髓源抑制性细胞与肥大细胞向肿瘤趋化的分子机制与促瘤效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:炎症是肿瘤微环境的重要特征之一,在肿瘤组织中存在多种大量的炎性细胞,它们在肿瘤发生、生长、侵袭、转移与免疫抑制等过程中发挥了重要作用。本研究将探讨髓源抑制性细胞与肥大细胞向肿瘤组织趋化的分子机制以及其到达肿瘤部位后能够发挥促瘤效应。
     方法:(1) RT-PCR与Western-Blot检测乳腺癌、胃癌与卵巢癌患者以及小鼠黑色素瘤与肝癌组织中趋化因子CCL2的表达,并检测相应的髓源抑制性细胞中CCL2受体CCR2的表达。(2) Transwell实验在体外检测肿瘤组织对相应髓源抑制性细胞的趋化作用。(3)流式细胞术检测CCR2基因敲除荷瘤小鼠肿瘤组织与脾脏中髓源抑制性细胞的比例。(4)肿瘤生长实验检测髓源抑制性细胞对小鼠体内肿瘤生长的影响。(5) RT-PCR与Western-Blot检测7种人类肿瘤细胞与肿瘤组织以及5种小鼠肿瘤细胞与肿瘤组织中SCF的表达。(6) Transwell实验与体内迁移实验检测肿瘤组织对肥大细胞的趋化作用。(7)肿瘤生长实验检测肥大细胞对小鼠体内肿瘤生长的影响。(8) Real-time PCR检测肥大细胞对肿瘤组织中炎性细胞因子表达的影响。(9)流式细胞术检测肥大细胞对肿瘤组织中Treg和Th17的影响。
     结果:(1)乳腺癌、胃癌与卵巢癌患者以及小鼠黑色素瘤与肝癌组织中均有CCL2的表达,相应的髓源抑制性细胞有CCR2的表达。(2)髓源抑制性细胞可以被肿瘤组织所趋化,CCL2与CCR2的中和抗体可以抑制这种趋化作用。(3)CCR2基因敲除荷瘤小鼠肿瘤组织与脾脏中髓源抑制性细胞的比例降低。(4)CCR2基因敲除小鼠来源的髓源抑制性细胞对小鼠体内肿瘤生长的促进作用明显减弱。(5)被检测的7种人类肿瘤细胞与肿瘤组织以及5种小鼠肿瘤细胞与肿瘤组织中均有SCF的表达。(6)体内外肿瘤组织对肥大细胞均有趋化作用,SCF和c-Kit的中和抗体以及肿瘤细胞表达的SCF被siRNA沉默后这种趋化作用可以被抑制。(7)在小鼠体内肥大细胞可以促进肿瘤生长,并且可以被SCF和c-Kit的中和抗体以及SCF的siRNA所抑制。(8)肥大细胞可以促进肿瘤组织中IL-10与TGF-p的表达而抑制IL-2的表达。(9)肥大细胞可以使肿瘤组织中Treg和Thl7的数量增加。
     结论:CCL2/CCR2通路介导髓源抑制性细胞向肿瘤组织趋化并促进肿瘤生长,SCF/c-Kit通路介导肥大细胞向肿瘤组织趋化并抑制免疫促进肿瘤生长。
Objective:Inflammation is an important feature of the tumor microenvironment, there are many kinds and a large number of inflammatory cells in the tumor tissue, they played an important role in tumorigenesis, tumor growth, invasion, metastasis and immune suppression. This study will to explore the molecular mechanisms of the myeloid-derived suppressor cells and mast cells chemotaxising to the tumor tissues and their pro-tumor effects.
     Methods:(1) RT-PCR and Western-Blot assays to detect the expression of chemokine CCL2 in the tumor tissues from breast cancer, gastric cancer, ovarian cancer patients as well as mice melanoma and liver cancer tissues, at the same time to detect the expression of CCR2 which is the receptor of CCL2 in corresponding myeloid-derived suppressor cells. (2) Transwell experiment to detect the chemotaxis effects on myeloid-derived suppressor cells from the tumor tissues in vitro. (3) Flow cytometry assay to detect the ratio of myeloid-derived suppressor cells in the tumor tissues and spleen from CCR2 knockout tumor bearing mice. (4) Tumor growth assay to detect the influence of myeloid-derived suppressor cells on tumor growth in mice. (5) RT-PCR and Western-Blot assays to detect the expression of SCF in seven kinds of human tumor cell lines and tissues as well as five kinds of mouse tumor cell lines and tissues. (6) Transwell experiment and migration assay in vivo to detect the chemotaxis effects on mast cells from the tumor tissues. (7) Tumor growth assay to detect the influence of mast cells on tumor growth in mice. (8) Real-time PCR experiment to detect the influence of mast cells on the expression of inflammatory cytokines in tumor tissue. (9) Flow cytometry assay to detect the influence of mast cells on the number of Treg and Th17 in tumor tissue.
     Results:(1) Tumor tissues from the breast cancer, gastric cancer, ovarian cancer patients as well as mice melanoma and liver cancer all expressed CCL2, at the same time the corresponding myeloid-derived suppressor cells expressed CCR2 which is the receptor of CCL2. (2) The myeloid-derived suppressor cells could be chemotaxised by tumor tissues, and this effect could be inhibited by CCL2 or CCR2 neutralizing antibody. (3) The ratio of myeloid-derived suppressor cells in tumor tissue and spleen from the CCR2 knockout tumor bearing mice reduced compared to the wide type tumor bearing mice. (4) The pro-tumor effect of the myeloid-derived suppressor cells from CCR2 knockout mice was significantly decreased. (5) The seven kinds of human tumor cell lines and tissues as well as five kinds of mouse tumor cell lines and tissues detected all expressed SCF. (6) The tumor tissues had the chemotactic effects on mast cells in vitro and in vivo, and this role could be inhibited by SCF or c-Kit neutralizing antibody or siRNA silenced the SCF expression in tumor cells. (7) Mast cells could promote tumor growth in vivo, and this effect could be inhibited by SCF or c-Kit neutralizing antibody or SCF siRNA. (8) Mast cells could promote the expression of IL-10 and TGF-βbut inhibit the expression of IL-2 in tumor tissue. (9) Mast cells could increase the number of Treg and Th17 in tumor tissue.
     Conclusions:The CCL2/CCR2 pathway mediated the myeloid-derived suppressor cells chemotaxising to tumor tissues and promoted tumor growth, The SCF/c-Kit pathway mediated mast cells chemotaxising to tumor tissues, promoted tumor growth and immune suppression.
引文
1 Khong HT, Restifo NP. Natural selection of tumor variants in the generation of "tumor escape" phenotypes. Nat Immunol.2002;3(11):999-1005.
    2 Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity.2004;21(2):137-48.
    3 De Santo C, Salio M, Masri SH, Lee LY, Dong T, Speak AO, Porubsky S, Booth S, Veerapen N, Besra GS, Grone HJ, Platt FM, Zambon M, Cerundolo V. Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans.J Clin Invest. 2008;118(12):4036-48.
