振动流化床中纳米颗粒的流态化行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在传统流化床中考察了黏性纳米SiO_2、ZnO、TiO_2颗粒的流化性能,由于颗粒所特有的物理性质与表面性质,研究发现三种纳米颗粒在低表观气速下易形成活塞和沟流。随表观气速的增加,床内鼓泡加剧,活塞与沟流消失,床中均出现分层现象,扬析严重,流化效果较差。
     三种颗粒在振动流化床中均出现平衡压降高于床层重力产生的压降的现象。振动有效地减小了聚团尺寸,提高了床层的气含率,明显改善了流化效果。恒定振幅(3mm)下,振动频率的增加可显著降低纳米颗粒的最小流化速度。与无振动时相比,频率为40Hz时纳米SiO_2的最小流化速度可降低50%;而恒定频率(40Hz)下,振幅的变化对最小流化速度的影响并不是很大。不同高径比下SiO_2物料流态化实验表明,初始颗粒床层高度对颗粒流化性能有较大影响。当床径为一定值(40mm)时,初始床层越高,振动波传播受到的阻碍越大,振动效果越不明显。本实验中,h_o/D=1时,纳米SiO_2的流化效果最好。振动和气速协同作用可以有效地抑制气泡的形成与合并。低气速、高振动频率或高气速、低振动频率都可以获得好的流化效果。与振动频率、振幅和气速相比,流化次数对黏性颗粒的流态化影响相对较微弱,由于在二次流化后形成相对较为稳定的聚团,故颗粒床流化性能基本上不再随流化次数的增加而发生较大改变。
     基于Ergun方程和Richardson-Zaki方程定义了两种聚团直径——最小流化速度聚团直径和终端速度聚团直径。通过计算,对黏性纳米聚团的减小进行了证实,并据此对聚团的合并与破碎进行了分析。计算结果与实验值一致。
The behavior of different cohesive nano-particles was investigated in the conventional fluidized bed. It was found that slugs and channels were formed firstly under low superficial gas velocity due to the specific physical and surficial properties of particle. With increasing the superficial gas velocity, slugs and channels vanished, whilst the bubbling in bed was intensified obviously, and there existed a distribution of agglomerate sizes, namely, the agglomerates sizes were small in the upper zone and large in the lower zone. Because of the severe entrainment, the fluidization ability was poor.
     Vibrations imposed on gas-fluidized beds of nano-particles caused increase in equilibrium pressure drop, and improved fluidization quality obviously with effectively reduction of agglomerate size as well as looser bed layer. At certain amplitude (3mm) of vibrations applied, the minimum fluidization velocity decreased significantly with increasing vibration frequency. Comparing to the fluidization without vibration, the minimum fluidization velocity of SiO_2 under vibration in this study could be reduced by 50%; while the minimum fluidization velocity was nearly independent of vibration amplitude at almost constant frequency of about 40Hz. Experimental results proved that a proper original bed height of nano-particles with a constant bed diameter (40mm) contributed to better fluidization quality which could be obtained at h_0/D=1 for SiO_2 nano-particles. Further, combinations of high gas velocity and low vibration frequency as well as high vibration frequency and low gas velocity assured two domains with favorable conditions to perform stable fluidization. It could be concluded that the effect of fluidization times on fluidization behavior was relatively small comparing with the other three parameters (vibration frequency, amplitude, gas velocity). The agglomerates sizes were relatively stable after the second fluidization.
     Combining the Ergun and the Richardson-Zaki equations, two types of agglomerate size, namely agglomerate size at the minimum fluidization velocity and agglomerate size at the terminal fluidization velocity, have been calculated to confirm the reduction of agglomerate size. The probability of agglomerate coalescence and breakup has beenanalyzed. The calculated values were in agreement with the experimentalresults.
