脓毒症小鼠肠道树突状细胞变化及其意义的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脓毒症是外科危重症病人的常见并发症,由于其病理生理过程特别复杂牵涉全身各个器官,死亡率居高不下,是困扰外科和重症监护医师的一大难题。近年的研究提示,免疫功能紊乱是造成脓毒症治疗困难和高致死率的重要原因。而树突状细胞作为免疫系统重要组成部分,其变化对了解脓毒症机体免疫功能紊乱的发生和发展有重要意义。目前已有报道,脓毒症可以造成脾脏、血液等处的树突状细胞丢失。然而,树突状细胞作为一族群,由于所定居的组织器官不同,性质也不完全相同,因此,可以推测脓毒症过程中不同组织的树突状细胞的变化应该也是不尽相同的。
     胃肠道是脓毒症的重要受累器官。研究显示在脓毒症过程中定植于胃肠道内的细菌及毒素极易发生易位,因此胃肠道又很有可能是脓毒症患者发生二次感染甚至多器官功能衰竭的重要源器官。树突状细胞在肠道广泛分布于肠粘膜固有层,Peyer’s结等多处,通过多种途径摄取肠腔内的抗原。其对肠道免疫系统实现防御病原体侵袭的同时又可以避免病理性炎症产生这一功能起了关键性的作用。但是目前对于脓毒症过程中肠道树突状细胞的改变的尚无研究。本研究观察脓毒症小鼠肠道树突状细胞的变化,并就可能的机制,及其对肠道炎症以及脓毒症治疗的影响和意义进行了研究。
     肠道树突状细胞由于数目较少,分离检测较为困难。因此本研究第一部分我们在国外文献报道的基础上进行改良,分别运用EDTA+DTT和胶原酶Ⅳ消化小鼠肠道组织,制得小鼠肠粘膜固有层和PP结的单细胞悬液,在用CDllc等抗体的标记后,进行流式分析仪分析,建立了较为稳定的检测肠道树突状细胞的方法。本研究第二部分,我们用LPS腹腔注射的方法建立脓毒症小鼠模型,运用第一部分建立的检测方法,检测了小鼠各时相点肠道树突状细胞的数目、成熟度以及亚型。同时,对比了外周血树突状细胞的检测结果。此外还同时检测各时相点TNF-α和IL-10的水平,以综合评估各时相点炎症状态。本研究发现脓毒症小鼠肠道树突状细胞的变化特征与血液及文献报道的变化结果并不相同。LPS腹腔注射后,小鼠肠道树突状细胞数目在脓毒症早期明显增多,24小时后才开始下降。LPS注射90分钟后,肠道树突状细胞虽然增多,但成熟度的下降,CD86和MHCH表达下调。而CDS+树突状细胞比例大幅度上调。外周血树突状细胞数目的变化趋势与肠道树突状细胞的变化趋势相反。在脓毒症早期明显下降而24小时后出现回升,72小时后甚至超过正常小鼠。对此,我们推测可能存在脓毒症早期外周血树突状细胞向肠道的大量迁移。
     为验证这一推测,第三部分我们分别检测LPS刺激后CX3CR1 - FKN和CCR6 - MP-3α这两对趋化因子及受体在肠道组织或骨髓源树突状细胞中表达的变化。结果发现LPS注射后肠道组织MIP-3α和FKN的表达上调。而体外实验中骨髓源树突状细胞在LPS刺激后CX3XR1和CCR6的表达更是成百倍的上调。业已证实,FKN-CX3XR1和CCR6-MIP3a这两对趋化因子及受体是介导树突状细胞迁移的重要趋化因子。因此,表明LPS刺激后树突状细胞的大量迁移是存在的。同时,为进一步了解迁移来的树突状细胞对于脓毒症肠道炎症反应的影响,本研究通过腹腔注射Flt3L,预处理小鼠,扩增树突状细胞的数目,进一步放大LPS注射后迁移入肠道的树突状细胞的数目,从而观察肠道的炎症反应的改变。通过与生理盐水预处理的小鼠比对,我们发现,Flt3L预处理小鼠注射LPS后,肠道炎症反应明显加重。这些小鼠的肠道组织TNF-α水平,肠道病理改变都显著严重于对照组。更为重要的是,实验中经Flt3L预处理小鼠在LPS注射后24小时全部死亡。此外还观察到,Flt3L预处理肠道树突状细胞数目虽然明显增多,但其抵御肠道细菌易位的能力并没有明显增强。这一结果证明,树突状细胞,尤其由外周血迁移而来的树突状细胞是脓毒症过程中肠道炎症发生、发展的关键因素,其对炎症反应起了促进作用。并且,这一结果为下一部分实验中脓毒症免疫治疗策略的制定提供了重要的依据。目前诸多研究表明,免疫功能的紊乱是造成脓毒症病人二次感染、多器官功能衰竭甚至死亡的重要原因。动物实验也发现给予免疫增强型的治疗可以取得了较好的效果。我们的研究结果显示,在脓毒症的病理生理过程中存在以过度的炎症反应为主要特点的阶段,如果在这一阶段或之前给予免疫增强治疗将会不利于炎症的控制和病人的预后。
     因此,在本研究的第四部分,根据前面所发现的脓毒症小鼠肠道树突状细胞与炎症及免疫系统变化的规律,相对应的将相对应的给予如下的免疫治疗:在早期给予抑炎治疗,后期开始加用免疫增强剂治疗,并验证其作用效果。我们分别选择了树突状细胞数目达到高峰和开始出现丢失的拐点,即LPS注射后的3小时和24小时作为我们开始治疗的时间点。分别选择地塞米松和胸腺肽a1作为抑炎治疗和免疫增强治疗制剂。通过比较不同给药方式的小鼠,发现在LPS腹腔注射后3小时开始接受地塞米松注射,24小时开始加用胸腺肽α1的脓毒症小鼠,受到二次感染的打击后存活率仍达70%,并且这组小鼠抵御肠道细菌易位和二次感染的能力都强于其他给药方式治疗组。这一结果与树突状细胞数目的改变也直接相关。LPS注射12小时后,这组小鼠的肠道树突状细胞数目并没有明显增加,而后期也没有出现明显的丢失。表明这两种药物对脓毒症过程中树突状细胞调控作用是取得良好疗效的重要原因之一。
     综上所述,我们的研究结果首次描述了脓毒症过程中肠道树突状细胞的变化规律,并揭示树突状细胞的迁移是其早期数目改变的重要机制。而针对脓毒症小鼠树突状细胞数目改变和机体炎症变化的时间动力学规律,运用地塞米松联合胸腺肽α1治疗脓毒症的免疫调控治疗也取得了良好的疗效。从而证实了树突状细胞作为脓毒症免疫调理治疗的指示剂和调控目标的可能性,为脓毒症治疗提供了一个新的可行的治疗方向。
Sepsis is a common and serious complication in general surgery patients. Because of its complex pathophysiology, the treatment of septic patients has troubled surgery and intensive care physicians for a long time. Recent studies indicate that immune dysfunction is a major cause of the high mortality rate of septic patients. Among the components of the immune system that may contribute to immune dysfunction in sepsis, dendritic cells (DC) play a key role. Several researchers have reported that profound depletion of DC occurs in both septic patients and septic mice. However, these researches mainly focused on the loss of DC in spleen or other lymph organ. Little insight was provided concerning the alterations of DC present in other organs during sepsis.