    4 Munera V, Popovic PJ, Bryk J, Pribis J, Caba D, Matta BM, Zenati M, Ochoa JB. Stat 6-dependent induction of myeloid derived suppressor cells after physical injury regulates nitric oxide response to endotoxin. Ann Surg.2010;251(1):120-6.
    5 Haile LA, von Wasielewski R, Gamrekelashvili J, Kriiger C, Bachmann O, Westendorf AM, Buer J, Liblau R, Manns MP, Korangy F, Greten TF. Myeloid-derived suppressor cells in inflammatory bowel disease:a new immunoregulatory pathway. Gastroenterology.2008;135(3):871-81.
    6 Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ, Lush RM, Antonia S, Gabrilovich DI. All-trans-retinoic acid improves differentiation of
    myeloid cells and immune response in cancer patients. Cancer Res. 2006,5;66(18):9299-307.
    7 Ochoa AC, Zea AH, Hernandez C, Rodriguez PC. Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res. 2007,15;13(2Pt2):721s-726s.
    8 Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, Lehner F, Manns MP, Greten TF, Korangy F. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology.2009;50(3):799-807.
    9 Rodriguez PC, Hernandez CP, Quiceno D, Dubinett SM, Zabaleta J, Ochoa JB, Gilbert J, Ochoa AC. Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med.2005,3;202(7):931-9.
    10 Morales JK, Kmieciak M, Knutson KL, Bear HD, Manjili MH. GM-CSF is one of the main breast tumor-derived soluble factors involved in the differentiation of CD11b-Grl-bone marrow progenitor cells into myeloid-derived suppressor cells. Breast Cancer Res Treat.2009 Nov 8. doi:10.1007/s10549-009-0622-8.
    11 Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M, Castelli C, Mariani L, Parmiani G, Rivoltini L. Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol.2007,20;25(18):2546-53.
    12 Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother. 2009;58(1):49-59.
    13 Winfield RD, Delano MJ, Pande K, Scumpia PO, Laface D, Moldawer LL. Myeloid-derived suppressor cells in cancer cachexia syndrome:a new explanation for an old problem. JPEN J Parenter Enteral Nutr.2008;32(6):651-5.
    14 Ilkovitch D, Lopez DM. The liver is a site for tumor-induced myeloid-derived
    suppressor cell accumulation and immunosuppression. Cancer Res. 2009,1;69(13):5514-21.
    15 He D, Li H, Yusuf N, Elmets CA, Li J, Mountz JD, Xu H. IL-17 promotes tumor development through the induction of tumor promoting microenvironments at tumor sites and myeloid-derived suppressor cells. J Immunol. 2010,1;184(5):2281-8.
    16 Dolcetti L, Peranzoni E, Ugel S, Marigo I, Fernandez Gomez A, Mesa C, Geilich M, Winkels G, Traggiai E, Casati A, Grassi F, Bronte V. Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol.2010;40(1):22-35.
    17 Pan PY, Wang GX, Yin B, Ozao J, Ku T, Divino CM, Chen SH. Reversion of immune tolerance in advanced malignancy:modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood. 2008,1;111(1):219-28.
    18 Zhang Y, Liu Q, Zhang M, Yu Y, Liu X, Cao X. Fas signal promotes lung cancer growth by recruiting myeloid-derived suppressor cells via cancer cell-derived PGE2. J Immunol.2009,15;182(6):3801-8.
    19 Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S. Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res.2007,1;67(9):4507-13.
    20 Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM, Ortiz M, Nacken W, Sorg C, Vogl T, Roth J, Gabrilovich DI. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med.2008,29;205(10):2235-49.
    21 Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E, Padhya T, McCaffrey TV, McCaffrey JC, Gabrilovich DI. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells.J Immunol. 2009,1;182(9):5693-701.
    22 Rodriguez PC, Quiceno DG, Ochoa AC. L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 2007;109:1568-1573.
    23 Rodriguez PC, Zea AH, Culotta KS, Zabaleta J, Ochoa JB, Ochoa AC. Regulation of T cell receptor CD3zeta chain expression by L-arginine. J Biol Chem. 2002,14;277(24):21123-9.
    24 Rivoltini L, Carrabba M, Huber V, Castelli C, Novellino L, Dalerba P, Mortarini R, Arancia G, Anichini A, Fais S, Parmiani G. Immunity to cancer:attack and escape in T lymphocyte-tumor cell interaction. Immunol Rev 2002;188:97-113.
    25 Bingisser R, Tilbrook P, Holt P, Kees U. Macrophage-derived nitric oxide regulates T-cell activation via reversible disruption of the Jak3/STAT5 signaling pathway. J Immunol 1998;160:5729-5734.
    26 Harari O, Liao JK. Inhibition of MHC Ⅱ gene transcription by nitric oxide and antioxidants. Curr Pharm Des 2004; 10:893-898.
    27 Ekmekcioglu S, Ellerhorst J, Smid CM, Prieto VG, Munsell M, Buzaid AC, Grimm EA. Inducible nitric oxide synthase and nitrotyrosine in human metastatic melanoma tumors correlate with poor survival. Clin Cancer Res 2000;6:4768-4775.
    28 Li H, Han Y, Guo Q, Zhang M, Cao X. Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol.2009,1;182(1):240-9.
    29 Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S. Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol.2007,15; 179(2):977-83.
    30 Greifenberg V, Ribechini E, Rossner S, Lutz MB. Myeloid-derived suppressor cell activation by combined LPS and IFN-gamma treatment impairs DC development. Eur J Immunol.2009;39(10):2865-76.
    31 Zhang J, Patel L, Pienta KJ. CC chemokine ligand 2 (CCL2) promotes prostate cancer tumorigenesis and metastasis. Cytokine Growth Factor Rev. 2010;21(1):41-8.
    32 Hu H, Sun L, Guo C, Liu Q, Zhou Z, Peng L, Pan J, Yu L, Lou J, Yang Z, Zhao P, Ran Y. Tumor cell-microenvironment interaction models coupled with clinical validation reveal CCL2 and SNCG as two predictors of colorectal cancer hepatic metastasis. Clin Cancer Res.2009,1;15(17):5485-93.
    33 Dagouassat M, Suffee N, Hlawaty H, Haddad O, Charni F, Laguillier C, Vassy R, Martin L, Schischmanoff PO, Gattegno L, Oudar O, Sutton A, Charnaux N. Monocyte chemoattractant protein-1 (MCP-1)/CCL2 secreted by hepatic myofibroblasts promotes migration and invasion of human hepatoma cells. Int J Cancer.2010,1;126(5):1095-108.
    34 Karpus WJ, Lukacs NW, Kennedy KJ, Smith WH, Hurst SD, Barrett TA. Differential CC chemokine-induced enhancement of T helper cell cytokine production. J Immunol.1997;158:4129-4136.
    35 Fridlender ZG, Buchlis G, Kapoor V, Cheng G, Sun J, Singhal S, Crisanti C, Wang LC, Heitjan D, Snyder LA, Albelda SM. CCL2 blockade augments cancer immunotherapy. Cancer Res.2010,1;70(1):109-18.
    1 Cochran BH, Reffel AC, Stiles CD. Molecular cloning of gene sequences regulated by platelet-derived growth factor. Cell 1983;33:939-947.