引文
[1]金涌,祝京旭,汪展文,等.流态化工程原理.清华大学出版社,北京:2001,8
    [2]易江林,金涌,俞芷青,等.MSB树脂的流化床干燥.见:第五届全国干燥技术交流会议论文集.上海:1995,316-319
    [3]崔玉斌,魏飞,金涌,等.气固逆并流多级旋流干燥的流体力学行为研究.化工冶金,1996,17(3):248-253
    [4]黄水源,汪展文,金涌,等.气固循环流化反应器的流体力学行为.化工学报,1996,47(3):357-361
    [5]Zhu J X.Personal Communication,University of Western Ontario,1999,London,Ontario,Canada
    [6]蔡平,金涌,俞芷青,等.鼓泡流态化向湍动流态化过渡的判别.化工学报,1986,4:341-401
    [7]金涌,俞芷青,张礼,等.流化床反应器塔形内构件的研究.化工学报,1980,2:117-127
    [8]汪展文,金涌,姚文虎,等.湍动流化床醋酸乙烯合成反应器的工业试验.化学反应工程与工艺,1995,11(1):50-55
    [9]杨贵林,黄哲,陈大保,等.快速流化床H-98催化剂丁烯氧化脱氢制丁二烯.石油化工,1988,16(10):680-685
    [10]Squires A M.The story of fluid catalytic cracking.Circulating fluidized bed technology,ed.P Basu,Pergamon Press,Toronto,1986,1-19
    [11]Bai D R,Zhu J X,Jin Y,et al.Novel designs and simulations of FCC Riser Regenerator.Ind.Eng.Chem.Res,1997,36(11):4543-454
    [12]Shingles T,McDonald A F.Commercial experience with synthol CFB reactors.In:P Basu,J F Large,eds.Circulating fluidized bed technology Ⅱ.Pergamon Press,Toronto,1988,43-50
    [13]时钧,汪家鼎,余国琮,等.化学工程手册.化学工业出版社,北京:1996
    [14]Reh L.The circulating fluid bed reactor-A key to efficient gas/solid Processing.In:P Basu,J F Large,eds.Circulating fluidized bed technology.Pergamon Press,Toronto,1986,105-118
    [15]Zhu J X,Bi H T.Distinctions between low density and high density circulating fluidized beds.Journal of Chemical Engineering of Japan,1995,73:644-649
    [16]Mawatari Y,Ikegami T,Tatemoto Y,et al.Prediction of Agglomerate Size for Fine Particles in a Vibro-fluidized Bed.Journal of Chemical Engineering of Japan,2003,36(3):277-283
    [17]Wilhelm R H,Kwauk M.Fluidization of Solid Particles.Chem.Eng.Progr.,1948,44:201-218
    [18]李洪钟,郭慕孙.气固流态化的散式化.化学工业出版社,北京:2002
    [19]Doichev,K.Energetic aspects of the transition between aggregative and particulate fluidization.Chem.Eng.Sci.,1974,29:1205-1210
    [20]Harrison,D,Davidson J F,De Kock J W.On the nature of aggregative and particulate fluidization.Trans.Inst.Chem.Eng.Sci.,1961,39:202-211
    [21]Foscolo P U,Gibilaro L G.A fully predictive criterion for the transition between particulate and aggregative fluidization.Chem.Eng.Sci.,1984,39:1667-1675
    [22]Liu D,Kwauk M,Li H Z.Aggregative and particulate fluidization-the two extremes of a continuous spectrum.Chem.Eng.Sci.,1996,51(17):4045-4063
    [23]Wen C Y,Yu Y H.A generalized method for predicting the minimum fluidization velocity.AIChE J.,1996,12:610
    [24]Geldart D.Types of gas fiuidization.Powder Technology,1973,7:285-292
    [25]Geldart D,Harnby N,Wong A C.Fluidization of cohesive powders.Powder Technology,1984,37:25-37
    [26]刘得金.超临界流体流态化:[博士学位论文].北京:中国科学院化工冶金研究所,1994
    [27]周涛.黏性颗粒聚团流态化实验与理论研究:[博士学位论文].北京:中国科学院化工冶金研究所,1998
    [28]Zhou T,Li H Z.Effects of adding different size particles on fluidization of cohesive particles.Powder Technology,1999,102(3):215-220
    [29]周涛,李洪钟.黏附性颗粒添加组分流态化实验.化工冶金,1998,19(3):231-236
    [30]周涛,李洪钟,王兆霖.粘附性颗粒添加组份流态化进展.化工冶金,1998,19(2):186-192
    [31]郭慕孙,翁绍林,王尊孝,等.波纹挡板流态化装置.中国实用新型专利:ZL92207714.2,1993
    [32]Alavi S,Caussat B.Experimental study on fluidization of micronic powders.Powder Technology,2005,157:114-120
    [33]曾平,周涛,陈冠群,等.磁场流化床的研究与应用.化工进展,2006,25(4):371-377
