牙髓、牙周组织中骨髓来源细胞特性的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨髓来源的细胞可以迁移到多种组织中并分化为组织特异性的细胞,如心肌细胞,骨骼肌细胞,脂肪细胞,神经细胞,肝脏细胞等。但对于其是否可以迁移到牙齿组织还不了解。牙齿的发育是由上皮与来自神经嵴的外胚间充质细胞相互作用而形成,以往研究发现牙源性间充质中存在非神经嵴来源的细胞,但其来源不明。另外,牙髓干细胞和牙周膜干细胞内均存在不同增殖能力的细胞克隆,推测,不同来源的细胞在增殖能力和功能上存在差异。同时在表型上牙源性间充质干细胞与骨髓来源的间充质干细胞相似。因此,我们采用骨髓移植的模型,研究了骨髓来源的细胞在牙髓牙周组织中的分布与特性;探讨了迁移来的细胞和组织自身的细胞之间的关系与差异;并将培养的嵌合鼠的牙髓干细胞与骨髓间充质干细胞进行了比较,最后观察了骨髓来源细胞在牙周组织修复中的作用。本实验研究有以下三部分:
     第一部分骨髓来源细胞在牙源性间充质组织内的分布
     实验一骨髓来源细胞在多种组织中的分布
     采用全骨髓移植的方法,将绿色荧光(green flurencence protein,GFP)小鼠的单核细胞通过尾静脉移植入野生型小鼠体内。当外周血单核细胞的GFP阳性率达到85%以上时认为嵌合成功。结果发现,骨髓来源的细胞可以迁移到多种组织中,包括牙髓、牙周组织、心脏、肺脏、脂肪、皮肤、胰腺和胸腺。而迁移到牙源性间充质组织中的骨髓来源的细胞多于其他组织。对照组采用GFP+的成纤维细胞与野生型小鼠单核细胞混合移植后,观察到牙源性间充质组织中几乎没有GFP+细胞。说明骨髓来源的细胞具有迁移到牙齿组织中的能力。采用免疫组织化学方法,观察到迁移至下颌骨中的细胞位于CD31阳性的血管内皮细胞周围,说明骨髓来源细胞是通过循环迁移到牙源性间充质组织中来的。
     实验二SDF-1和CXCR-4在牙源性间充质组织中的表达
     采用免疫组织化学和聚合酶链式反应检测了基质细胞相关因子(stromal derived factor 1,SDF-1)在牙齿组织,肺脏,肝脏,以及脂肪组织中的蛋白和m RNA表达水平。结果发现,SDF-1蛋白在牙齿组织中的表达量明显高于其他三个组织,而SDF-1的m RNA表达顺序为牙髓>脂肪>肝脏。同时发现了骨髓间充质干细胞表达SDF-1的特异性受体CXCR-4。说明骨髓来源的细胞迁移到不同的组织内,是通过SDF-1/CXCR-4这个通路介导的,且SDF-1在组织内的表达量与迁移的细胞数量呈正相关。
     第二部分骨髓来源的细胞在牙髓组织中的分布与特性
     实验一骨髓来源细胞在牙髓中的分布和功能
     骨髓移植后随着移植时间的延长,迁移入牙髓的细胞逐渐增多,而且分布逐渐变广。移植1个月后,骨髓来源的细胞主要位于牙髓的中央,未见细胞分布于成牙本质细胞层。移植3个月后,骨髓来源的细胞可见于牙髓中央,少细胞层,多细胞层,且有少量的成牙本质细胞为GFP阳性,同时表达牙本质涎蛋白和牙本质蛋白1。说明牙髓和骨髓间存在着持续、活跃的交流,迁入牙髓的细胞中少部分可以转化为成牙本质细胞。而将嵌合鼠的下颌切牙根尖蕾组织移植入野生型小鼠的肾被膜内,4周后可见移植物形成了牙本质样结构,而部分骨髓来源细胞位于牙本质的内侧成牙本质细胞层,说明迁移入牙髓的细胞具有参与牙髓再生的功能。
     实验二牙髓中骨髓来源细胞的表型
     采用免疫荧光技术,检测了骨髓来源细胞的间充质干细胞表型。发现牙髓中大部分骨髓来源细胞已经分化,少部分表达间充质干细胞标志物如CD106、CD105、CD90,但不表达造血细胞标志物CD45,说明迁移入牙髓的细胞具有间充质细胞的表型。同时发现牙髓内骨髓来源的间充质干细胞明显少于组织内源性的间充质干细胞。提示,组织内源性的和迁移来的间充质干细胞共同参与维持牙髓组织的稳态,其中内源性的干细胞起着更为主要的作用。
     实验三体外培养的牙髓干细胞与骨髓间充质干细胞的比较
     采用酶消化法培养嵌合鼠的小鼠牙髓干细胞,牙髓干细胞内含有不同表型的克隆。其中GPF+的克隆Ki67+的细胞明显多于GFP-的细胞克隆,提示不同来源的克隆在增殖能力上有所差异。而与嵌合鼠的骨髓间充质干细胞相比,牙髓内GFP+/CD106+,、CD105+、CD90+的细胞明显少于骨髓间充质干细胞。说明牙髓的微环境改变了部分骨髓来源细胞的特性。
     第三部分骨髓来源细胞在牙周组织内的特性
     实验一骨髓来源的细胞在牙周组织中的分布与特性
     随着骨髓移植时间的延长,迁入牙周组织的细胞逐渐增多,其特征与牙髓相似。移植1个月后,骨髓来源的细胞主要位于微血管周围。移植3个月后,骨髓来源细胞可见于牙槽骨、牙周膜、牙骨质内。部分骨髓来源的细胞表达成骨及牙周膜相关的蛋白,如骨桥蛋白、碱性磷酸酶、纤维连接蛋白。说明骨髓来源的细胞迁移到了牙周组织内,并分化成了牙周组织特异性的细胞,而且骨髓来源的Ki67+的细胞多于内源性的Ki67+的细胞。说明骨髓来源的细胞增殖能力强于内源性的细胞。同时鉴定牙周组织中骨髓来源细胞的表型,我们发现牙周组织中CD106、CD105和CD90的表达状况与牙髓组织相似。进一步证实了迁移到牙周组织内的骨髓来源细胞的间充质特性。