     Today a large body of experimental data have documented that the gastrointestinal tract is not a passive organ for the patients who suffered from endotoxin shock (or sepsis). The ensuing translocation of bacteria and their products gained increasing acceptance as a major contributor to the development of secondary infection and MODS following septic shock. In gut, resident DC has been described in Peyer's patchs and lamina propria. Gut DC can pick up antigen that has been transported across the intestinal epithelium through various different routes. So, they are important for the immunologic and barrier functions of gut. Moreover, because of the needs of specialized immune system of the gut to respond appropriately to the large antigenic load normally present in the form of food antigens and commensal bacteria, gut DC have different properties and functions with those in spleen. Thus, in our present study we carefully characterize the alteration of gut DC during sepsis, and its effect for intestinal inflammation and the treatment of sepsis.
     Due to its low number, the isolation and examination for gut DC is difficult. In this study, we make some improvements based on methods reported by Sun CM. We digest the intestine of mice with EDAT+DTT and Collagenase IV to get the single suspension of Peyer's patch(PP) or lamina propria(LP).Then the single cell suspension we got was stained with antibody such as CDllc for flow cytometry. The results indicate it is a stable method for the detection of intestinal DC.
     In the second section, we induce the model of sepsis by intraperitoneal injection of LPS.Then we analyzed the population and MHCII and CD86 expression of DC that present in lamina propria (LP), Peyer's patches (PP), and blood. We also examined whether there was an increase or loss of a specific DC subpopulations. Additionally, according to the levels of TNF-a and IL-10, we assessed the inflammatory state at various time points. Interestingly, we found that the alteration of intestinal DC was different with splenetic DC's. Just after the injection of LPS, the number of intestinal DC significant increased rather than decreased. The loss of intestinal DC was observed until 24h after onset of sepsis. We also noted that the expression of CD86 and MHCII on intestinal DC were down-regulated by 90min in septic mice. Additionally, we found that the increase of LP and PP DC was mostly contributed to the expansion of CD4-CD8+DC. However, the changes of DC in circulating were opposite to gut DC's. Thus we speculated that the recruitment of DC precursors in blood into the intestine might be able to explain this.
