br J Haematol 2007; 136:309-314.
    40. Zhou Z, Chen Z, Li H, et al. BAFF and BAFF-R of peripheral blood and spleen mononuclear cells in idiopathic thrombocytopenic purpura. Autoimmunity 2008; 42:112-119.
    41.Hase H, Kanno Y, Kojima M, et al. BAFF/BLyS can potentiate B-cell selection with the B-cell coreceptor complex. Blood 2004; 103:2257-2265.
    42. Thien M, Phan TG, Gardam S, et al. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity 2004; 20:785-798.
    43. Pers JO, Daridon C, Devauchelle V, et al. BAFF overexpression is associated with autoantibody production in autoimmune diseases. Ann N Y Acad Sci 2005; 1050: 34-39.
    44. Becker-Merok A, Nikolaisen C and Nossent HC. B-lymphocyte activating factor in systemic lupus erythematosus and rheumatoid arthritis in relation to autoantibody levels, disease measures and time. Lupus 2006; 15:570-576.
    45. Vugmeyster Y, Seshasayee D, Chang W, et al. A soluble BAFF antagonist, BR3-Fc, decreases peripheral blood B cells and lymphoid tissue marginal zone and follicular B cells in cynomolgus monkeys. Am J Pathol 2006; 168:476-489.
    46. Gross JA, Dillon SR, Mudri S, et al. TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease. Impaired B cell maturation in mice lacking BLyS. Immunity 2001; 15:289-302.
    47. Furie R, Stohl W, Ginzler EM, et al. Biologic activity and safety of belimumab, a neutralizing anti-B-lymphocyte stimulator (BLyS) monoclonal antibody:a phase I trial in patients with systemic lupus erythematosus. Arthritis Res Ther 2008; 10: R109.
    48.Tak PP, Thurlings RM, Rossier C, et al. Atacicept in patients with rheumatoid arthritis:results of a multicenter, phase I b, double-blind, placebo-controlled, dose-escalating, single-and repeated-dose study. Arthritis Rheum 2008; 58:61-72.
    49. Ramanujam M, Wang X, Huang W, et al. Similarities and differences between selective and nonselective BAFF blockade in murine SLE. J Clin Invest 2006; 116: 724-734.
    1. McMillan R. The pathogenesis of chronic immune thrombocytopenic purpura. Semin Hematol 2007; 44:S3-S11.
    2. Cines DB and Blanchette VS. Immune thrombocytopenic purpura. N Engl J Med 2002; 346:995-1008.
    3. Semple JW, Milev Y, Cosgrave D, et al. Differences in serum cytokine levels in acute and chronic autoimmune thrombocytopenic purpura:relationship to platelet phenotype and antiplatelet T-cell reactivity. Blood 1996; 87:4245-4254.
    4. Semple JW and Freedman J. Increased antiplatelet T helper lymphocyte reactivity in patients with autoimmune thrombocytopenia. Blood 1991; 78:2619-2625.
    5. Sakakura M, Wada H, Tawara I, et al. Reduced Cd4+Cd25+T cells in patients with idiopathic thrombocytopenic purpura. Thromb Res 2007; 120:187-193.
    6. Yu J, Heck S, Patel V, et al. Defective circulating CD25 regulatory T cells in patients with chronic immune thrombocytopenic purpura. Blood 2008; 112:1325-1328.
    7. Stasi R, Cooper N, Del Poeta G, et al. Analysis of regulatory T-cell changes in patients with idiopathic thrombocytopenic purpura receiving B cell-depleting therapy with rituximab. Blood 2008; 112:1147-1150.
    8. Olsson B, Andersson PO, Jernas M, et al. T-cell-mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura. Nat Med 2003; 9:1123-1124.
    9. Zhang F, Chu XX, Wang L, et al. Cell-mediated lysis of autologous platelets in chronic idiopathic thrombocytopenic purpura. Eur J Haematol.2006; 76:427-431.
    10. Zhao CH, Li XF, Zhang F, et al. Increased cytotoxic T-lymphocyte-mediated cytotoxicity predominant in patients with idiopathic thrombocytopenic purpura without platelet autoantibodies. Haematologica.2008; 93:1428-1430.
    11. Schneider P, MacKay F, Steiner V, et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med 1999; 189:1747-1756.
    12. Moore PA, Belvedere O, Orr A, et al. BLyS:member of the tumor necrosis factor family and B lymphocyte stimulator. Science 1999; 285:260-263.
    13. Huard B, Schneider P, Mauri D, et al. T cell costimulation by the TNF ligand BAFF. J Immunol 2001; 167:6225-6231.
    14. Ye Q, Wang L, Wells AD, et al. BAFF binding to T cell-expressed BAFF-R costimulates T cell proliferation and alloresponses. Eur J Immunol 2004; 34: 2750-2759.
    15. Huard B, Arlettaz L, Ambrose C, et al. BAFF production by antigen-presenting cells provides T cell co-stimulation. Int Immunol 2004; 16:467-475.
    16. Sutherland AP, Ng LG, Fletcher CA, et al. BAFF augments certain Th1-associated inflammatory responses. J Immunol 2005; 174:5537-5544.
    17. Gross JA, Johnston J, Mudri S, et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 2000; 404:995-999.
    18. Thompson JS, Bixler SA, Qian F, et al. BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science 2001; 293:2108-2111.