    2 Van Coillie E, Van Damme J, Opdenakker G. The MCP/eotaxin subfamily of CC chemokines. Cytokine Growth Factor Rev.1999;10(1):61-86.
    3 Bartoli C, Civatte M, Pellissier JF, Figarella-Branger D. CCR2A and CCR2B, the two isoforms of the monocyte chemoattractant protein-1 receptor are up-regulated and expressed by different cell subsets in idiopathic inflammatory myopathies. Acta Neuropathol 2001;102:385-392.
    4 Bacon K, Baggiolini M, Broxmeyer H, Horuk R, Lindley I, Mantovani A, Maysushima K, Murphy P, Nomiyama H, Oppenheim J, Rot A, Schall T, Tsang M, Thorpe R, Van Damme J, Wadhwa M, Yoshie O, Zlotnik A, Zoon K. IUIS/WHO Subcommittee on Chemokine Nomenclature. Chemokine/chemokine receptor nomenclature. J Interferon Cytokine Res 2002;22:1067-1068.
    5 Lu B, Rutledge BJ, Gu L, Fiorillo J, Lukacs NW, Kunkel SL, et al. Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J Exp Med 1998;187:601-8.
    6 Gong JH, Ratkay LG, Waterfield JD, Clark-Lewis I. An antagonist of monocyte chemoattractant protein 1 (MCP-1) inhibits arthritis in the MRL-lpr mouse model.
    J Exp Med 1997;186:131-137.
    7 Jin T, Hereld D. Moving toward understanding eukaryotic chemotaxis. Eur J Cell Biol2006;85:905-913.
    8 Iijima M, Huang YE, Devreotes P. Temporal and spatial regulation of chemotaxis. DevCell2002;3:469-478.
    9 Sasaki AT, Chun C, Takeda K, Firtel RA. Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement. J Cell Biol 2004; 167:505-18.
    10 Kusano KF, Nakamura K, Kusano H, Nishii N, Banba K, Ikeda T, Hashimoto K, Yamamoto M, Fujio H, Miura A, Ohta K, Morita H, Saito H, Emori T, Nakamura Y, Kusano I, Ohe T. Significance of the level of monocyte chemoattractant protein-1 in human atherosclerosis. Circ J 2004;68:671-676.
    11 Boring L, Gosling J, Cleary M, Charo IF. Decreased lesion formation in CCR2-/-mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 1998;394:894-7.
    12 Gosling J, Slaymaker S, Gu L, Tseng S, Zlot CH, Young SG, et al. MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B. J Clin Invest 1999:103:773-8.
    13 Ip WK, Wong CK, Lam CW. Interleukin (IL)-4 and IL-13 up-regulate monocyte chemoattractant protein-1 expression in human bronchial epithelial cells: involvement of p38 mitogen-activated protein kinase, extracellular signal-regulated kinase 1/2 and Janus kinase-2 but not c-Jun NH2-terminal kinase 1/2 signalling pathways. Clin Exp Immunol 2006;145:162-172.
    14 Kamei N, Tobe K, Suzuki R, Ohsugi M, Watanabe T, Kubota N, Ohtsuka-Kowatari N, Kumagai K, Sakamoto K, Kobayashi M, Yamauchi T, Ueki K, Oishi Y, Nishimura S, Manabe I, Hashimoto H, Ohnishi Y, Ogata H, Tokuyama K, Tsunoda M, Ide T, Murakami K, Nagai R, Kadowaki T. Overexpression of monocyte chemoattractant protein-1 in adipose tissues causes macrophage recruitment and insulin resistance. J Biol Chem 2006;281:26602-26614.
    15 Spoettl T, Hausmann M, Herlyn M, Gunckel M, Dirmeier A, Falk W, Herfarth H, Schoelmerich J, Rogler G. Monocyte chemoattractant protein-1 (MCP-1) inhibits the intestinal-like differentiation of monocytes. Clin Exp Immunol 2006; 145:190-199.
    16 Cho ML, Yoon BY, Ju JH, Jung YO, Jhun JY, Park MK, Cho CS, Kim HY. Expression of CCR2A, an isoform of MCP-1 receptor, is increased by MCP-1, CD40 ligand and TGF-beta in fibroblast like synoviocytes of patients with RA. Exp Mol Med 2007;39:499-507.
    17 Rantapaa-Dahlqvist S, Boman K, Tarkowski A, Hallmans G. Up regulation of monocyte chemoattractant protein-1 expression in anti-citrulline antibody and immunoglobulin M rheumatoid factor positive subjects precedes onset of inflammatory response and development of overt rheumatoid arthritis. Ann Rheum Dis 2007;66:121-123.
    18 Kostrikis LG, Huang Y, Moore JP, Wolinsky SM, Zhang L, Guo Y, Deutsch L, Phair J, Neumann AU, Ho DD. A chemokine receptor CCR2 allele delays HIV-1 disease progression and is associated with a CCR5 promoter mutation. Nat Med. 1998;4(3):350-3.
    19 Homan JW, Steele AD, Martinand-Mari C. Rogers TJ, Henderson EE, Charubala R, Pfleiderer W, Reichenbach NL, Suhadolnik RJ. Inhibition of morphine-potentiated HIV-1 replication in peripheral blood mononuclear cells with the nuclease-resistant 2-5A agonist analog,2-5A(N6B). J Acquir Immune Defic Syndr2002;30:9-20.
    20 Ohta M, Kitadai Y, Tanaka S, Yoshihara M, Yasui W, Mukaida N, Haruma K, Chayama K. Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human esophageal squamous cell carcinomas. Int J Cancer.2002,20; 102(3):220-4.
    21 Ohta M, Kitadai Y, Tanaka S, Yoshihara M, Yasui W, Mukaida N, Haruma K, Chayama K. Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human gastric carcinomas. Int J Oncol.2003;22(4):773-8.
    22 Zhang J, Patel L, Pienta KJ. CC chemokine ligand 2 (CCL2) promotes prostate cancer tumorigenesis and metastasis. Cytokine Growth Factor Rev. 2010;21(1):41-8.
    23 Soria G, Ben-Baruch A. The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett.2008,28;267(2):271-85.
    24 Tanaka K, Kurebayashi J, Sohda M, Nomura T, Prabhakar U, Yan L, Sonoo H. The expression of monocyte chemotactic protein-1 in papillary thyroid carcinoma is correlated with lymph node metastasis and tumor recurrence. Thyroid. 2009;19(1):21-5.
    25 Wang L, Zheng W, Zhang S, Chen X, Hornung D. Expression of monocyte chemotactic protein-1 in human endometrial cancer cells and the effect of treatment with tamoxifen or buserelin. J Int Med Res.2006;34(3):284-90.
    26 Kitai R, Ishisaka K, Sato K, Sakuma T, Yamauchi T, Imamura Y, Matsumoto H, Kubota T. Primary central nervous system lymphoma secretes monocyte chemoattractant protein 1. Med Mol Morphol.2007;40(1):18-22.