     In the third section, to verify our hypothesis, we examined the alteration of the gene expression of CX3CR1-FKN and CCC6-MIP-3a after LPS stimulation. And to evaluate the effect of the DC migrated from blood on intestinal inflammation induced with LPS, mice were pre-treated with Flt3L or normal saline, and then challenged with or without LPS. After that, occurrence of bacterial translocation to distant organ and inflammatory response were evaluated. Additionally, the population and maturity of DC in LP and circulating was analyzed by flow cytometry. We observed that pretreatment of Flt3L significantly expanded DC in LP and blood, but not induce alteration of their maturity. We also found LPS injection induced up-regulation of CX3CR1-FKN and CCC6-MIP-3a mRNA levels and drastic increase of DC in intestine. However, exacerbation of DC growth induced by Flt3L-pretreatment aggravated intestinal inflammation and increased the mortality of endotoxemic mice rather than enhance resistance to bacterial translocation. The data of this section proved that migration of DC from circulating into intestine was a major mechanism for the increase of gut DC after LPS injection. Moreover, it suggested that DC play a key role in the development of intestinal inflammation induced by LPS. And recent studies have addressed the effect of immune-enhance treatment such as Flt3L, IFN-y and Tal as an immunotherapeutic option to reverses sepsisi-related immunoparalysis. However, the data of the current study show that Flt3L-induced increase in numbers of DC caused serious consequences for the mice after challenged with LPS. Thus down-regulated DC numbers at the pro-inflammatory stage and up-regulated DC numbers when immune was suppressed may be able to help host survival in the campaign to endotoxin shock or sepsis.
     Thus we verify our hypothesis in last section. Base on the results of above study, we choose 3 hour and 24 hour after LPS injection as the treatment time point. And dexamethasone (DXM) and thymosin alpha-1 (Tal, Zadaxin) that can be directly applied in the clinic were chosen as a means of anti-inflammation or immune-enhance treatment. Septic mice were randomly divided into five treatment groups.Then survival rates, levels of TNF-a and IL-10, the occurrence of bacterial translocation and the ability to clear secondary infections was observed. The behavior of DC over time was also evaluated. Among the five treatment groups, the combined treatment of dexamethasone and thymosin alpha-1 induced the highest survival rate, was associated with a decrease in bacterial translocation to extra-intestinal organs and enhanced the ability to eradicate secondary infections by reversing the change in DC numbers during sepsis. It provides evidence for a possible strategy to modulate numbers of DC to improve outcome of sepsis.
引文
1. Angus DC, Linde-Zwirble WT, Lidicked J, Clermont G,Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States:analysis of incidence, outcome, and associated costs of care. Crit Care Med.2001; 29:1303-1310.
    2. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med.2003; 348:1546-1554.
    3. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med. 2003; 348:138-150.
    4. Perl M, Chung CS, Garber M, Huang X, Ayala A. Contribution of anti-inflammatory/immune suppressive processes to the pathology of sepsis. Front Biosci.2006; 11:272-299.
    5. Jean-Louis Vincent, Qinghua Sun, and Marc-Jacques Dubois。 Clinical Trials of Immunomodulatory Therapies in Severe Sepsis and Septic Shock. Clinical Infectious Diseases 2002; 34:1084-1093.
    6. Abraham E. Why immunomodulatory therapies have not worked in sepsis. Intensive Care Med.1999; 25:556-566.
    7. Schefold JC, Hasper D, Volk HD, Reinke P. Sepsis:time has come to focus on the later stages. Med Hypotheses.2008;71:203-208.
    8. Banchereau J, Steinman RM. Dendritic cells and the control of immunity, Nature.1998;
    392:245-252.
    9. Docke WD, Randow F, Syrbe U, et,al. Monocyte deactivation in septic patients: restoration by IFN-gamma treatment Nat Med.1997; 3:678-681.
    10. Guisset O, Dilhuydy MS, Thiebaut R, et,al. Decrease in circulating dendritic cells predicts fatal outcome in septic shock. Intensive Care Med.2007; 33:148-152.
    11. Hotchkiss RS, Tinsley KW, Swanson PE, et, al. Depletion of dendritic cells, but not macrophages, in patients with sepsis. J Immunol.2002; 168:2493-2500.
    12. Tinsley KW, Grayson MH, Swanson PE, et al. Sepsis induces apoptosis and profound depletion of splenic interdigitating and follicular dendritic cells. J Immunol.2003; 171: 909-914.
    13. Efron PA, Martins A, Minnich D, et al. Characterization of the systemic loss of dendritic cells in murine lymph nodes during polymicrobial sepsis. J Immunol.2004; 173:3035-3043.
    14. Ding Y, Chung CS, Newton S, et al. Polymicrobial sepsis induces divergent effects on splenic and peritoneal dendritic cell function in mice. Shock.2004; 22:137-144.
    15. Flohe SB, Agrawal H,Schmitz D, Gertz M, Flohe S, Schade FU. Dendritic cells during polymicrobial sepsis rapidly mature but fail to initiate a protective Thl-type immune response. J Leukoc Biol.2006; 79:473-481.
    16. De Smedt T, Pajak B, Muraille E, et al, Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo, J Exp Med.1984; 184:1413-1424.
    17. Bahrami S, Schlag G, Yao YM, Redl H. Significance of translocation/endotoxin in the development of systemic sepsis following trauma and/or hemorrhage., Prog Clin Biol Res.1995; 392:197-208.