    19. Mackay F and Browning JL. BAFF:a fundamental survival factor for B cells. Nat Rev Immunol 2002; 2:465-475.
    20. Mackay F, Schneider P, Rennert P, et al. BAFF AND APRIL:a tutorial on B cell survival. Annu Rev Immunol 2003; 21:231-264.
    21. Seyler TM, Park YW, Takemura S, et al. BLyS and APRIL in rheumatoid arthritis. J Clin Invest.2005; 115:3083-3092.
    22. Stohl W, Metyas S, Tan SM, et al. B lymphocyte stimulator overexpression in patients with systemic lupus erythematosus:longitudinal observations. Arthritis Rheum 2003; 48:3475-3486.
    23. Szodoray P and Jonsson R. The BAFF/APRIL system in systemic autoimmune diseases with a special emphasis on Sjogren's syndrome. Scand J Immunol.2005; 62:421-428.
    24. Thangarajh M, Gomes A, Masterman T, et al. Expression of B-cell-activating factor of the TNF family (BAFF) and its receptors in multiple sclerosis. J Neuroimmunol 2004; 152:183-190.
    25. Morimoto S, Nakano S, Watanabe T, et al. Expression of B-cell activating factor of the tumour necrosis factor family (BAFF) in T cells in active systemic lupus erythematosus:the role of BAFF in T cell-dependent B cell pathogenic autoantibody production. Rheumatology 2007; 46:1083-1086.
    26. Dall'Era M, Chakravarty E, Wallace D, et al. Reduced B lymphocyte and immunoglobulin levels after atacicept treatment in patients with systemic lupus erythematosus:results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating trial. Arthritis Rheum 2007; 56:4142-4150.
    27. Tak PP, Thurlings RM, Rossier C, et al. Atacicept in patients with rheumatoid arthritis:results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating, single-and repeated-dose study. Arthritis Rheum 2008; 58:61-72.
    28. Rodeghiero F, Stasi R, Gernsheimer T, et al. Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic purpura of adults and children:report from an international working group. Blood 2009; 113:2386-2393.
    29. Pfaffl MW, Horgan GW and Dempfle L. Relative expression software tool (REST(?)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 2002; 30:e36.
    30. Leytin V and Freedman J. Platelet apoptosis in stored platelet concentrates and other models. Transfus Apheresis Sci 2003; 28:285-295.
    31. Hou M, Peng J, Shi Y, et al. Mycophenolate mofetil (MMF) for the treatment of steroid-resistant idiopathic thrombocytopenic purpura. Eur J Haematol 2003; 70: 353-357.
    32. Hase H, Kanno Y, Kojima M, et al. BAFF/BLyS can potentiate B-cell selection with the B-cell coreceptor complex. Blood 2004; 103:2257-2265.
    33. Thien M, Phan TG, Gardam S, et al. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity 2004; 20:785-798.
    34. Pers JO, Daridon C, Devauchelle V, et al. BAFF overexpression is associated with autoantibody production in autoimmune diseases. Ann N Y Acad Sci.2005; 1050:34-39.
    35. Becker-Merok A, Nikolaisen C and Nossent HC. B-lymphocyte activating factor in systemic lupus erythematosus and rheumatoid arthritis in relation to autoantibody levels, disease measures and time. Lupus 2006; 15:570-576.
    36. Vugmeyster Y, Seshasayee D, Chang W, et al. A soluble BAFF antagonist, BR3-Fc, decreases peripheral blood B cells and lymphoid tissue marginal zone and follicular B cells in cynomolgus monkeys. Am J Pathol 2006; 168:476-489.
    37. Gross JA, Dillon SR, Mudri S, et al. TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease. Impaired B cell maturation in mice lacking BLyS. Immunity 2001; 15:289-302.
    38. Furie R, Stohl W, Ginzler EM, et al. Biologic activity and safety of belimumab, a neutralizing anti-B-lymphocyte stimulator (BLyS) monoclonal antibody:a phase I trial in patients with systemic lupus erythematosus. Arthritis Res Ther 2008; 10: R109.
    39. Tak PP, Thurlings RM, Rossier C, et al. Atacicept in patients with rheumatoid arthritis:results of a multicenter, phase I b, double-blind, placebo-controlled, dose-escalating, single-and repeated-dose study. Arthritis Rheum 2008; 58:61-72.
    40. Ramanujam M, Wang X, Huang W, et al. Similarities and differences between selective and nonselective BAFF blockade in murine SLE. J Clin Invest 2006; 116: 724-734.
    1. Frederiksen H and Schmidt K. The incidence of idiopathic Thrombocytopenic Purpura in adults increases with age. Blood 1999; 94:909-913.
    2. Takahashi R, Sekine N and Nakatake T. Influence of monoclonal antiplatelet glycoprotein antibodies in vitro human megakaryocyte colony formation and proplatelet formation. Blood 1999; 93:195-201.
    3. Mazzucconi MG, Fazi P, Bernasconi S, et al. Therapy with high-dose dexamethasone (HD-DXM) in previously untreated patients affected by idiopathic thrombocytopenic purpura:a GIMEMAexperience. Blood 2007; 109:1402-1407.
    4. Cheng Y, Wong RS, Soo YO, et al. Initial treatment of immune thrombocytopenic purpura with high-dose dexamethasone. N Engl J Med 2003; 349:831-836.
    5. George JN and Vesely SK. Immune thmmbocytoponic purpura-let the treatment fit the patient. N Ensl J Med 2003; 349:903-905.