     实验二骨髓来源细胞在牙周再生中的作用
     将煅烧牛骨粉末植入到嵌合鼠的实验性牙周缺损处,观察骨髓来源的细胞在牙周组织再生过程中的作用。结果,术后5d,大量的GFP+的细胞进入缺损区域并表达CD105,随后进入缺损区域的细胞的速度减缓并有新骨形成。术后30d,可见GFP+的细胞位于新形成的牙槽骨内,而且这些细胞同时表达骨桥蛋白、碱性磷酸酶、Ki67、纤维连接蛋白。说明骨髓来源细胞可以迁移到缺损区域并分化为牙周组织相关的细胞。小部分骨髓来源细胞仍能保持间充质干细胞的特性,但数量上明显少于内源性的间充质干细胞。同时牙周缺损处的SDF-1的表达量明显高于正常牙周组织,这与迁入的骨髓来源的细胞数量呈正相关。提示在牙周损伤修复过程中,SDF-1参与了骨髓细胞的归巢。
     总之,采用骨髓移植的模式,我们首次发现了骨髓来源细胞可以迁移到牙髓、牙周组织中,并且迁移来的细胞多于其他组织。迁移来的细胞大部分分化为了牙源性相关细胞,表达牙齿相关的标志物。少部分维持了间充质干细胞的表型,但其在数量明显少于内源性的间充质干细胞。说明骨髓和牙源性间充质组织间存在着活跃的联系,他们作为牙源性间充质前体/干细胞的储备库,在维持牙源性组织的稳态中发挥重要作用。
Bone marrow derived cells (BMDCs) are capable of homing to many tissues in response to injury signals and differentiating into tissue-specific cells, including muscle, liver, brain, pancreases islet, and even epithelial lineages, suggesting high developmental plasticity. However, the potential of the BMDC to contribute to the dental mesenchymal cells is unknown. It is traditionally considered that the dental mesenchymal stem cells originated from the cranial neural crest ectomesenchyme (CNC). It has been demonstrated that non-CNC-derived cells increased during the tooth morphogenesis, while the origin of the non-CNC-derived cells was still unknown. In addition, previous studies have suggested that the individual dental pulp stem cells (DPSC) colonies have distinguished differences in their proliferation and regeneration ability. To test that hypothesis that BMDCs could migrate into dental mesenchymal tissues, we used the GFP+ bone marrow chimeric mice to identify the characteristics of migrating cells in pulp and periodontium. We also determined the relationships and differences of the migrating and tissue-resident stem cells. In addition to the pulp tissue analysis, DPSCs were also isolated and compared with BMMSCs. We found that BMDCs can migrate into normal as well as damaged dental tissues and differentiate into the dental tissue specific cell type, while only a small fraction of migrating BMDCs maintain the stem cell phenotype.