    27 Mazur G, Wrobel T, Butrym A, Kapelko-Slowik K, Poreba R, Kuliczkowski K. Increased monocyte chemoattractant protein 1 (MCP-1/CCL-2) serum level in acute myeloid leukemia. Neoplasma.2007;54(4):285-9.
    28 Mantovani A, Schioppa T, Porta C, Allavena P, Sica A. Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev. 2006;25(3):315-22.
    29 Stamatovic SM, Keep RF, Mostarica-Stojkovic M, Andjelkovic AV. CCL2 regulates angiogenesis via activation of Ets-1 transcription factor. J Immunol. 2006,15;177(4):2651-61.
    30 Futagami S, Hiratsuka T, Shindo T, Hamamoto T, Tatsuguchi A, Nobue U, Shinji Y, Suzuki K, Kusunoki M, Tanaka S, Wada K, Miyake K, Gudis K, Tsukui T, Sakamoto C. COX-2 and CCR2 induced by CD40 ligand and MCP-1 are linked to VEGF production in endothelial cells. Prostaglandins Leukot Essent Fatty Acids.2008;78(2):137-46.
    31 Lu X, Kang Y. Chemokine (C-C motif) ligand 2 engages CCR2+ stromal cells of
    monocytic origin to promote breast cancer metastasis to lung and bone. J Biol Chem.2009,16;284(42):29087-96.
    32 Hu H, Sun L, Guo C, Liu Q, Zhou Z, Peng L, Pan J, Yu L, Lou J, Yang Z, Zhao P, Ran Y. Tumor cell-microenvironment interaction models coupled with clinical validation reveal CCL2 and SNCG as two predictors of colorectal cancer hepatic metastasis. Clin Cancer Res.2009,1;15(17):5485-93.
    33 Dagouassat M, Suffee N, Hlawaty H, Haddad O, Charni F, Laguillier C, Vassy R, Martin L, Schischmanoff PO, Gattegno L, Oudar O, Sutton A, Charnaux N. Monocyte chemoattractant protein-1 (MCP-1)/CCL2 secreted by hepatic myofibroblasts promotes migration and invasion of human hepatoma cells. Int J Cancer.2010,1;126(5):1095-108.
    34 Gazzaniga S, Bravo AI, Guglielmotti A, van Rooijen N, Maschi F, Vecchi A, Mantovani A, Mordoh J, Wainstok R. Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft. J Invest Dermatol.2007;127(8):2031-41.
    35 Fridlender ZG, Buchlis G, Kapoor V, Cheng G, Sun J, Singhal S, Crisanti C, Wang LC, Heitjan D, Snyder LA, Albelda SM. CCL2 blockade augments cancer immunotherapy. Cancer Res.2010,1;70(1):109-18.
    36 Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, Divino CM, Chen SH. Gr-1+CD115+immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res.2006,15;66(2):1123-31.
    37 Drogat B, Auguste P, Nguyen DT, Bouchecareilh M, Pineau R, Nalbantoglu J, Kaufman RJ, Chevet E, Bikfalvi A, Moenner M. IRE1 signaling is essential for ischemia-Induced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo. Cancer Res. 2007,15;67(14):6700-7.
    38 Kusmartsev SA, Li Y, Chen SH. Gr-1+myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. J Immunol 2000;165:779-85.
    39 Yang X, Lu P, Ishida Y, Kuziel WA, Fujii C, Mukaida N. Attenuated liver tumor formation in the absence of CCR2 with a concomitant reduction in the accumulation of hepatic stellate cells, macrophages and neovascularization. Int J Cancer.2006,15;118(2):335-45.
    1 Huang E, Nocka K, Beier DR, Chu TY, Buck J, Lahm HW, Wellner D, Leder P, Besmer P. The hematopoietic growth factor KL is encoded by the S1 locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell. 1990,5;63(1):225-33.
    2 Copeland NG, Gilbert DJ, Cho BC, Donovan PJ, Jenkins NA, Cosman D, Anderson D, Lyman SD, Williams DE. Mast cell growth factor maps near the steel locus on mouse chromosome 10 and is deleted in a number of steel alleles. Cell.1990,5;63(1):175-83.
    3 Zsebo KM, Williams DA, Geissler EN, Broudy VC, Martin FH, Atkins HL, Hsu RY, Birkett NC, Okino KH, Murdock DC, et al. Stem cell factor is encoded at the
    S1 locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell. 1990,5;63(1):213-24.
    4 Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, Werb Z, Rafii S. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell.2002,31; 109(5):625-37.
    5 Lu HS, Chang WC, Mendiaz EA, Mann MB, Langley KE, Hsu YR. Spontaneous dissociation-association of monomers of the human-stem-cell-factor dimer. Biochem J.1995,15;305:563-8.
    6 Zsebo KM, Wypych J, McNiece IK, Lu HS, Smith KA, Karkare SB, Sachdev RK, Yuschenkoff VN, Birkett NC, Williams LR, et al. Identification, purification, and biological characterization of hematopoietic stem cell factor from buffalo rat liver--conditioned medium. Cell.1990,5;63(1):195-201.
    7 Wehrle-Haller B, Imhof BA. Stem cell factor presentation to c-Kit. Identification of abasolateral targeting domain. J Biol Chem.2001,20;276(16):12667-74.
    8 Besmer P, Murphy JE, George PC, Qiu FH, Bergold PJ, Lederman L, Snyder HW Jr, Brodeur D, Zuckerman EE, Hardy WD. A new acute transforming feline retrovirus and relationship of its oncogene v-kit with the protein kinase gene family. Nature.1986,3-9;320(6061):415-21.
    9 Qiu FH, Ray P, Brown K, Barker PE, Jhanwar S, Ruddle FH, Besmer P. Primary structure of c-kit:relationship with the CSF-1/PDGF receptor kinase family--oncogenic activation of v-kit involves deletion of extracellular domain and C terminus. EMBO J.1988;7(4):1003-11.
    10 Zhang Z, Zhang R, Joachimiak A, Schlessinger J, Kong XP. Crystal structure of human stem cell factor:implication for stem cell factor receptor dimerization and activation. Proc Natl Acad Sci USA.2000,5;97(14):7732-7.
    11 Doran MR, Markway BD, Aird IA, Rowlands AS, George PA, Nielsen LK, Cooper-White JJ. Surface-bound stem cell factor and the promotion of hematopoietic cell expansion. Biomaterials.2009;30(25):4047-52.
    12 Herbert KE, Prince HM, Ritchie DS, Seymour JF. The role of ancestim
    (recombinant human stem-cell factor, rhSCF) in hematopoietic stem cell mobilization and hematopoietic reconstitution. Expert Opin Biol Ther. 2010;10(1):113-25.
    13 Stachel DK, Leipold A, Krapf T, Knufer V, Ringwald J, Strasser E, Zingsem J, Beck JD, Holter W. Successful stem cell mobilization with stem cell factor and granulocyte colony-stimulating factor in patients with solid tumors failing conventional mobilization with chemotherapy and G-CSF. J Hematother Stem Cell Res.2003;12(2):131-3.