    6. Borst F, Keuning JJ, Vail Hulsteijn H, et al. Hish-dosedexamethasone as a first-and second-line treatment of idiopathic thmmboeytopenic purpura in adults. Ann Hematol 2004; 83:764-768.
    7.秦平,陈峰,张春青,等.大剂量地塞米松治疗慢性特发性血小板减少性紫癜的疗效观察.中华内科杂志,2005,44:451-452.
    8.侯明,秦平.欧美国家特发性血小板减少性紫癜诊治意见介绍.中华血液学杂志,2005,26:191-192.
    9. Caulier MT, Rose C, Roussel MT, et al. Pulsed hish-dose dexamethasone in refractory chronic idiopathic thrombocytopenic purpura:a report on 10 cases. Br J Haematol 1995; 91:477-479.
    10. Demiroglu H and Dundar S. Hish-dose pulsed dexamethasone for immune thrombocytopenia. N Engl J Med 1997; 33:425-427.
    11. Arruda VR and Annichino-Bizzacchi JM. Hish-dose dexamethasone therapy in chronic idiopathic thrombocytopenic purpura. Ann Hematol 1996; 73:175-177.
    12. Warner M, Wasi P, Couban S, et al. Failure of pulse high-dose dexamethasone in chronic idiopathic immune thmmbocytoponia. Am J Hematol 1997; 54:267-270.
    13. Cines DB and McMillan R. Management of adult idiopathic thrombocytopenic purpura. Annu Rev Med 2005; 56:425-442.
    14. Adcock IM, Brown CR, Gelder CM, et al. The effects of glucocorticoids on transcription factor activation in human peripheral blood mononuclear cells. Am J Physiol 1995;37:C331.
    15. Peng J, Liu CF, Liu D, et al. Effects of B7-blocking agent and/or CsA on induction of platelet-specific T-cell anergy in chronic autoimmune thrombocytopenic purpura. Blood 2003; 101:2721-2726.
    16. Mosmann TR and Sad S. The expanding universe of T-cell subsets:Th1, Th2 and more. Immunol Today 1996; 17:138-146.
    17. Semple JW, Milev Y, Cosgrave D, et al. Differences in serum cytokine levels in acute and chronic autoimmune thrombocytopenic purpura:relationship to platelet
    phenotype and antiplatelet T-cell reactivity. Blood 1996; 87:4245-4254.
    18. Andersson J. Cytokines in idiopathic thrombocytopenic purpura (ITP). Acta Paediatr Suppl 1998; 424:61-64.
    19. Panitsas FP, Theodoropoulou M, Kouraklis A, et al. Adult chronic idiopathic thrombocytopenic purpura (ITP) is the manifestation of a type-1 polarized immune response. Blood 2004; 103:2645-2647.
    20. Wang T, Zhao H, Ren H, et al. Type 1 and type 2 T-cell profiles in idiopathic thrombocytopenic purpura. Haematologica 2005; 90:914-923.
    21. Agarwal SK and Marshall GD Jr. Dexamethasone promotes type 2 cytokine production primarily through inhibition of type 1 cytokines. J Interferon Cytokine Res 2001; 21:147-155.
    22. Guo C, Chu X, Shi Y, et al. Correction of Thl-dominant Cytokine Profiles by High-dose Dexamethasone in Patients with Chronic Idiopathic Thrombocytopenic Purpura. J Clin Immunol 2007; 27:557-562.
    23. Stohl W, Metyas S, Tan SM, et al. B lymphocyte stimulator overexpression in patients with systemic lupus erythematosus:longitudinal observations. Arthritis Rheum 2003; 48:3475-3486.
    24. Asashima N, Fujimoto M, Watanabe R, et al. Serum levels of BAFF are increased in bullous pemphigoid but not pemphigus vulgaris. Br J Dermatol 2006; 155: 330-336.
    25. Reyes LI, Leon F, Gonzalez P, et al. Dexamethasone inhibits BAFF expression in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Cytokine 2008; 42:170-178.
    26. Rodeghiero F, Stasi R, Gernsheimer T, et al. Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic purpura of adults and children:report from an international working group. Blood 2009; 113: 2386-2393.
    27. Batten M, Groom J, Cachero TG, et al. BAFF mediates survival of peripheral immature B lymphocytes. J Exp Med 2000; 192:1453-1466.
    28. Rolink AG, Tschopp J, Schneider P, et al. BAFF is a survival and maturation factor for mouse B cells. Eur J Immunol 2002; 32:2004-2010.
    29. Do RK, Hatada E, Lee H, et al. Attenuation of apoptosis underlies B L ymphocyte stimulator enhancement of humoral immune response. J Exp Med 2000; 192: 953-964.
    30. Huard B, Schneider P, Mauri D, et al. T cell costimulation by the TNF ligand BAFF. J Immunol 2001; 167:6225-6231.
    31. Schneider P, MacKay F, Steiner V, et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med 1999; 189:1747-1756.
    32. Scapini P, Nardelli B, Nadali G, et al. G-CSF-stimulated neutrophils are a prominent source of functional BLyS. J Exp Med 2003; 97:297-302.
    33. Nardelli B, Belvedere O, Roschke V, et al. Synthesis and release of B lymphocyte stimulator from myeloid cells. Blood 2000; 97:198-204.
    34. Krumbholz M, Theil D, Derfuss T, et al. BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J Exp Med 2005; 201:195-200.
    35. Ittah M, Miceli-Richard C, Eric Gottenberg J, et al. B cell-activating factor of the tumor necrosis factor family (BAFF) is expressed under stimulation by interferon in salivary gland epithelial cells in primary Sjogren's syndrome. Arthritis Res Ther 2006; 8:R51.