    [34]Sornchamni T,Jovanovic G N,Reed B P,et al.Operation of magnetically assisted fluidized beds in microgravity and variable gravity:experiment and theory.Advances in Space Research,2004,34:1494-1498
    [35]Thivel P X,Gonthier Y,Boldo P,et al.Magnetically stabilized fluidization of a mixture of magnetic and non-magnetic particles in a transverse magnetic field.Powder Technology,2004,139:252-257
    [36]归柯庭,施明恒.磁场对流化床中气泡的湮灭作用.应用科学学报,1999,17(3):349-354
    [37]Chen C M,L L R Hydrodynamics and mass transfer in three-phase magnetic fluidized beds.Powder Technology,2001,117:198-206
    [38]朱庆山,李洪钟.C类物料磁场流态化.化工学报,1996,47(1):53-64
    [39]Lu X S,Li H Z.Fluidization of CaCO_3 and Fe_2O_3 particle mixtures in a transverse rotating magnetic field.Powder Technology,2000,107:66-78
    [40]Zeng P,Zhou T,Yang J S.Behavior of mixtures of nano-particles in magnetically assisted fluidized bed.Chemical Engineering and Processing,2008,47:101-108
    [41]Ievy E K,Shnitzer I,Masaki,T,et al.Effect of an acoustic field on bubbling in a gas fluidized bed.Powder Technology,1997,90:53-57
    [42]Zhu,C,Liu G,Yu Q,et al.Sound assisted fluidization of nanoparticle agglomerates.Powder Technology,2004,141:119-123
    [43]王垚,金涌,魏飞,等.纳米级SiO_2颗粒流化床的塌落行为.化工学报,2001,5(11):957-961
    [44]王垚,金涌,魏飞,等.纳米级SiO_2聚团散式流化中聚团参数及曳力系数.清华大学学报(自然科学版),2001,41(45):32-35
    [45]王垚,金涌,魏飞,等.原生纳米级颗粒的聚团散式流态化.化工学报,2002,53(4):344-348
    [46]Wang Y,Gu G,Wei F,et al.Fluidization and agglomerate structure of SiO_2nanoparticles.Powder Technology,2002,124:152-159
    [47]Zhu C,Yu Q,Dave R.N.Gas Fluidization Characteristics of Nanoparticle Agglomerates.AIChE Journal,2005,51(2):426-439
    [48]Eccles E R A,Mujumdar A S.Bubble phenomena in aerated vibrated beds of small particles.Drying Technology,1997,15:95-116
    [49]Wang Y,Wang T J,Yi Y,et al.Resonance characteristics of a vibrated fluidized bed with a high bed hold-up.Powder Technology,2002,127:196-202
    [50]Gupta R,Mujumdar A S.Recent developments in fluidized bed drying.In:Mujumdar,A.eds.Advances in Drying.Hemisphere,1983,2:155-192
    [51]Mawatari Y,Koide T,Tatemoto Y,et al.Effect of particle diameter on fluidization under vibration. Powder Technology, 2002,123: 69-74
    [52] Mawatari Y, Koide T, Noda K. Prediction of minimum fluidization velocity for vibrated fluidized bed. Powder Technology, 2003, 131: 66-70
    [53] Mawatari Y, Tsunekawa M, Tatemoto Y, et al. Favorable vibrated fluidization conditions for cohesive fine particles. Powder Technology, 2005, 154: 54-60
    [54] Tatemoto Y, Mawatari Y, Yasukawa T, et al. Numerical simulation of particle motion in vibrated fluidized bed. Chemical Engineering Science, 2004, 59: 437-447
    [55] Tatemoto Y, Mawatari Y, Noda K, et al. Numerical simulation of cohesive particle motion in vibrated fluidized bed. Chemical Engineering Science, 2005, 60:5010-5021
    [56] Noda K, Mawatari Y, Uchida S. Flow patterns of fine particles in a vibrared fluidized bed under atmospheric or reduced pressure. Powder Technology, 1998, 99: 11-14
    [57] Barletta D, Donsi G, Fusco A, et al. Vibration propagation in a gas fluidized bed of a fine aeratable FCC powder. Fifth World Congress on Particle Technology(CD), Florida, USA, 2006, TWD26
    [58] Chunbao Xu, Jesse Zhu. Parametric study of fine particle fluidization under mechanical vibration. Powder Technology, 2006, 161: 135-144