    14 Zeuner A, Pedini F, Signore M, Testa U, Pelosi E, Peschle C, De Maria R. Blood. Stem cell factor protects erythroid precursor cells from chemotherapeutic agents via up-regulation of BCL-2 family proteins.2003,1;102(1):87-93.
    15 Zeuner A, Signore M, Martinetti D, Bartucci M, Peschle C, De Maria R. Chemotherapy-induced thrombocytopenia derives from the selective death of megakaryocyte progenitors and can be rescued by stem cell factor. Cancer Res. 2007,15;67(10):4767-73.
    16 Metcalf I), Mifsud S, Di Rago L. Stem cell factor can stimulate the formation of eosinophils by two types of murine eosinophil progenitor cells. Stem Cells. 2002;20(5):460-9.
    17 Heinemann A, Sturm GJ, Ofner M, Sturm EM, Weller C, Peskar BA, Hartnell A. Stem cell factor stimulates the chemotaxis, integrin upregulation, and survival of human basophils. J Allergy Clin Immunol.2005; 116(4):820-6.
    18 Sun L, Lee J, Fine HA. Neuronally expressed stem cell factor induces neural stem cell migration to areas of brain injury. J Clin Invest.2004; 113(9):1364-74.
    19 Piao CS, Gonzalez-Toledo ME, Xue YQ, Duan WM, Terao S, Granger DN, Kelley RE, Zhao LR. The role of stem cell factor and granulocyte-colony stimulating factor in brain repair during chronic stroke. J Cereb Blood Flow Metab.2009;29(4):759-70.
    20 Laske C, Stellos K, Stransky E, Seizer P, Akcay O, Eschweiler GW, Leyhe T, Gawaz M. J Alzheimers Dis. Decreased plasma and cerebrospinal fluid levels of stem cell factor in patients with early Alzheimer's disease.2008; 15(3):451-60.
    21 Li JW, Li LL, Chang LL, Wang ZY, Xu Y. Stem cell factor protects against neuronal apoptosis by activating AKT/ERK in diabetic mice. Braz J Med Biol Res.2009;42(11):1044-9.
    22 Xiang FL, Lu X, Hammoud L, Zhu P, Chidiac P, Robbins J, Feng Q. Cardiomyocyte-specific overexpression of human stem cell factor improves cardiac function and survival after myocardial infarction in mice. Circulation. 2009,22;120(12):1065-74.
    23 Kanellakis P, Slater NJ, Du XJ, Bobik A, Curtis DJ. Granulocyte colony-stimulating factor and stem cell factor improve endogenous repair after myocardial infarction. Cardiovasc Res.2006,1;70(1):117-25.
    24 Kuang D, Zhao X, Xiao G, Ni J, Feng Y, Wu R, Wang G. Stem cell factor/c-kit signaling mediated cardiac stem cell migration via activation of p38 MAPK. Basic Res Cardiol.2008;103(3):265-73.
    25 Ayach BB, Yoshimitsu M, Dawood F, Sun M, Arab S, Chen M, Higuchi K, Siatskas C, Lee P, Lim H, Zhang J, Cukerman E, Stanford WL, Medin JA, Liu PP. Stem cell factor receptor induces progenitor and natural killer cell-mediated cardiac survival and repair after myocardial infarction. Proc Natl Acad Sci USA. 2006,14;103(7):2304-9.
    26 Hu B, Colletti LM. Stem cell factor and c-kit are involved in hepatic recovery after acetaminophen-induced liver injury in mice. Am J Physiol Gastrointest Liver Physiol.2008;295(1):G45-G53.
    27 Ren X, Hu B, Colletti L. Stem cell factor and its receptor, c-kit, are important for hepatocyte proliferation in wild-type and tumor necrosis factor receptor-1 knockout mice after 70% hepatectomy. Surgery.2008;143(6):790-802.
    28 Krieg A, Schulte Am Esch J, Schmelzle M, Tustas R, El-Karmi A, Hosch S, Knoefel WT. Stem cell factor levels do increase in patients subsequent to hepatectomy with the extent of parenchymal loss. Transplant Proc. 2006;38(10):3556-8.
    29 Okumoto K, Saito T, Onodera M, Sakamoto A, Tanaka M, Hattori E, Haga H, Ito JI, Sugahara K, Saito K, Togashi H, Kawata S. Serum levels of stem cell factor
    and thrombopoietin are markedly decreased in fulminant hepatic failure patients with a poor prognosis. J Gastroenterol Hepatol.2007;22(8):1265-70.
    30 Bellone G, Tibaudi D, Carbone A, Smirne C, Busso V, Ferrerro I, Bosco O, Gramigni C, Segir R, Pagano M, Camandona M, Nano M, Palestro G, Dei Poli M, Emanuelli G. The c-kit/Stem Cell Factor in the cancerogenetic process of colon-rectal carcinoma. Biological and clinical aspects. Minerva Chir. 2003;58(6):875-80.
    31 Mansuroglu T, Baumhoer D, Dudas J, Haller F, Cameron S, Lorf T, Fuzesi L, Ramadori G. Expression of stem cell factor receptor c-kit in human nontumoral and tumoral hepatic cells. Eur J Gastroenterol Hepatol.2009;21(10):1206-11.
    32 Skardelly M, Armbruster FP, Meixensberger J, Hilbig H. Expression of Zonulin, c-kit, and Glial Fibrillary Acidic Protein in Human Gliomas. Transl Oncol. 2009,18;2(3):117-20.
    33 Friederichs J, von Weyhern CW, Rosenberg R, Doll D, Busch R, Lordick F, Siewert JR, Sarbia M. Immunohistochemical detection of receptor tyrosine kinases c-kit, EGF-R, and PDGF-R in colorectal adenocarcinomas. Langenbecks Arch Surg.2010;395(4):373-9.
    34 Rocconi RP, Matthews KS, Kimball KJ, Conner MG, Baker AC, Barnes MN. Expression of c-kit and platelet-derived growth factor receptors in ovarian granulosa cell tumors. Reprod Sci.2008;15(7):673-7.
    35 Nalwoga H, Ames JB, Wabinga H, Akslen LA. Expression of EGFR and c-kit is associated with the basal-like phenotype in breast carcinomas of African women. APMIS.2008;116(6):515-25.
    36 Mroczko B, Szmitkowski M, Niklinski J. Stem cell factor and granulocyte-macrophage-colony stimulating factor as candidates for tumour markers for non-small-cell lung cancer. Clin Chem Lab Med. 1999;37(10):959-62.
    37 Lawicki S, Bedkowska GE, Gacuta-Szumarska E, Czygier M, Szmitkowski M. The plasma levels and diagnostic utility of stem cell factor in patients with endometrial cancer and myoma uteri. Pol Merkur Lekarski.2009;26(156):609-15.
    38 Lawicki S, Bedkowska E, Gacuta-Szumarska E, Knapp P, Szmitkowski M. The plasma levels and diagnostic utility of stem cell factor (SCF) and macrophage-colony stimulating factor (M-CSF) in cervical cancer patients. Pol Merkur Lekarski.2008;25(145):38-42.