    36. McMillan, R, Wang L, Tomer A, et al. Suppression of in vitro megakaryocyte production by antiplatelet autoantibodies from adult patients with chronic ITP. Blood 2004; 103:1364-1369.
    37. Olsson B, Andersson PO, Jernas M, et al. T-cell-mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura. Nat Med 2003; 9: 1123-1124.
    38. Olsson B, Andersson PO, Jacobsson S, et al. Disturbed apoptosis of T-cells in patients with active idiopathic thrombocytopenic purpura. Thromb Haemost 2005; 93:139-144.
    39. Ling Y, Cao X, Yu Z, et al. Circulating dendritic cells subsets and CD4+Foxp3+ regulatory T cells in adult patients with chronic ITP before and after treatment with high-dose dexamethasome. Eur J Haematol.2007; 79:310-316.
    40. Mackay F, Schneider P, Rennert P, et al. BAFF AND APRIL:a tutorial on B cell survival. Annual review of immunology 2003; 21:231-264.
    1. Berchtold P and Wenger M. Autoantibodies against platelet glycoproteins in autoimmune thrombocytopenic purpura:their clinical significance and response to treatment. Blood 1993; 81:1246-1250.
    2. Kuwana M, Kaburaki J and Ikeda Y. Autoreactive T cells to platelet GPIIb-IIIa in immune thrombocytopenic purpura:Role in production of anti-platelet autoantibody. J Clin Invest 1998; 102:1393-1402.
    3. Schneider P, MacKay F, Steiner V, et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. The Journal of experimental medicine 1999; 189:1747-1756.
    4. Moore, P.A., Belvedere O, Orr A, et al. BLyS:member of the tumor necrosis factor family and B lymphocyte stimulator. Science 1999; 285:260-263.
    5. Huard B, Schneider P, Mauri D, et al. T cell costimulation by the TNF ligand BAFF. J Immunol 2001; 167:6225-6231.
    6. Sutherland AP, Ng LG, Fletcher CA, et al. BAFF augments certain Thl-associated inflammatory responses. J Immunol 2005; 174:5537-5544.
    7. Kalled SL, Ambrose C and Hsu YM. The biochemistry and biology of BAFF, APRIL and their receptors. Curr Dir Autoimmun 2005;8:206-242
    8. Thien M, Phan TG, Gardam S, et al. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity 2004; 20:785-798.
    9. Mackay F, Woodcock SA, Lawton P, et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med 1999; 190:1697-1710.
    10. Stohl W, Metyas S, Tan SM, et al. B lymphocyte stimulator overexpression in patients with systemic lupus erythematosus:longitudinal observations. Arthritis Rheum 2003; 48:3475-3486.
    11. Seyler TM, Park YW, Takemura S, et al. BLyS and APRIL in rheumatoid arthritis. J Clin Invest 2005; 115:3083-3092.
    12. Szodoray P and Jonsson R. The BAFF/APRIL system in systemic autoimmune diseases with a special emphasis on Sjogren's syndrome. Scandinavian journal of immunology 2005; 62:421-428.
    13. Emmerich F, Bal G, Barakat A, et al. High-level serum B-cell activating factor and promoter polymorphisms in patients with idiopathic thrombocytopenic purpura. Br J Haematol 2007; 136:309-314.
    14. Zhou Z, Chen Z, Li H, et al. BAFF and BAFF-R of peripheral blood and spleen mononuclear cells in idiopathic thrombocytopenic purpura. Autoimmunity 2008; 42:112-119.
    15. Stasi R and Pro van D. Management of immune thrombocytopenic purpura in adults. Mayo Clin Proc 2004; 79:504-522.
    16. Mazzucconi MG, Fazi P, Bernasconi S, et al. Therapy with high-dose dexamethasone (HD-DXM) in previously untreated patients affected by idiopathic thrombocytopenic purpura:a GIMEMAexperience. Blood 2007; 109:1402-1407.
    17. Andersen JC. Response of resistant idiopathic thrombocytopenic purpura to pulsed high-dose dexamethasone therapy. N Engl J Med 1994; 330:1560-1564.
    18. Cheng Y, Wong RS, Soo YO, et al. Initial treatment of immune thrombocytopenic purpura with high-dose dexamethasone. N Engl J Med 2003; 349:831-836.
    19. Rodeghiero F, Stasi R, Gernsheimer T, et al. Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic purpura of adults and children:report from an international working group. Blood 2009; 113: 2386-2393.
    20. Michael W, Graham W and Dempfle HL. Relative expression software tool (REST(?)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research 2002; 30:1-10.
    21. Asashima N, Fujimoto M, Watanabe R, et al. Serum levels of BAFF are increased in bullous pemphigoid but not pemphigus vulgaris. Br J Dermatol 2006; 155: 330-336.
    22. Reyes LI, Leon F, Gonzalez P, et al. Dexamethasone inhibits BAFF expression in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Cytokine. 2008; 42:170-178.
    23. Batten M, Groom J, Cachero TG, et al. BAFF mediates survival of peripheral immature B lymphocytes. J Exp Med 2000; 192:1453-1466.
    24. Rolink AG, Tschopp J, Schneider P, et al. BAFF is a survival and maturation factor for mouse B cells. Eur J Immunol 2002; 32:2004-2010.