    18. Marshall JC, Christou NV, Meakins JL. The gastrointestinal tract The undrained abscess of multiple organ failure, Ann Surg.1993; 218:111-119.
    19. Balzan S, de Almeida Quadros C, de Cleva R, Zilberstein B, Cecconello I. Bacterial translocation:overview of mechanisms and clinical impact, J Gastroenterol Hepatol. 2007; 22:464-471.
    20. Garrett RE, Bar-Or D. Constipation critical illness and mortality:gut-derived toxidromes-real and now imagined, Crit Care Med.2008; 36:2710-2711.
    21. Coombes JL, Powrie F. Dendritic cells in intestinal immune regulation, Nature immunology.2008; 8:435-446.
    1.Bahrami S, Schlag G, Yao YM, Redl H. Significance of translocation/endotoxin in the development of systemic sepsis following trauma and/or hemorrhage., Prog Clin Biol Res. 1995; 392:197-208.
    2.Marshall JC, Christou NV, Meakins JL. The gastrointestinal tract. The undrained abscess of multiple organ failure, Ann Surg.1993; 218:111-119.
    3.Balzan S, de Ahneida Quadros C, de Cleva R, Zilberstein B, Cecconello I. Bacterial translocation:overview of mechanisms and clinical impact, J Gastroenterol Hepatol. 2007; 22:464-471.
    4.Garrett RE, Bar-Or D. Constipation critical illness and mortality:gut-derived toxidromes-real and now imagined, Crit Care Med.2008; 36:2710-2711.
    5.Alverdy JC, Laughlin RS, Wu L. Influence of the critically ill state on host-pathogen interactions within the intestine:gut-derived sepsis redefined, Crit Care Med.2003; 31: 598-607.
    6.Wiest R, Rath HC. Bacterial translocation in the gut, Best Practice & Research Clinical Gastroenterology.2003; 17:397-425.
    7.Banchereau J, Steinman RM. Dendritic cells and the control of immunity, Nature.1998; 392:245-252.
    8.Coombes JL, Powrie F. Dendritic cells in intestinal immune regulation, Nature immunology.2008; 8:435-446.
    9.Spahn TW, Kucharzik T. Modulating the intestinal immune system:the role of lymphotoxin and GALT organs, Gut. 2004; 53:456-465.
    10. Niess JH, Reinecker HC. Lamina propria dendritic cells in the physiology and pathology of the gastrointestinal tract, Curr Opin Gastroenterol.2005; 21:687-691.
    11.Sun CM, Hall JA, Blank RB, Bouladoux N, Oukka M, Mora JR, Belkaid Y. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med.2007; 204:1775-1785,.
    12.Castellaneta A, Abe M, Morelli AE, Thomson AW. Identification and characterization of intestinal Peyer's Patch interferon-producing (plasmacytoid) dendritic cells. Human Immunology.2004; 65:104-113.
    1. Angus DC, Linde-Zwirble WT, Lidicked J, Clermont QCarcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States:analysis of incidence, outcome, and associated costs of care. Crit Care Med.2001; 29:1303-1310.
    2. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med.2003; 348:1546-1554.
    3. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med. 2003; 348:138-150.
    4. Perl M, Chung CS, Garber M, Huang X, Ayala A. Contribution of anti-inflammatory/immune suppressive processes to the pathology of sepsis. Front Biosci.2006; 11:272-299.
    5. Docke WD, Randow F, Syrbe U, et,al. Monocyte deactivation in septic patients: restoration by IFN-gamma treatment. Nat Med.1997; 3:678-681.
    6. Guisset O, Dilhuydy MS, Thiebaut R, et,al. Decrease in circulating dendritic cells
    predicts fatal outcome in septic shock. Intensive Care Med.2007; 33:148-152.
    7. Hotchkiss RS, Tinsley KW, Swanson PE, et, al. Depletion of dendritic cells, but not macrophages, in patients with sepsis. J Immunol.2002; 168:2493-2500.
    8. Tinsley KW, Grayson MH, Swanson PE, et al. Sepsis induces apoptosis and profound depletion of splenic interdigitating and follicular dendritic cells. J Immunol.2003; 171: 909-914.
    9. Efron PA, Martins A, Minnich D, et al. Characterization of the systemic loss of dendritic cells in murine lymph nodes during polymicrobial sepsis. J Immunol.2004; 173:3035-3043.
    10. Ding Y, Chung CS, Newton S, et al. Polymicrobial sepsis induces divergent effects on splenic and peritoneal dendritic cell function in mice. Shock.2004; 22:137-144.
    11. Flohe SB, Agrawal H,Schmitz D, Gertz M, Flohe S, Schade FU. Dendritic cells during polymicrobial sepsis rapidly mature but fail to initiate a protective Thl-type immune response. J Leukoc Biol.2006; 79:473-481.
    12. De Smedt T, Pajak B, Muraille E, et al, Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo, J Exp Med.1984; 184:1413-1424.