     Section 1 BMDCs migrat into multi-organs
     In experiment 1, in order to identify the capacity of BMDC to engraft into multiple organs under normal conditions, the frozen sections of several organs from the chimeric mouse were evaluated by fluorescence microscopy. The results indicated that the bone marrow derived cells have the ability to migrate into multiple organs including dental pulp, periodontium, liver, lung, heart, pancreas, skin, and thymus at 3 month post BMT. More importantly, we found that the GFP+ BMC cells homed to the dental tissues to a greater degree than in other organs, except for the thymus which was expected and considered as a positive control. And we also found that the delivery of BMDC into the dental tissue may be through the circulation by the immunostaining of CD31 in the mandible. Interestingly, we found that there was a passage connecting the bone marrow cavity and the periodontal ligament, through which the GFP+ cells were detected to pass.
     In experiment 2, to further dissect the mechanism and to identify the signal that controls the stem cell recruitment, we detected SDF-1 protein expression in the dental, lung, liver, and pancreatic tissues, which were measured by the area of SDF-1+/Hoechst staining. The SDF-1 expression was significantly higher in dental than in other tissues. And also the m RNA expression in the dental pulp cells were higher than in the liver and adipose cells by realtime PCR. We also determination the characteristics of the bone marrow derived mesenchymal stem cells form chimeric mice. We found these cells expresse the CXCR-4 which was the unique receptor. Thus, the results provide preliminary evidence suggesting that SDF-1/CXCR-4 pathway may involve in the homing of the BMDCs in the dental tissues.
     Section 2 characterization of the BMDCs in the dental pulp tissue
     In experiment 1, in order to understand the interaction between the bone marrow and dental pulp, we serially analyzed the engraftment of the BMDC in the dental tissue after BMT. We found that the migration of the GFP+ BMDC into dental pulp was gradually increased with time after BMT. One month after BMT, the GFP+ BMC were mainly located in the cell-rich layer and the center part of pulp. The cells then gradually appeared in both the cell-free layer and the cell-rich layer at 3 month post-BMT. Moreover, the GFP+ cells could be observed, although rarely, in the odontoblast which were also positive for the DSP and DMP-1. In order to confirm the founction of BMDCs in the pulp, we transplanted the apical bud from chimiric mice into the WT mice and found that the BMDCs could involve the regeneration of the dental pulp. These results above demonstrated that the bone marrow and dental pulp have vivid communication, and the BMDCs could differentiation into the odontoblast in normal and regeneration conditions.
     In experimental 2, to characterize the phenotype of the engrafting cells in the dental pulp, the mandible sections were stained for CD106, CD105, CD90, and CD45. Actually, most of the GFP+ cells were not positive for the mesenchymal stem cells’surface markers in the pulp and only small fraction of cells maintain the mesenchymal stem/progenitor cells phenotype, which was positive for the surface marlers of CD105, CD106, CD90 and negative for CD45. And we also found the GFP+/CDs+ cells were less than GFP-/CDs+ cells significantly. This experiment indicated that the BMDCs would migrate into the denal pulp and convert into the dental mesenchymal progenitor cells.
     In experiment 3, to further identify the characteristics of the dental pulp cells, we isolated and cultured the dental pulp stem cells (DPSC) from the chimeric mice at 4 month post-BMT. The colonies with more GFP+ cells expressed stronger Ki67 signals than the colonies without GFP signals, suggesting that the BMDCs have stronger ability in proliferation than the tissue resident cells. Further investigation of the mesenchymal phenotype of the migrating cells in dental pulp and comparison with BMSC showed that most of the GFP+ migrating cells did not stain positively for CD105, CD106, and CD90 however, most of the GFP+ BMSCs were also positive for those markers, indicating that the microenviroment of dental pulp educated the BMDCs and change the phenotype of these cells.
     Section 3 characterization of the BMDCs in the periodontal tissue
     In experiment 1, the dynamic distribution of the BMDCs in the periodontal tissue was determined. We found that the migration of the GFP+ BMDC into periodontal tissue was gradually increased. 1 month after BMT, the GFP+ cells were detected predominantly near and surrounding the endothelial cells in the periodontal ligament, and at 3 month post-BMT, the GFP+ cells were more widely distributed in the tissues, including the periodontal ligament, alveolar bone, and cementum. And we also analyze the function of BMDCs in the periodontal tissues. We found that there were some OPN+/GFP+ cells in the pulp, gingival, and periodontal ligament. In the periodontal area, ALP+/GFP+ cells were observed along the alveolar bone with many ALP+/GFP- cells along the root surface, indicating the BMDCs near the alveolar bone may have converted into the periodontal ligament cells or osteoblasts, and most of the fibronectin + cells were in the periodontal ligament and were positive for GFP. Most of the Ki67 positive cells were also GFP+, and only a few Ki67+/GFP- cells were seen in the periodontal ligament, suggesting the BMDCs could proliferate and have more of a potential to do so in the dental tissue than the tissue-resident cells. In addition, the expression pattern of CD106, CD105, CD90, CD45 were similar with pulp.