    25. Do RK, Hatada E, Lee H, et al. Attenuation of apoptosis underlies B L ymphocyte stimulator enhancement of humoral immune response. J Exp Med 2000; 192:953-964.
    26. Nardelli B, Belvedere O, Roschke V, et al. Synthesis and release of B-lymphocyte stimulator from myeloid cells. Blood 2001; 97:198-204.
    27. McMillan, R, Wang L, Tomer A, et al. Suppression of in vitro megakaryocyte production by antiplatelet autoantibodies from adult patients with chronic ITP. Blood 2004; 103:1364-1369.
    28. Olsson B, Andersson PO, Jernas M, et al. T-cell-mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura. Nat Med 2003; 9: 1123-1124.
    29. Olsson B, Andersson PO, Jacobsson S, et al. Disturbed apoptosis of T-cells in patients with active idiopathic thrombocytopenic purpura. Thromb Haemost 2005; 93:139-144.
    30. Panitsas FP, Theodoropoulou M, Kouraklis A, et al. Adult chronic idiopathic thrombocytopenic purpura (ITP) is the manifestation of a type-1 polarized immune response, Blood 2004; 103:2645-2647.
    31. Ling Y, Cao X, Yu Z, et al. Circulating dendritic cells subsets and CD4+Foxp3+ regulatory T cells in adult patients with chronic ITP before and after treatment with high-dose dexamethasome. Eur J Haematol.2007; 79:310-316.
    32. Guo C, Chu X, Shi Y, et al. Correction of Thl-dominant Cytokine Profiles by High-dose Dexamethasone in Patients with Chronic Idiopathic Thrombocytopenic Purpura. J Clin Immunol.2007; 27:557-562.
    33. Mackay F, Schneider P, Rennert P, et al. BAFF AND APRIL:a tutorial on B cell survival. Annual review of immunology 2003; 21:231-264.
    1. Ozaki K, Kikly K, Michalovich D, et al. Cloning of a type I cytokine receptor most related to the IL-2 receptor beta chain. Proc. Natl Acad Sci USA 2000; 97: 11439-11444.
    2. Parrish-Novak J, Dillon SR, Nelson A, et al. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 2000; 408:57-63.
    3. Leonard WJ and Spolski R. Interleukin-21:a modulator of lymphoid proliferation, apoptosis and differentiation. Nat Rev Immunol 2005; 5:688-698.
    4. Spolski R and Leonard WL. Interleukin-21:basic biology and implications for cancer and autoimmunity. Annu Rev Immunol 2007; 26:57-79.
    5. Jin H, Carrio R, Yu A, et al. Distinct activation signals determine whether IL-21 induces B cell costimulation, growth arrest, or Bim-dependent apoptosis. J Immunol 2004; 173:657-665.
    6. Brandt K, Bulfone-Paus S, Foster DC, et al. Interleukin-21 inhibits dendritic cell activation and maturation. Blood 2003; 102:4090-4098.
    7. Distler JH, Jungel A, Kowal-Bielecka O, et al. Expression of interleukin-21 receptor in epidermis from patients with systemic sclerosis. Arthritis Rheum 2005; 52:856-864.
    8. Caruso R, Fina D, Peluso I, et al. IL-21 is highly produced in Helicobacter pylori-infected gastric mucosa and promotes gelatinases synthesis. J Immunol 2007; 178:5957-5965.
    9. Parrish-Novak J, Dillon SR, Nelson A, et al. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 2000; 408:57-63.
    10. Habib T, Senadheera S, Weinberg K, et al. The common y chain (yc) is a required signaling component of the IL-21 receptor and supports IL-21-induced cell proliferation via JAK3. Biochemistry 2002; 41:8725-8731.
    11. Asao H, Okuyama C, Kumaki S, et al. Cutting edge:the common y-chain is an indispensable subunit of the IL-21 receptor complex. J Immunol 2001; 167:1-5.
    12. Konforte D and Paige CJ. Identification of cellular intermediates and molecular pathwaysinduced by IL-21 in human B cells. J Immunol 2006; 177:8381-8392.
    13. Zeng R, Spolski R, Casas E, et al. The molecular basisof IL-21-mediated proliferation. Blood 2007; 109:4135-4142.
    14. Ozaki K, Spolski R, Ettinger R, et al. Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J Immunol 2004; 173:5361-5371.
    15. Herber D, Brown TP, Liang S, et al. IL-21 has a pathogenic role in a lupus-prone mouse model and its blockade with IL-21R.Fc reduces disease progression. J Immunol 2007; 178:3822-3830.
    16. Young DA, Hegen M, Ma HL, et al. Blockade of the Interleukin-21/Interleukin-21 Receptor Pathway Ameliorates Disease in Animal Models of Rheumatoid Arthritis. Arthritis Rheum 2007; 56:1152-1163.
    17. Zhou L, Ivanov II, Spolski R, et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 2007; 8:967-974.
    18. Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 2007; 448:484-487.
    19. Nurieva R, Yang XO, Martinez G, et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 2007; 448:480-483.
    20. Mitoma H, Horiuchi T, Kimoto Y, et al. Decreased expression of interleukin-21 receptor on peripheral B lymphocytes in systemic lupus erythematosus. Int J Mol Med 2005; 16:609-615.
    21. Andersson AK, Feldmann M and Brennan FM. Neutralizing IL-21 and IL-15 inhibits pro-inflammatory cytokine production in rheumatoid arthritis. Scand Immunol 2008; 68:103-111.