    13. Ruedl C, Hubele S. Maturation of Peyer's patch dendritic cells in vitro upon stimulation via cytokines or CD40 triggering. Eur J Immunol.1997; 27:1325-1330.
    14. Maric I, Holt PG, Perdue MH, Bienenstock J. Class II MHC antigen (Ⅰa)-bearing dendritic cells in the epithelium of the rat intestine. J Immunol.1996; 156:1408-1414.
    15. Crowley MT, Inaba K, Witmer-Pack MD, Gezelter S, Steinman RM. Use of the fluorescence activated cell sorter to enrich dendritic cells from mouse spleen. J Immunol Methods.1990;133:55-66。
    16. Granucci F, Ricciardi-Castagnoli P. Interactions of bacterial pathogens with dendritic cells during invasion of mucosal surfaces. Curr Opin Microbiol.2003; 6:72-76.
    17. Balzan S, de Almeida Quadros C, de Cleva R, Zilberstein B, Cecconello I, Bacterial translocation:overview of mechanisms and clinical impact. J Gastroenterol Hepatol. 2007; 22:464-471.
    18. Garrett RE, Bar-Or D, Constipation, critical illness and mortality:gut-derived toxidromes-real and now imagined, Crit Care Med.2008; 36:2710-2711.
    19. Coombes JL, Powrie F, Dendritic cells in intestinal immune regulation, Nature immunology.2008; 8:435-446.
    20. Wysocka M, Montaner LJ, Karp CL. Flt3 ligand treatment reverses endotoxin tolerance-related immunoparalysis. J Immunol.2005;174:7398-7402.
    21. Lipscomb MF, Masten BJ. Dendritic cells:immune regulators in health and disease. Physiol Rev 2002; 82:97-130.
    22. Spahn TW, Kucharzik T, Modulating the intestinal immune system:the role of lymphotoxin and GALT organs, Gut.2004; 53:456-465.
    23. Iwasaki A, Kelsall BL. Freshly isolated Peyer's patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells. J Exp Med 1999; 190:229-239.
    24. Chirdo FG, Millington OR, Beacock-Sharp H, Mowat AM. Immunomodulatory dendritic cells in intestinal lamina propria. Eur J Immunol.2005; 35:1831-1840.
    25. Rimoldi M, Chieppa M, Salucci V, et al, Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells, Nature Immunol.2005; 6: 507-514.
    26. Deitch EA, Specian RD, Berg RD, Endotoxin-induced bacterial translocation and mucosal permeability:role of xanthine oxidase, complement activation, and macrophage products, Crit Care Med.1991; 19:785-791.
    27. Vremec D, Pooley J, Hochrein H, Wu L, Shortman K. CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J Immunol.2000; 164:2978-86.
    28. Kamath AT, Henri S, Battye F, Tough DF, Shortman K. Developmental kinetics and lifespan of dendritic cells in mouse lymphoid organs. Blood.2002; 100:1734-41.
    29. Maldonado-Lopez R, De Smedt T, Michel P, et al. CD8alpha+and CD8alpha-subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med.1999; 189:587-592:
    30. Maldonado-Lopez R, Maliszewski C, Urbain J, Moser M. Cytokines regulate the capacity of CD8alpha (+) and CD8alpha (-) dendritic cells to prime Thl/Th2 cells in vivo. J Immunol.2001 Oct 15; 167(8):4345-4350.
    31. De Smedt T, Pajak B, Klaus GG, Noelle RJ, Urbain J, Leo O, Moser M. Antigen-specific T lymphocytes regulate lipopolysaccharide-induced apoptosis of dendritic cells in vivo. J Immunol.1998; 161:4476-4479.
    1. Bahrami S, Schlag G, Yao YM, Redl H. Signnificance of translocation/endotoxin in the development of systemic sepsis following trauma and/or hemorrhage., Prog Clin Biol Res.1995; 392:197-208.
    2. Marshall JC, Christou NV, Meakins JL. The gastrointestinal tract. The undrained abscess of multiple organ failure, Ann Surg.1993; 218:111-119.
    3. Balzan S, de Almeida Quadros C, de Cleva R, Zilberstein B, Cecconello I. Bacterial translocation:overview of mechanisms and clinical impact, J Gastroenterol Hepatol. 2007; 22:464-471.
    4. Garrett RE, Bar-Or D. Constipation critical illness and mortality:gut-derived toxidromes-real and now imagined, Crit Care Med.2008; 36:2710-2711.
    5. Alverdy JC, Laughlin RS, Wu L. Influence of the critically ill state on host-pathogen interactions within the intestine:gut-derived sepsis redefined, Crit Care Med.2003;31: 598-607.
    6. Badami CD, Senthil M, Caputo FJ. Mesenteric lymph duct ligation improves survival in a lethal shock model, Shock.2008; 30:680-685.