    39 Hirano K, Shishido-Hara Y, Kitazawa A, Kojima K, Sumiishi A, Umino M, Kikuchi F, Sakamoto A, Fujioka Y, Kamma H. Expression of stem cell factor (SCF), a KIT ligand, in gastrointestinal stromal tumors (GISTs):a potential marker for tumor proliferation. Pathol Res Pract.2008;204(11):799-807.
    40 Yasuda A, Sawai H, Takahashi H, Ochi N, Matsuo Y, Funahashi H, Sato M, Okada Y, Takeyama H, Manabe T. Stem cell factor/c-kit receptor signaling enhances the proliferation and invasion of colorectal cancer cells through the PI3K/Akt pathway. Dig Dis Sci.2007;52(9):2292-300.
    41 Yasuda A, Sawai H, Takahashi H, Ochi N, Matsuo Y, Funahashi H, Sato M, Okada Y, Takeyama H, Manabe T. The stem cell factor/c-kit receptor pathway enhances proliferation and invasion of pancreatic cancer cells. Mol Cancer. 2006,18;5:46.
    42 Belloc F, Airiau K, Jeanneteau M, Garcia M, Guerin E, Lippert E, Moreau-Gaudry F, Mahon FX. The stem cell factor-c-KIT pathway must be inhibited to enable apoptosis induced by BCR-ABL inhibitors in chronic myelogenous leukemia cells. Leukemia.2009;23(4):679-85.
    43 Matsui J, Yamamoto Y, Funahashi Y, Tsuruoka A, Watanabe T, Wakabayashi T, Uenaka T, Asada M. E7080, a novel inhibitor that targets multiple kinases, has potent antitumor activities against stem cell factor producing human small cell lung cancer H146, based on angiogenesis inhibition. Int J Cancer. 2008,1;122(3):664-71.
    44 Suzuki T, Izumoto S, Wada K, Fujimoto Y, Maruno M, Yamasaki M, Kanemura Y, Shimazaki T, Okano H, Yoshimine T. Inhibition of glioma cell proliferation by neural stern cell factor. J Neurooncol.2005;74(3):233-9.
    45 Lennartsson J, Ronnstrand L. The stem cell factor receptor/c-Kit as a drug target in cancer. Curr Cancer Drug Targets.2006;6(1):65-75.
    46 Moller C, Alfredsson J, Engstrom M, Wootz H, Xiang Z, Lennartsson J, Jonsson JI, Nilsson G. Stem cell factor promotes mast cell survival via inactivation of FOXO3a-mediated transcriptional induction and MEK-regulated phosphorylation of the proapoptotic protein Bim. Blood.2005,15;106(4):1330-6.
    47 Orinska Z, Bulanova E, Budagian V, Metz M, Maurer M, Bulfone-Paus S. TLR3-induced activation of mast cells modulates CD8+T-cell recruitment.Blood. 2005,1;106(3):978-87.
    48 Liu L, Zhang X, Du C, Zhang X, Hou N, Zhao D, Sun J, Li L, Wang X, Ma C. MEK1-independent activation of MAPK and MEK1-dependent activation of p70 S6 kinase by stem cell factor (SCF) in ovarian cancer cells. Biochem Biophys Res Commun.2009,1;382(2):385-9.
    49 Jeon S, Kim NH, Kim JY, Lee AY. Stem cell factor induces ERM proteins phosphorylation through PI3K activation to mediate melanocyte proliferation and migration. Pigment Cell Melanoma Res.2009;22(1):77-85.
    50 Thomas L. Stem-cell factor induces angiogenesis in vivo. Lancet Neurol. 2006;5(6):474.
    51 Han ZB, Ren H, Zhao H, Chi Y, Chen K, Zhou B, Liu YJ, Zhang L, Xu B, Liu B, Yang R, Han ZC. Hypoxia-inducible factor (HIF)-1 alpha directly enhances the transcriptional activity of stem cell factor (SCF) in response to hypoxia and epidermal growth factor (EGF). Carcinogenesis.2008;29(10):1853-61.
    1 Soucek L, Lawlor ER, Soto D, Shchors K, Swigart LB, Evan GI. Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nat Med.2007;13(10):1211-8.
    2 Amini RM, Aaltonen K, Nevanlinna H, Carvalho R, Salonen L, Heikkila P, Blomqvist C. Mast cells and eosinophils in invasive breast carcinoma. BMC Cancer.2007,29;7:165.
    3 Gulubova M, Vlaykova T. Prognostic significance of mast cell number and microvascular density for the survival of patients with primary colorectal cancer. J Gastroenterol Hepatol.2009;24(7):1265-75.
    4 Caruso RA, Fedele F, Zuccala V, Fracassi MG, Venuti A. Mast cell and eosinophil
    interaction in gastric carcinomas:ultrastructural observations. Anticancer Res. 2007;27(1A):391-4.
    5 Chan JK, Magistris A, Loizzi V, Lin F, Rutgers J, Osann K, DiSaia PJ, Samoszuk M. Mast cell density, angiogenesis, blood clotting, and prognosis in women with advanced ovarian cancer. Gynecol Oncol.2005;99(1):20-5.
    6 Coussens LM, Raymond WW, Bergers G, Laig-Webster M, Behrendtsen O, Werb Z, Caughey GH, Hanahan D. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev.1999,1;13(11):1382-97.
    7 Heissig B, Rafii S, Akiyama H, Ohki Y, Sato Y, Rafael T, Zhu Z, Hicklin DJ, Okumura K, Ogawa H, Werb Z, Hattori K. Low-dose irradiation promotes tissue revascularization through VEGF release from mast cells and MMP-9-mediated progenitor cell mobilization. J Exp Med.2005,19;202(6):739-50.
    8 Qu Z, Huang X, Ahmadi P, Stenberg P, Liebler JM, Le AC, Planck SR, Rosenbaum JT. Synthesis of basic fibroblast growth factor by murine mast cells. Regulation by transforming growth factor beta, tumor necrosis factor alpha, and stem cell factor. Int Arch Allergy Immunol.1998;115(1):47-54.
    9 Okayama Y, Ono Y, Nakazawa T, Church MK, Mori M. Human skin mast cells produce TNF-alpha by substance P. Int Arch Allergy Immunol.1998;117 Suppl 1:48-51.
    10 Nakayama T, Yao L, Tosato G. Mast cell-derived angiopoietin-1 plays a critical role in the growth of plasma cell tumors. J Clin Invest.2004; 114(9):1317-25.
    11 Ribatti D, Crivellato E, Candussio L, Nico B, Vacca A, Roncali L, Dammacco F. Mast cells and their secretory granules are angiogenic in the chick embryo chorioallantoic membrane. Clin Exp Allergy.2001;31(4):602-8.
    12 Ranieri G, Ammendola M, Patruno R, Celano G, Zito FA, Montemurro S, Rella A, Di Lecce V, Gadaleta CD, Battista De Sarro G, Ribatti D. Tryptase-positive mast cells correlate with angiogenesis in early breast cancer patients. Int J Oncol. 2009;35(1):115-20.
    13 Dundar E, Oner U, Peker BC, Metintas M, Isiksoy S, Ak G The significance and relationship between mast cells and tumour angiogenesis in non-small cell lung
    carcinoma. J Int Med Res.2008;36(1):88-95.