    22. Rodeghiero F, Stasi R, Gernsheimer T, et al. Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic purpura of adults and children:report from an international working group. Blood 2009; 113:2386- 2393.
    23. Pelchen-Matthews A, Parsons IJ and Marsh M. Phorbol ester-induced downregulation of CD4 is a multistep process involving dissociation from p561ck, increased association with clathrin-coated pits, and altered endosomal sorting. J Exp Med 1993; 178:1209-1222.
    24. McMillan R. Autoantibodies and autoantigens in chronic immune thrombocytopenic purpura. Blood 1979; 54:113-119.
    25. Olsson B, Andersson PO, Jernas M, et al. T-cell-mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura. Nat Med 2003; 9:1123-1124.
    26. Olsson B, Andersson PO, Jacobsson S, et al. Disturbed apoptosis of T-cells in patients with active idiopathic thrombocytopenic purpura. Thromb Haemost 2005; 93:139-144.
    27. Zhang J, Ma D, Zhu X, et al. Elevated profile of Th17, Th1 and Tc1 cells in patients with immune thrombocytopenic purpura. Haematologica 2009; 94:1326-1329.
    28. Yao Z, Painter SL, Fanslow WC, et al. Human IL-17:a novel cytokine derived from T cells. J Immunol 1995; 155:5483-5486.
    29. Liblau RS, Singer SM and McDevitt HO.Thl and Th2 CD4+ T cells in the pathogenesis of organ-specific autoimmune diseases. Immunol Today 1995; 16: 34-38.
    30. Romagnani S. Thl and Th2 in human diseases. Clin Immunol Immunopathol. 1996; 80:225-235.
    31. Mosmann TR and Sad S. The expanding universe of T-cell subsets:Th1, Th2 and more. Immunol Today 1996; 17:138-146.
    32. Semple JW, Milev Y, Cosgrave D, et al. Differences in serum cytokine levels in acute and chronic autoimmune thrombocytopenic purpura:relationship to platelet phenotype and antiplatelet T-cell reactivity. Blood 1996; 87:4245-4254.
    33. Panitsas FP, Theodoropoulou M, Kouraklis A, et al. Adult chronic idiopathic thrombocytopenic purpura (ITP) is the manifestation of a type-1 polarized immune response. Blood 2004; 103:2645-2647.
    34. Yen D, Cheun GJ, Scheerens H, et al. IL-23 is essential for Tcell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 2006; 116: 1310-1316.
    35. Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 2005; 201:233-240.
    36. Bettelli E, Oukka M and Kuchroo VK. T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol 2007; 8:345-350.
    37. Spolski R and Leonard WJ. The Yin and Yang of interleukin-21 in allergy, autoimmunity and cancer. Curr Opin Immunol 2008; 20:295-301.
    38. Fina D, Sarra M, Fantini MC, et al. Regulation of gut inflammation and th17 cell response by interleukin-21. Gastroenterology 2008; 134:1038-1048.
    39. Fina D. Role of interleukin-21 in inflammation and allergy. Inflamm Allergy Drug Targets 2007; 6:63-68.
    40. Strengel M, Sareneva T, Foste D, et al. IL-21 up-regulates the expression of genes associated with innate immunity and Thl responses. J Immunol 2002; 169:3600-3605.
    41. Monteleone G, Monteleone I, Fina D, et al. Interleukin-21 enhances T-helper cell type I signaling and interferon-gamma production in Crohn's disease. Gastroenterology 2005; 128:687-694.
    42. Fina D, Sarra M, Caruso R, et al. Interleukin-21 contributes to the mucosal T helper Cell type 1 response in celiac disease. Gut 2008; 57:887-892.
    43. Wurster AL, Rodgers VL, Satoskar AR, et al. Interleukin 21 is a T helper (Th) cell 2 cytokine that specifically inhibits the differentiation of naive Th cells into interferon g-producing Th1 cells. J Exp Med 2002; 196:969-977.
    44. Frohlich A, Marsland BJ, Sonderegger I, et al. IL-21 receptor signaling is integral to the development of Th2 effector responses in vivo. Blood 2007; 109:2023-2031.
    45. Sonderegger I, Kisielow J, Meier R, et al. IL-21 and IL-21 R are not required for development of Th17 cells and autoimmunity in vivo. Eur J Immunol 2008; 38: 1833-1838.
    1. Stasi R, Evangelista ML, Stipa E, et al. Idiopathic thrombocytopenic purpura: Current concepts in pathophysiology and management. Thromb Haemost 2008; 99: 4-13.
    2. Ogawara H, Handa H, Morita K, et al. High Th1/Th2 ratio in patients with chronic idiopathic thrombocytopenic purpura. Eur J Haematol 2003; 71:283-288.
    3. Panitsas FP, Theodoropoulou M, Kouraklis A, et al. Adult chronic idiopathic thrombocytopenic purpura (ITP) is the manifestation of a type-1 polarized immune response. Blood 2004; 103:2645-2647.
    4. Liu B, Zhao H, Poon MC, et al. Abnormality of CD4(+)CD25(+) regulatory T cell in idiopathic thrombocytopenic purpura. Eur J Haematol 2007; 78:139-143.
    5. Yu J, Heck S, Patel V, et al. Defective circulating CD25 regulatory T cells in patients with chronic immune thrombocytopenic purpura. Blood 2008; 112:1325-1328.
    6. Olsson B, Andersson PO, Jernas M, et al. T-cell-mediated cytotoxicity toward platelets in chronic idiopathic thrombocytopenic purpura. Nat Med 2003; 9:1123-1124.