    7. Coombes JL, Powrie F. Dendritic cells in intestinal immune regulation, Nature immunology.2008;8:435-446.
    8. Lipscomb MF, Masten BJ. Dendritic cells:immune regulators in health and disease. Physiol Rev.2002; 82:97-130.
    9. Guisset O, Dilhuydy MS, Thiebaut R, et,al. Decrease in circulating dendritic cells predicts fatal outcome in septic shock. Intensive Care Med.2007; 33:148-152.
    10. Hotchkiss RS, Tinsley KW, Swanson PE, et, al. Depletion of dendritic cells, but not macrophages, in patients with sepsis. J Immunol.2002; 168:2493-2500.
    11. Tinsley KW, Grayson MH, Swanson PE, et al. Sepsis induces apoptosis and profound depletion of splenic interdigitating and follicular dendritic cells. J Immunol.2003; 171: 909-914.
    12. Williams IR. CCR6 and CCL20:partners in intestinal immunity and lymphorganogenesis. Ann N Y Acad Sci.2006; 1072:52-61.
    13. Rescigno M. CCR6 (+) dendritic cells:the gut tactical-response unit. Immunity.2006; 24:508-520.
    14. Matsui T, Akahoshi T, Namai R, et al.ctive recruitment of CCR6-expressing cells by increased production of MIP-3 alpha in rheumatoid arthritis. Clin Exp Immunol.2001; 125:155-161
    15. Chinnery HR, Ruitenberg MJ, Plant GW,et al.Chemokine receptor CX3CR1 mediates homing of MHC class II-positive cells to the normal mouse corneal epithelium. Invest Ophthalmol Vis Sci.2007; 48:1568-1575.
    16. Papadopoulos EJ, Sassetti C, Saeki H, et al. Fractalkine, a CX3C chemokine, is expressed by dendritic cells and is up-regulated upon dendritic cell maturation. Eur J Immunol.1999; 29:2551-2559.
    17. Lutz, M. B., N. Kukutsch, A. L. Ogilvie, et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J Immunol Methods.1999;223:77-92.
    18. Brasel, K., T. De Smedt, J. L. Smith, C. R. Maliszewski. Generation of murine dendritic cells from flt3-ligand-supplemented bone marrow cultures. Blood.2000; 96: 3029-3039.
    19. Samel S, Keese M, Kleczka M, et al, Microscopy of bacterial translocation during small bowel obstruction and ischemia in vivo - a new animal model, BMC Surg. 2002; 2:6-9.
    20. Hershman MJ, Chaedle WQ Wellhausen SR, Davidson PF, Polk HC. Monocyte HLA-DR antigen expression characterizes clinical outcome in the trauma patients. Br J Surg. 1990; 77:204-207.
    21. van den Berg JM, Oldenburger RH, van den Berg AP, et al. Low HLA-DR expression on monocytes as a prognostic marker for bacterial sepsis after liver transplantation. Transplantation.1997; 63:1846-1848.
    22. Ditschkowski M, Kreusfelder E, Rebmann V, et al. HLA-DR expression and soluble HLA-DR levels in septic patients after trauma. Ann Surg.1999; 229:246-54.
    23. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998; 392:245-252.
    24. Rimoldi M, Chieppa M, Salucci V, et al. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells, Nature Immunol.2005; 6: 507-514.
    25. Maraskovsky E, Brasel K, Teepe M, et al. Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice:multiple dendritic cell subpopulations identified. J Exp Med 1996; 184:1953-1962.
    26. Antonysamy MA, Thomson AW. Flt3 ligand (FL) and its influence on immune reactivity. Cytokine 2000; 12:87-100.
    1. Angus DC, Linde-Zwirble WT, Lidicked J, Clermont QCarcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States:analysis of incidence, outcome, and associated costs of care. Crit Care Med 2001; 29:1303-1310.
    2. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 2003; 348:1546-1554.
    3. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med 2003; 348:138-150.
    4. Perl M, Chung CS, Garber M, Huang X, Ayala A. Contribution of anti-inflammatory/immune suppressive processes to the pathology of sepsis. Front Biosci 2006; 11:272-299.
    5. Bone RC:The pathogenesis of sepsis. Ann Intern Med.1991; 115:457-469.
    6. Jean-Louis Vincent, Qinghua Sun, and Marc-Jacques Dubois。 Clinical Trials of Immunomodulatory Therapies in Severe Sepsis and Septic Shock。 Clinical Infectious Diseases 2002; 34:1084-1093.
    7. Abraham E. Why immunomodulatory therapies have not worked in sepsis. Intensive Care Med.1999; 25:556-566.
    8. Ertel, W., J. P. Kremer, J. Kenney, et al. Downregulation of proinflammatory cytokine release in whole blood from septic patients. Blood 1995;85:1341-1347.
    9. Docke, W. D., F. Randow, U. Syrbe, et al. Monocyte deactivation in septic patients: restoration by IFN-γ treatment. Nat. Med.1997; 3:678-681.
    10. Caille, V., J. D. Chiche, N. Nciri, et al. Histocompatibility leukocyte antigen-D related expression is specifically altered and predicts mortality in septic shock but not in other causes of shock.Shock.2004;22:521-526.