     In experiment 2, five days after the experimental alveolar bone defect(EABD) operation, and the distribution of CD105+ cells was similar with that of the GFP+ cells. Within 15 days of the operation, the newly formed alveolar bone was filled with the GFP+ osteoblasts. At 30 days, the new alveolar bone and the cells in the bone marrow cavity were positively stained with anti-GFP. Then we found that OPN positive cells were observed around the newly forming bone and periodontal ligament, and most GFP+ cells were also OPN positive. There were ALP+/GFP+ cells in the periodontal region and around the bone. Additionally, we found the expression of SDF-1 was elevated in the EABD compared with the healthy tissues. The results demonstrated that BMDCs could participate into the regeneration of the periodontal tissues and differentiate into tissue-spccific founctional cells.
     Conclusion: Our findings suggest that the bone marrow and dental tissue are closely related and actively exchanged. BMDCs preferentially migrate into the pulp and periodontium over other organs,and can engraft into dental tissue and become tissue-specific mesenchymal progenitor cells. Furthermore, although the migrating stem cells were fewer in number compared with the tissue-resident stem cells, they have greater proliferative potential. The resident and migrating stem cells collectively play crucial roles in maintenance and regeneration.
引文
[1] Campagnoli C, Roberts IA, Kumar S . Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 2001;98:2396–2402.
    [2] Zuk PA, Zhu M, Ashjian P. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13:4279–4295.
    [3] Marinova-Mutafchieva L, Taylor P, Funa K . Mesenchymal cells expressing bone morphogenetic protein receptors are present in the rheumatoid arthritis joint. Arthritis Rheum 2000;43:2046–2055.
    [4] Javazon EH, Beggs KJ, Flake AW. Mesenchymal stem cells: Paradoxesof passaging. Exp Hematol 2004;32:414–425.
    [5] Galmiche MC, Koteliansky VE, Briere J. Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Blood 1993;82:66–76.
    [6] Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol 1999;181:67–73.
    [7] Sordi V, Malosio ML, Marchesi F et al. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokinereceptors capable of promoting migration to pancreatic islets. Blood 2005;106:419–427.
    [8] Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 1991;78: 55–62.
    [9] Gronthos S, Brahim J, Li W . Stem cell properties of human dental pulp stem cells. J Dent Res 2002;81: 531–535.
    [10] Gronthos S, Zannettino AC, Hay SJ. Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J Cell Sci 2003;116: 1827–1835
    [11] Kramer PR, Nares S, Kramer SF, Grogan D, KaiserM. Mesenchymal stem cells acquire characteristics of cells in the periodontal ligament in vitro. J Dent Res 2004;83: 27–34.
    [12] Peister A, Mellad JA, Larson BL . Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 2004;103:1662–1668.
    [13] Gronthos S, Simmons PJ, Graves SE . Integrin-mediated interactions between human bone marrow stromal precursor cells and the extracellular matrix. Bone 2001;28:174–181.
    [14] Baddoo M, Hill K, Wilkinson R . Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem 2003;89:1235–1249.
    [15] Frid MG, Brunetti JA, Burke DL. Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage. Am J Pathol 2006;168: 659–669.
    [16] Raimondi G, Turnquist HR, Thomson AW. Frontiers of immunological tolerance. Methods Mol Biol 2007;380:1–24.
    [17] Di Nicola M, Carlo-Stella C, Magni M et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99: 3838–3843.
    [18] Bartholomew A, Sturgeon C, Siatskas M et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol2002;30:42– 48.
    [19]施松涛,唐亮间充质干细胞:新功能与新认识。中华口腔医学杂志。2009年44卷增刊, 35-40.
    [20] Le Blanc K, Tammik L, Sundberg B et al. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 2003;57:11–20
    [21] Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005;105:1815–1822.
    [22] Jiang XX, Zhang Y, Liu B. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 2005; 105: 4120–4126.
    [23] Corcione A, Benvenuto F, Ferretti E et al. Human mesenchymal stem cells modulate B-cell functions. Blood 2006; 107: 367–372.
    [24] Lazarus HM, Koc ON, Devine SM et al. Cotransplantation of HLAidentical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 2005; 11: 389–398.
    [25] Zappia E, Casazza S, Pedemonte E et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 2005;106:1755–1761.