    7. Zhao C, Li X, Zhang F, et al. Increased cytotoxic T-lymphocyte-mediated cytotoxicity predominant in patients with idiopathic thrombocytopenic purpura without platelet autoantibodies. Haematologica 2008; 93:1428-1430.
    8. Spolski R and Leonard WL. Interleukin-21:basic biology and implications for cancer and autoimmunity. Annu Rev Immunol 2007; 26:57-79.
    9. Parrish-Novak J, Dillon SR, Nelson A, Hammond A, et al. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 2000; 408:57-63.
    10. Davis ID, Skak K, Smyth MJ, et al. Interleukin-21 signaling:functions in cancer and autoimmunity. Clin Cancer Res 2007; 13:6926-6932.
    11. Young DA, Hegen M, Ma HL, et al. Blockade of the Interleukin-21/Interleukin-21 Receptor Pathway Ameliorates Disease in Animal Models of Rheumatoid Arthritis. Arthritis Rheum 2007; 56:1152-1163.
    12. Herber D, Brown TP, Liang S, et al. IL-21 has a pathogenic role in a lupus-prone mouse model and its blockade with IL-21 R:Fc reduces disease progression. J Immunol 2007; 178:3822-3830.
    13. Fina D, Sarra M, Fantini MC, Rizzo A, Caruso R, Caprioli F, Stolfi C, Cardolini I, Dottori M, Boirivant M, Pallone F, Macdonald TT, Monteleone G. Regulation of gut inflammation and th17 cell response by interleukin-21. Gastroenterology 2008; 134:1038-1048.
    14. Mitoma H, Horiuchi T, Kimoto Y, et al. Decreased expression of interleukin-21 receptor on peripheral B lymphocytes in systemic lupus erythematosus. Int J Mol Med 2005; 16:609-615.
    15.Andersson AK, Feldmann M and Brennan FM. Neutralizing IL-21 and IL-15 inhibits pro-inflammatory cytokine production in rheumatoid arthritis. Scand Immunol 2008; 68:103-111.
    16. Distler JH, Jungel A, Kowal-Bielecka O, et al. Expression of interleukin-21 receptor in epidermis from patients with systemic sclerosis. Arthritis Rheum 2005; 52:856-864.
    17. Rodeghiero F, Stasi R, Gernsheimer T, et al. Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic purpura of adults and children:report from an international working group. Blood.2009; 113:2386-2393.
    18. Hou M, Peng J, Shi Y, et al.2003. Mycophenolate mofetil (MMF) for the treatment of steroid-resistant idiopathic thrombocytopenic purpura. Eur J Haematol 2003; 70:353-357.
    19. Spolski R and Leonard WJ. The Yin and Yang of interleukin-21 in allergy, autoimmunity and cancer. Curr Opin Immunol 2008; 20:295-301.
    20. Nurieva R, Yang XO, Martinez G, et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 2007; 448:480-483.
    21. Korn T, Bettelli E, Gao W, Awasthi A, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 2007; 448:484-487.
    22. Fina D. Role of interleukin-21 in inflammation and allergy. Inflamm Allergy Drug Targets 2007; 6:63-68.
    23. Strengel M, Sareneva T, Foste D, et al. IL-21 up-regulates the expression of genes associated with innate immunity and Th1 responses. J Immunol 2002; 169:3600-3605.
    24. Monteleone G, Monteleone I, Fina D, et al. Interleukin-21 enhances T-helper cell type I signaling and interferon-gamma production in Crohn's disease. Gastroenterology 2005; 128:687-694.
    25. Fina D, Sarra M, Caruso R, et al. Interleukin-21 contributes to the mucosal T helper Cell type 1 response in celiac disease. Gut 2008; 57:887-892.
    26. Wurster AL, Rodgers VL, Satoskar AR, et al. Interleukin 21 is a T helper (Th) cell 2 cytokine that specifically inhibits the differentiation of naive Th cells into interferon g-producing Thl cells. J Exp Med 2002; 196:969-977.
    27. Frohlich A, Marsland BJ, Sonderegger I, et al. IL-21 receptor signaling is integral to the development of Th2 effector responses in vivo. Blood 2007; 109:2023-2031.
    28. Zhou L, Ivanov II, Spolski R, et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 2007; 8:967-974.
    29. Sonderegger I, Kisielow J, Meier R, et al. IL-21 and IL-21 R are not required for development of Thl7 cells and autoimmunity in vivo. Eur J Immunol 2008; 38: 1833-1838.
    30. Coquet JM, Chakravarti S, Smyth MJ, et al. Cutting edge:IL-21 is not essential for Th17 differentiation or experimental autoimmune encephalomyelitis. J Immunol 2008; 180:7097-7101.
    1. Schneider P, MacKay F, Steiner V, et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med 1999; 189:1747-1756.
    2. Moore PA, Belvedere O, Orr A, et al. BLyS:member of the tumor necrosis factor family and B lymphocyte stimulator. Science 1999; 285:260-263.
    3. Shu HB, Hu WH and Johnson H. TALL-1 is a novel member of the TNF family that is down-regulated by mitogens. J Leukoc Biol 1999; 65:680-683.
    4. Mukhopadhyay A, Ni J, Zhai Y, et al. Identification and characterization of a novel cytokine, THANK, a TNF homologue that activates apoptosis, nuclear factor-kappaB, and c-Jun NH2-terminal kinase. J Biol Chem 1999; 274: 15978-15981.