    11. Hotchkiss, R. S., K. W. Tinsley, P. E. Swanson,et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J Immunol. 2001;166:6952-6963.
    12. Schefold JC, Hasper D, Volk HD, Reinke P. Sepsis:time has come to focus on the later stages. Med Hypotheses.2008;71:203-208.
    13. Banchereau J, Steinman RM, Dendritic cells and the control of immunity, Nature.1998; 392:245-252.
    14. Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18:767-811.
    15. Lipscomb MF, Masten BJ. Dendritic cells:immune regulators in health and disease. Physiol Rev 2002; 82:97-130.
    16. Hotchkiss RS, Tinsley KW, Swanson PE, et al. Depletion of dendritic cells, but not macrophages, in patients with sepsis. J Immunol.2002; 168:2493-2500.
    17. Guisset O, Dilhuydy MS, Thiebaut R, et al. Decrease in circulating dendritic cells predicts fatal outcome in septic shock. Intensive Care Med.2007; 33:148-52.
    18. Tinsley KW, Grayson MH, Swanson PE, et al. Sepsis induces apoptosis and profound depletion of splenic interdigitating and follicular dendritic cells. J Immunol 2003; 171: 909-914.
    19. Efron PA, Martins A, Minnich D, et al. Characterization of the systemic loss of dendritic cells in murine lymph nodes during polymicrobial sepsis. J Immunol 2004; 173:3035-3043.
    20. Ding Y, Chung CS, Newton S, et al. Polymicrobial sepsis induces divergent effects on splenic and peritoneal dendritic cell function in mice. Shock 2004; 22:137-144.
    21. Bohannon J, Cui W, Cox R, Przkora R, Sherwood E, Toliver-Kinsky T. Prophylactic treatment with fins-like tyrosine kinase-3 ligand after burn injury enhances global immune responses to infection. J Immunol.2008; 180:3038-3048.
    22. Toliver-Kinsky TE, Cui W, Murphey ED, Lin C, Sherwood ER. Enhancement of dendritic cell production by fins-like tyrosine kinase-3 ligand increases the resistance of mice to a burn wound infection. J Immunol.2005; 174:404-410.
    23. Gautier EL, Huby T, Saint-Charles F, Ouzilleau B, Chapman MJ, Lesnik P. Enhanced dendritic cell survival attenuates lipopolysaccharide-induced immunosuppression and increases resistance to lethal endotoxic shock. J Immunol.2008; 180:6941-6946.
    24. Pene F, Zuber B, Courtine E, Rousseau C,et al. Dendritic cells modulate lung response to Pseudomonas aeruginosa in a murine model of sepsis-induced immune dysfunction. J Immunol.2008; 181:8513-8520.
    25. Ayala A, Chung CS, Grutkoski PS, Song GY. Mechanisms of immune resolution. Crit Care Med.2003;31:S558-571.
    26. Winter C, Taut K, Langer F, et al. FMS-like tyrosine kinase 3 ligand aggravates the lung inflammatory response to Streptococcus pneumoniae infection in mice:role of dendritic cells. J Immunol.2007; 179:3099-3108.
    27. von Wulffen W, Steinmueller M, Herold S, et al. Lung dendritic cells elicited by Fms-like tyrosine 3-kinase ligand amplify the lung inflammatory response to lipopolysaccharide. Am J Respir Crit Care Med.2007; 176:892-901.
    28. Annane D, Se'bille V, Charpentier C, Bollaert PE, Francois B,Korach JM, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA.2001; 288:862-871.
    29. Finfer S. Corticosteroids in septic shock. N Engl J Med 2008; 358:188-190.
    30. Goldstein AL, Guha A, Zatz MM, Hardy MA, White A. Purification and biological activity of thymosin, a hormone of the thymus gland. Proc Natl Acad Sci USA 1972; 69:1800-1803.
    31. Zhang Y, Chen H, Li YM, Zheng SS, Chen YG, Li LJ, Zhou L, Xie HY, Praseedom RK. Thymosin alphal-and ulinastatin-based immunomodulatory strategy for sepsis arising from intra-abdominal infection due to carbapenem-resistant bacteria. J Infect Dis.2008; 198:723-730.
    32. Goldstein AL, Goldstein AL. From lab to bedside:emerging clinical applications of thymosin alphal. Expert Opin Biol Ther.2009; 9:593-608.
    1. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med, 2003,348:138-150.
    2. Vincent JL, Sun Q, DuboisMJ. Clinical trials of immunomodulatory therapies in severe sep sis and sep tic shock. Clin Infect Dis,2002,34:1084-1093.
    3. Bone RC. Sir Isaac Newton, Sep sis, SIRS and CARS. Crit CareMed,1996,24:1125-1128.
    4. PerlM, Chung CS, GarberM, et al. Contribution of anti-inflammatory/immune suppressive processes to the pathology of sepsis. Front Biosci,2006,11:272-299.