    [59] Valverde J M, Castellanos A. Effect of Vibration on Agglomerate Particulate Fluidization. AIChE Journal, 2006, 52(5): 1705-1714
    [60] Valverde J M, Castellanos A, Quintanilla M A S, et al. Agglomerate shrinkage and bubbling stimulation on vibrated APF beds. Fifth World Congress on Particle Technology(CD), Florida, USA, 2006, TWD26
    [61] Nam C H, Pfeffer R, Dave R N, et al. Aerated Vibrofluidization of Silica Nanoparticles. AIChE Journal. 2004, 50(8): 1776-1785
    [62] Marring E, Hoffmann A C, Janssen L P B M. The effect of vibration on the fluidization behaviour of some cohesive powders. Powder Technology, 1994, 79(1): 1-10.
    [63] Hakim L F, Portman J L, Casper M D, et al. Aggregation behavior of nanoparticles in fluidized beds. Powder Technology, 2005, 160: 149 -160
    [64] Quevedo J, Pfeffer R, Flesch J, et al. Evaluation of the Impact of Assisted Fluidization by an External Force Field on the Drying Process of Nanopowders. Fifth world congress on particle technology (CD), florida, USA ,2006 , TWD26
    [65] Quevedo J A, Flesch J, Pfeffe R, et al. Evaluation of assisting methods on fluidization of hydrophilic nanoagglomerates by monitoring moisture in the gas phase. Chemical Engineering Science, 2007, 62: 2608-2622
    [66] Limtrakul S, Rotjanavijit W, Vatanatham. T, et al. Lagrangian modeling and simulation of effect of vibration on cohesive particle movement in a fluidized bed. Chemical Engineering Science, 2006, 62(1-2): 232-245
    [67] Wank J R, George S M, and Weimer A W. Vibro-fluidization of fine boron nitride powder at low pressure. Powder Technology, 2001, 121: 195-204
    [68] Krupp H. Particle adhesion theory and experiment. Advances in Colloid and Interface Science, 1967, 1: 111-259
    [69] Foscolo P U, Gibilaro L G. A fully Predictive Criterion for the Transition between Particulate and Aggregate Fluidization. Chemical Engineering Science, 1984,39:1667-1675
    [70] Chaouki J, Chavarie C, Klvana D, et al. Effect of Interparticle forces on the Hydrodynamic Behaviour of fluidized Aerogels. Powder Technology, 1985, 43(2): 117-125
    [71] Ergun S. Fluids flow through packed column. Chem. Eng. Prog., 1952, 48(2): 88-94
    [72] Morooka S, Kusakabe K, Kobata A, et al. Fluidization state of ultrafine powders. Journal of Chemical Engineering of Japan, 1988, 21: 41-46
    [73] Wang Z, Kwauk M, Li H. Fluidization of fine particles. Chem Eng Sci., 1998, 55: 377-395
    [74] Pack A W, Nienow A W. Fluidization of fine and very dense hard metal powders. Powder Technology, 1990,60: 145-158
    [75] Zhou T, Li H Z. Estimation of agglomerate size of cohesive particles during fluidization. Powder Technology, 1999, 101: 57-62
    [76] Matsuda S, Hatano H, Muramoto T, et al. Modeling for size reduction of agglomerates in nanoparticle fluidization. AIChE Journal, 2004, 50(11): 2763-2771
    
    [77] Kunii D, Levenspiel O. Fluidization Engineering. Wiley, New York, 1969, 64-73
    [78] Turki D, Fatah N. Fluidization and Study of Nanometric powder behavior: Numerical Approach to estimate the Agglomerates sizes, Fifth World Congress on Particle Technology(CD), Florida, USA, 2006, TWD26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700