    5. Roschke V, Sosnovtseva S, Ward CD, et al. BLyS and APRIL form biologically active heterotrimers that are expressed in patients with systemic immune-based rheumatic diseases. J Immunol 2002; 169:4314-4321.
    6. Nardelli B, Belvedere O, Roschke V, et al. Synthesis and release of B lymphocyte stimulator from myeloid cells. Blood 2000; 97:198-204.
    7. Scapini P, Nardelli B, Nadali G, et al. G-CSF-stimulated neutrophils are a prominent source of functional BLyS. J Exp Med 2003; 97:297-302.
    8. Huard B, Arlettaz L, Ambrose C, et al. BAFF production by antigen presenting cells provides T cell co-stimulation. Int Immunol 2004; 16:467-475.
    9. Krumbholz M, Theil D, Derfuss T, Rosenwald A, et al. BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J Exp Med 2005; 201:195-200.
    10. Ittah M, Miceli-Richard C, Eric Gottenberg J, et al. B cell-activating factor of the tumor necrosis factor family (BAFF) is expressed under stimulation by interferon in salivary gland epithelial cells in primary Sjogren's syndrome. Arthritis Res Ther 2006; 8:R51.
    11. Stohl W, Metyas S, Tan SM, et al. B lymphocyte stimulator overexpression in patients with systemic lupus erythematosus:longitudinal observations. Arthritis Rheum 2003; 48:3475-3486.
    12. Reyes LI, Leon F, Gonzalez P, et al. Dexamethasone inhibits BAFF expression in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Cytokine 2008; 42:170-178.
    13. Zhu XJ, Shi Y, Sun JZ, et al. High-dose dexamethasone inhibits BAFF expression in patients with immune thrombocytopenia. J Clin Immunol 2009; 29:603-610.
    14. Fabienne Mackay, Pascal Schneider, Paul Rennert,. BAFF and APRIL:A Tutorial on B Cell Survival. Annu Rev Immunol 2003; 21:231-264.
    15. Huard B, Schneider P, Mauri D, et al. T cell costimulation by the TNF ligand BAFF. J Immunol 2001; 167:6225-6231.
    16. Sutherland AP, Ng LG, Fletcher CA, et al. BAFF augments certain Thl-associated inflammatory responses. J Immunol 2005; 174:5537-5544.
    17. Schiemann B, Gommerman JL, Vora K, et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 2001; 293:2111-2114.
    18. Ng LG, Sutherland AP, Newton R, et al. B Cell-Activating Factor Belonging to the TNF Family (BAFF)-R Is the Principal BAFF Receptor Facilitating BAFF Costimulation of Circulating T and B Cells. J Immunol 2004; 173:807-817.
    19. Sasaki Y, Casola S, Kutok JL, et al. TNF Family Member B Cell-Activating Factor (BAFF) Receptor-Dependent and-Independent Roles for BAFF in B Cell Physiology. J Immunol 2004; 173:2245-2252.
    20. Seyler TM, Park YW, Takemura S, et al. BLyS and APRIL in rheumatoid arthritis. J Clin Invest 2005; 115:3083-3092.
    21. Szodoray P and Jonsson R. The BAFF/APRIL system in systemic autoimmune diseases with a special emphasis on Sjogren's syndrome. Scand J Immunol 2005; 62:421-428.
    22. Thangarajh M, Gomes A, Masterman T, et al. Expression of B-cell-activating factor of the TNF family (BAFF) and its receptors in multiple sclerosis. J Neuroimmunol 2004; 152:183-190.
    23. Fabris M, Grimaldi F, Villalta D, et al. BLyS and April serum levels in patients with autoimmune thyroid diseases. Autoimmun Rev 2010; 9:165-169.
    24. Khare SD, Sarosi I, Xia XZ, et al. Severe B cell hyperplasia and autoimmune disease in TALL-1 transgenic mice. Proc Natl Acad Sci 2000; 97:3370-3375.
    25. Mackay F, Woodcock SA, Lawton P, et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med 1999; 190:1697-1710.
    26. Gross JA, Johnston J, Mudri S, et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 2000; 404: 995-999.
    27. Kayagaki N, Yan M, Seshasayee D, et al. BAFF/BLyS receptor 3 binds the B cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-κB2. Immunity 2002; 10:515-524.
    28. Pers JO, Daridon C, Devauchelle V, et al. BAFF overexpression is associated with autoantibody production in autoimmune diseases. Ann N Y Acad Sci 2005; 1050:34-39.
    29. Becker-Merok A, Nikolaisen C and Nossent HC. B-lymphocyte activating factor in systemic lupus erythematosus and rheumatoid arthritis in relation to autoantibody levels, disease measures and time. Lupus 2006; 15:570-576.
    30.陆进明,李志,陈兰芳,等.类风湿关节炎中B细胞活化因子的研究.中国现代药物应用,2007,1:11.
    31. Emmerich F, Bal G, Barakat A, et al. High-level serum B-cell activating factor and promoter polymorphisms in patients with idiopathic thrombocytopenic purpura. Br J Haematol 2007; 136:309-314.
    32. Zhou Z, Chen Z, Li H, et al. BAFF and BAFF-R of peripheral blood and spleen mononuclear cells in idiopathic thrombocytopenic purpura. Autoimmunity 2008; 42:112-119.
    33. Zhu X, Shi Y, Peng J, et al. The effects of BAFF and BAFF-R-Fc fusion protein in immune thrombocytopenia. Blood 2009; 114:5362-5367.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700