    5. Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Ann Rev Immunol,2000,18:767-811.
    6. Dubsky P, Ueno H, Piqueras B, et al. Human dendritic cell subsets for vaccination. J
    Clin Immunol,2005,25:551-572.
    7. Liu YJ. Dendritic cell subsets and lineages, and their functions in innate and adap tive immunity. Cell,2001,106:259-261.
    8. Steinman RM, Hawiger D, NussenzweigMC. Tolerogenic dendritic cells. Ann Rev Immunol,2003,21:6852711.
    9. Tinsley KW, Grayson MH, Swanson PE, et al. Sepsis induces apoptosis and p rofound dep letion of splenic interdigitating and follicular dendritic cells. J Immunol,2003, 171:909-914.
    10. Ding Y, Chung CS, Newton S, et al. Polymicrobial sepsis induces divergent effects on sp lenic and peritoneal dendritic cell function in mice. Shock,2004,22:137-144.
    11. Efron PA, MartinsA, Minnich D, et al. Characterization of the systemic loss of dendritic cells in murine lymph nodes during polymicrobial sepsis. J Immunol,2004, 173:3035-3043.
    12. Wen H, Hogaboam CM, Gauldie J, et al. Severe sepsis exacerbates cell-mediated immunity in the lung due to an altered dendritic cell cytokine profile. Am J Pathol, 2006,168:1940-1950.
    13. Wysocka M, Montaner LJ, Karp CL. Flt3 ligand treatment reverses endotoxin tolerance2related immunoparalysis. J Immunol,2005,174:7398-7402.
    14. Kawasakt T, HubbardWJ, ChoudhryMA, et al. Trauma-hemorrhage induces depressed splenic dendritic cell functions in mice. J Immunol,2006,177:4514-4520
    15. Hotchkiss RS, Tinsley KW, Swanson PE, et al. Depletion of dendritic cells, but not macrophages, in patients with sepsis.J Immunol,2002,168:2493-2500.
    16. GuissetO, DilhuydyMS, Thiebaut R, et al. Decrease in circulating dendritic cells predicts fatal outcome in septic shock.Intensive CareMed,2007,33:148-152.
    17. Tschaikowaku K, Hedwig2geissingM, Schiele A, et al. Coincidence of pro-and anti-inflammatory responses in the early phase of severe sepsis:longitudinal study ofmononuclear histocompatibility leukocyte antigen-DR expression, procalcitonin, Creactive protein, and changes in T-cell subsets in sep tic and postoperative patients. Crit CareMed,2002,30:1015-1023.
    18. Le Tulzo Y, Pangault C, Amiot L, et al. Monocyte human leukocyte antigen-DR transcrip tional down regulation by cortisol during septic shock. Am J Resp ir Crit CareMed,2004,169:1144-1451.
    19. Scumpia PO, Mcauliffe PF,O'Malley KA, et al. CD11c+dendritic cells are required for survival in murine polymicrobial sepsis. J Immunol,2005,175:3282-3286.
    20. WysockaM, Robertson S, Riemann H, et al. IL-12 suppression during experimental endotoxin tolerance:dendritic cell loss and macrophage hyporesponsiveness. J Immunol,2001,166:7504-7513.
    21. Flohe SB, Agrawal H, SchmitzD, et al. Dendritic cells during polymicrobial sepsis rapidly mature but fail to initiate a protective Thl2type immune response. J Leukoc Biol,2006,79:473-481.
    22. Benjamim CF, Lundy SK, LukacsNW, et al. Reversal of longterm sepsis-induced immunosuppression by dendritic cells.Blood,2005,105:3588-3595.
    23.于宝军,唐星明,李志宇,等.白细胞介素-1和白细胞介素-10基因多态性与脓毒症发病的相关性研究.医学研究生学报,2007,20:116-119.
    24. Fujita S, Seino K, Sato K, et al. Regulatory dendritic cells act as regulators of acute lethal systemic inflammatory response.Blood,2006,107:3656-3664.
    25. OberholzerA, Oberholzer C, Efron PA, et al. Functional modification of dendritic cells with recombinant adenovirus encoding interleukin 10 for the treatment of sepsis. Shock,2005,23:507-515.
    26. Toliver-kinsky TE, CuiW, Murphey ED, et al. Enhancement of dendritic cell production by fms2like tyrosine kinase23 ligand increases the resistance of mice to a burn wound infection. J Immunol,2005,174:404-410.
    27.田光,陆江阳,王宏伟,等.Flt3配体对多器官功能障碍综合征小鼠脾脏树突状细胞及细胞免疫功能的修复作用.中国危重病急救医学,2007,20:45-48.
    28. EmmanuelL, Gautier EL, Thierry H, et al. Enhanced Dendritic Cell Survival Attenuates Lipopolysaccharide-Induced Immunosuppression and Increases Resistance to Lethal Endotoxic Shock. J Immunol,2008,180:6941-6946.
    29.封小美,徐建国.脓毒症治疗的新进展.医学研究生学报,2008,21:437-441.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700