    14 Kondo K, Muramatsu M, Okamoto Y, Jin D, Takai S, Tanigawa N, Miyazaki M. Expression of chymase-positive cells in gastric cancer and its correlation with the angiogenesis. J Surg Oncol.2006,1;93(1):36-42.
    15 Xiang M, Gu Y, Zhao F, Lu H, Chen S, Yin L. Mast cell tryptase promotes breast cancer migration and invasion. Oncol Rep.2010;23(3):615-9.
    16 Cinel L, Aban M, Basturk M, Ertunc D, Arpaci R, Dilek S, Camdeviren H. The association of mast cell density with myometrial invasion in endometrial carcinoma:a preliminary report. Pathol Res Pract.2009;205(4):255-8.
    17 Rudolph MI, Boza Y, Yefi R, Luza S, Andrews E, Penissi A, Garrido P, Rojas IG. The influence of mast cell mediators on migration of SW756 cervical carcinoma cells. J Pharmacol Sci.2008;106(2):208-18.
    18 Gutzmer R, Diestel C, Mommert S, Kother B, Stark H, Wittmann M, Werfel T. Histamine H4 receptor stimulation suppresses IL-12p70 production and mediates chemotaxis in human monocyte-derived dendritic cells. J Immunol. 2005,1;174(9):5224-32.
    19 Leon-Ponte M, Ahern GP, O'Connell PJ. Serotonin provides an accessory signal to enhance T-cell activation by signaling through the 5-HT7 receptor. Blood. 2007,15;109(8):3139-46.
    20 Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol.2008;26:677-704.
    21 Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol.2008;8(6):467-77.
    22 Aubin F. Mechanisms involved in ultraviolet light-induced immunosuppression. Eur J Dermatol.2003;13(6):515-23.
    23 Kalesnikoff J, Rios EJ, Chen CC, Nakae S, Zabel BA, Butcher EC, Tsai M, Tam SY, Galli SJ. RabGEFl regulates stem cell factor/c-Kit-mediated signaling events and biological responses in mast cells. Proc Natl Acad Sci USA. 2006,21;103(8):2659-64.
    24 Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG,
    Besmer P, Lyden D, Moore MA, Werb Z, Rafii S. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell.2002,31;109(5):625-37.
    25 Di Girolamo N, Indoh I, Jackson N, Wakefield D, McNeil HP, Yan W, Geczy C, Arm JP, Tedla N. Human mast cell-derived gelatinase B (matrix metalloproteinase-9) is regulated by inflammatory cytokines:role in cell migration. J Immunol.2006,15;177(4):2638-50.
    26 Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity. 2004;21(4):467-76.
    27 Bignone PA, Banham AH. FOXP3+ regulatory T cells as biomarkers in human malignancies. Expert Opin Biol Ther.2008;8(12):1897-920.
    28 Ochi H, Hirani WM, Yuan Q, Friend DS, Austen KF, Boyce JA. T helper cell type 2 cytokine-mediated comitogenic responses and CCR3 expression during differentiation of human mast cells in vitro. J Exp Med 1999;190(2):267-80.
    29 Karin M, Lawrence T, Nizet V. Innate immunity gone awry:linking microbial infections to chronic inflammation and cancer. Cell.2006,24; 124(4):823-35.
    30 Coussens LM, Werb Z. Inflammation and cancer. Nature.2002;420(6917):860-7.
    31 Gordon JR, Galli SJ. Mast cells as a source of both preformed and immunologically inducible TNF-alpha/cachectin. Nature.1990;346(6281):274-6.
    32 Gooch JL, Lee AV, Yee D. Interleukin 4 inhibits growth and induces apoptosis in human breast cancer cells. Cancer Res.1998,15;58(18):4199-205.
    33 Lin WW, Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest.2007; 117(5):1175-83.
    34 Yu JJ, Gaffen SL. Interleukin-17:a novel inflammatory cytokine that bridges innate and adaptive immunity. Front Biosci.2008,1;13:170-7.
    35 Hagemann T, Wilson J, Kulbe H, Li NF, Leinster DA, Charles K, Klemm F, Pukrop T, Binder C, Balkwill FR. Macrophages induce invasiveness of epithelial cancer cells via NF-kappa B and JNK. J Immunol.2005,15;175(2):1197-205.
    36 Ditsworth D, Zong WX. NF-kappaB:key mediator of inflammation-associated cancer. Cancer Biol Ther.2004;3(12):1214-6.
    37 Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, McGrady G, Wahl SM. Conversion of peripheral CD4+CD25-naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med. 2003,15;198(12):1875-86.
    1 Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature.2008,24;454(7203):436-44.
    2 Herrera V, Parsonnet J. Helicobacter pylori and gastric adenocarcinoma. Clin Microbiol Infect.2009;15(11):971-6.
    3 Chan AT, Giovannucci EL, Scherrihammer ES, Colditz GA, Hunter DJ, Willett WC, Fuchs CS. A prospective study of aspirin use and the risk for colorectal adenoma. Ann Intern Med.2004,3;140(3):157-66.
    4 Chan AT, Ogino S, Fuchs CS. Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. N Engl J Med.2007,24;356(21):2131-42.
    5 Flossmann E, Rothwell PM; British Doctors Aspirin Trial and the UK-TIA Aspirin Trial. Effect of aspirin on long-term risk of colorectal cancer:consistent evidence from randomised and observational studies. Lancet. 2007,12;369(9573):1603-13.
    6 Biswas SK, Gangi L, Paul S, Schioppa T, Saccani A, Sironi M, Bottazzi B, Doni A, Vincenzo B, Pasqualini F, Vago L, Nebuloni M, Mantovani A, Sica A. A
    distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood.2006,1;107(5):2112-22.
    7 Ohta M, Kitadai Y, Tanaka S, Yoshihara M, Yasui W, Mukaida N, Haruma K, Chayama K. Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human esophageal squamous cell carcinomas. Int J Cancer.2002,20; 102(3):220-4.
    8. Ohta M, Kitadai Y, Tanaka S, Yoshihara M, Yasui W, Mukaida N, Haruma K, Chayama K. Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human gastric carcinomas. Int J Oncol.2003;22(4):773-8.
    9 Bailey C, Negus R, Morris A, Ziprin P, Goldin R, Allavena P, Peck D, Darzi A. Chemokine expression is associated with the accumulation of tumour associated macrophages (TAMs) and progression in human colorectal cancer. Clin Exp Metastasis.2007;24(2):121-30.
    10 Mizutani K, Sud S, McGregor NA, Martinovski G, Rice BT, Craig MJ, Varsos ZS, Roca H, Pienta KJ. The chemokine CCL2 increases prostate tumor growth and bone metastasis through macrophage and osteoclast recruitment. Neoplasia. 2009;11(11):1235-42.
    11 Loberg RD, Ying C, Craig M, Yan L, Snyder LA, Pienta KJ. CCL2 as an important mediator of prostate cancer growth in vivo through the regulation of macrophage infiltration. Neoplasia.2007;9(7):556-62.
    12 Kuroda T, Kitadai Y, Tanaka S, Yang X, Mukaida N, Yoshihara M, Chayama K. Monocyte chemoattractant protein-1 transfection induces angiogenesis and tumorigenesis of gastric carcinoma in nude mice via macrophage recruitment. Clin Cancer Res.2005,1;11(21):7629-36.
    13 Gazzaniga S, Bravo AI, Guglielmotti A, van Rooijen N, Maschi F, Vecchi A, Mantovani A, Mordoh J, Wainstok R. Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft. J Invest Dermatol.2007; 127(8):2031-41.
    14 Przybylski M. A review of the current research on the role of bFGF and VEGF in angiogenesis. J Wound Care.2009;18(12):516-9.
    15 Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood.1996,15;87(8):3336-43.
    16 Dineen SP, Lynn KD, Holloway SE, Miller AF, Sullivan JP, Shames DS, Beck AW, Barnett CC, Fleming JB, Brekken RA. Vascular endothelial growth factor receptor 2 mediates macrophage infiltration into orthotopic pancreatic tumors in mice. Cancer Res.2008,1;68(11):4340-6.
    17 Roland CL, Lynn KD, Toombs JE, Dineen SP, Udugamasooriya DG, Brekken RA. Cytokine levels correlate with immune cell infiltration after anti-VEGF therapy in preclinical mouse models of breast cancer. PLoS One.2009,3;4(11):e7669.
    18 Roland CL, Dineen SP, Lynn KD, Sullivan LA, Dellinger MT, Sadegh L, Sullivan JP, Shames DS, Brekken RA. Inhibition of vascular endothelial growth factor reduces angiogenesis and modulates immune cell infiltration of orthotopic breast cancer xenografts. Mol Cancer Ther.2009 Jul;8(7):1761-71.
    19 Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol. 2002;29(6Suppl16):15-8.
    20 Chai CY, Chen WT, Hung WC, Kang WY, Huang YC, Su YC, Yang CH. Hypoxia-inducible factor-1 alpha expression correlates with focal macrophage infiltration, angiogenesis and unfavourable prognosis in urothelial carcinoma. Clin Pathol.2008;61(5):658-64.
    21 De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M, Naldini L. Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell.2005;8(3):211-26.
    22 Murdoch C, Tazzyman S, Webster S, Lewis CE. Expression of Tie-2 by human monocytes and their responses to angiopoietin-2. J Immunol. 2007,1; 178(11):7405-11.
    23 Venneri MA, De Palma M, Ponzoni M, Pucci F, Scielzo C, Zonari E, Mazzieri R,
    Doglioni C, Naldini L. Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood. 2007,15;109(12):5276-85.
    24 Nagaraj S, Gabrilovich DI. Myeloid-derived suppressor cells. Adv Exp Med Biol. 2007;601:213-23.
    25 Pan PY, Wang GX, Yin B, Ozao J, Ku T, Divino CM, Chen SH. Reversion of immune tolerance in advanced malignancy:modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function. Blood. 2008,1;111(1):219-28.
    26 Huang B, Lei Z, Zhao J, Gong W, Liu J, Chen Z, Liu Y, Li D, Yuan Y, Zhang GM, Feng ZH. CCL2/CCR2 pathway mediates recruitment of myeloid suppressor cells to cancers. Cancer Lett.2007,8;252(1):86-92.
    27 Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S. Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res.2007,1;67(9):4507-13.
    28 Ardi VC, Kupriyanova TA, Deryugina El, Quigley JP. Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis. Proc Natl Acad Sci U S A.2007,18;104(51):20262-7.
    29 Xie K. Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev. 2001;12(4):375-91.
    30 Bellocq A, Antoine M, Flahault A, Philippe C, Crestani B, Bernaudin JF, Mayaud C, Milleron B, Baud L, Cadranel J. Neutrophil alveolitis in bronchioloalveolar carcinoma:induction by tumor-derived interleukin-8 and relation to clinical outcome. Am J Pathol.1998;152(1):83-92.
    31 Gijsbers K, Gouwy M, Struyf S, Wuyts A, Proost P, Opdenakker G, Penninckx F, Ectors N, Geboes K, Van Damme J. GCP-2/CXCL6 synergizes with other endothelial cell-derived chemokines in neutrophil mobilization and is associated with angiogenesis in gastrointestinal tumors. Exp Cell Res. 2005,15;303(2):331-42.
    32 Kazemfar K, Chen R, Nicholson K, Coppola D, Zhou JM, Chen X, Wei S, Blanck
    G Combined IL-8 and TGF-beta blockade efficiently prevents neutrophil infiltrates into an A549-cell tumor. Immunol Lett.2009,29; 122(1):26-9.
    33 Wallace AE, Sales KJ, Catalano RD, Anderson RA, Williams AR, Wilson MR, Schwarze J, Wang H, Rossi AG, Jabbour HN. Prostaglandin F2alpha-F-prostanoid receptor signaling promotes neutrophil chemotaxis via chemokine (C-X-C motif) ligand 1 in endometrial adenocarcinoma. Cancer Res.2009,15;69(14):5726-33.
    34 Horiuchi T, Weller PF. Expression of vascular endothelial growth factor by human eosinophils:upregulation by granulocyte macrophage colony-stimulating factor and interleukin-5. Am J Respir Cell Mol Biol.1997;17(1):70-7.
    35 Simson L, Ellyard JI, Dent LA, Matthaei KI, Rothenberg ME, Foster PS, Smyth MJ, Parish CR. Regulation of carcinogenesis by IL-5 and CCL11:a potential role for eosinophils in tumor immune surveillance. J Immunol.2007,1;178(7):4222-9.
    36 Kataoka S, Konishi Y, Nishio Y, Fujikawa-Adachi K, Tominaga A. Antitumor activity of eosinophils activated by IL-5 and eotaxin against hepatocellular carcinoma. DNA Cell Biol.2004;23(9):549-60.
    37 Lorena SC, Oliveira DT, Dorta RG, Landman G, Kowalski LP. Eotaxin expression in oral squamous cell carcinomas with and without tumour associated tissue eosinophilia. Oral Dis.2003;9(6):279-83.
    38 Jundt F, Anagnostopoulos I, Bommert K, Emmerich F, Miiller G, Foss HD, Royer HD, Stein H, Dorken B. Hodgkin/Reed-Sternberg cells induce fibroblasts to secrete eotaxin, a potent chemoattractant for T cells and eosinophils. Blood. 1999,15;94(6):2065-71.
    39 Benatar T, Cao MY, Lee Y, Li H, Feng N, Gu X, Lee V, Jin H, Wang M, Der S, Lightfoot J, Wright JA, Young AH. Virulizin induces production of IL-17E to enhance antitumor activity by recruitment of eosinophils into tumors. Cancer Immunol Immunother.2008;57(12):1757-69.
    40 Huang B, Lei Z, Zhang GM, Li D, Song C, Li B, Liu Y, Yuan Y, Unkeless J, Xiong H, Feng ZH. SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood. 2008,15;112(4):1269-79.
    41 Matsuura N, Zetter BR. Stimulation of mast cell chemotaxis by interleukin 3. J Exp Med.1989 Oct 1;170(4):1421-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700