    [26] Djouad F, Fritz V, Apparailly F. Reversal of the immunosuppressive properties of mesenchymal stem cells by tumor necrosis factor alpha in collagen-induced arthritis. Arthritis Rheum 2005; 52:1595–1603.
    [27] Orlic D, Kajstura J, Chimenti S. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410:701–705.
    [28] Orlic D, Kajstura J, Chimenti S et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A 2001;98:10344–10349.
    [29] Hofstetter CP, Schwarz EJ, Hess D. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci U S A 2002; 99:2199–2204.
    [30] Liechty KW, MacKenzie TC, Shaaban AF et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 2000;6:1282–1286.
    [31] Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytesafter injection into neonatal mouse brains. Proc Natl Acad SciU S A 1999; 96:10711–10716.
    [32] Wu GD, Nolta JA, Jin YS et al. Migration of mesenchymal stem cells to heart allografts during chronic rejection. Transplantation 2003; 75: 679–685.
    [33] Mahmood A, Lu D, Lu M et al. Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery 2003; 53: 697–702.
    [34] Ortiz LA, Gambelli F, McBride C et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci U S A 2003; 100: 8407–8411.
    [35] Horwitz EM, Prockop DJ, Fitzpatrick LA et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 1999; 5: 309–313.
    [36] Horwitz EM, Gordon PL, Koo WK et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci U S A 2002; 99:8932– 8937.
    [37] Yang J, Zhou W, Zheng W . Effects of myocardial transplantation of marrow mesenchymal stem cells transfected with vascular endothelial growth factor for theimprovement of heart function and angiogenesis after myocardial infarction. Cardiology 2007; 107: 17–29.
    [38] Matsumoto R, Omura T, Yoshiyama M . Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction. Arterioscler Thromb Vasc Biol 2005; 25:1168–1173.
    [39] Studeny M, Marini FC, Champlin RE. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002; 62:3603–3608.
    [40] Zhang XS, Linkhart TA, Chen ST. Local ex vivo gene therapy with bone marrow stromal cells expressing human BMP4 promotes endosteal bone formation in mice. J Gene Med 2004;6:4–15.
    [41] Tang TT, Xu XL, Dai KR et al. Ectopic bone formation of human bone morphogenetic protein-2 gene transfected goat bone marrow-derived mesenchymal stem cells in nude mice. Chin J Traumatol 2005; 8:3–7.
    [42] Hasharoni A, Zilberman Y, Turgeman G. Murine spinal fusion induced by engineered mesenchymal stem cells that conditionally express bone morphogenetic protein-2. J Neurosurg Spine 2005;3:47–52.
    [43] Devine SM, Cobbs C, Jennings M. Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into nonhuman primates. Blood 2003;101:2999–3001.
    [44] Kang SK, Lee DH, Bae YC et al. Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats. Exp Neurol 2003; 183:355–366.
    [45] Mouiseddine M, Francois S, Semont A. Human mesenchymal stem cells home specifically to radiation-injured tissues in a non-obese diabetes/ severe combined immunodeficiency mouse model. Br J Radiol 2007;80(spec no 1):49–55.
    [46] Nagaya N, Fujii T, Iwase T et al. Intravenous administration of mesenchymal stemcells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol 2004;287:2670–2676.
    [47] Horwitz EM, Prockop DJ, Fitzpatrick LA et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 1999; 5: 309–313.
    [48] Horwitz EM, Prockop DJ, Gordon PL et al. Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 2001; 97:1227–1231.
    [49] Horwitz EM, Gordon PL, Koo WK et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci U S A 2002; 99:8932– 8937.
    [50] Noiseux N, Gnecchi M, Lopez-Ilasaca M et al. Mesenchymal stem cells over expressing Akt dramatically repair infracted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther 2006;14:840–850.
    [51] Zhao LR, Duan WM, Reyes M et al. Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol 2002;174:11–20.
    [52] Gnecchi M, He HM, Liang OD et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 2005;11: 367–368.
    [53] Fang BJ, Shi MX, Liao LM et al. Systemic infusions of FLK1 mesenchymal stem cells ameliorate carbon tetrachloride-induced liver fibrosis in mice. Transplantation 2004;78: 83– 88.
    [54] Ortiz LA, Gambelli F, McBride C et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. ProcNatl Acad Sci U S A 2003; 100:8407– 8411.
    [55] Baggiolini M. Chemokines in pathology and medicine. J Intern Med 2001;250:91–104.
    [56] Baggiolini M. Chemokines and leukocyte traffic. Nature 1998;392: 565–568.
    [57] Kelner GS, Kennedy J, Bacon KB, Kleyensteuber S, Largaespada DA, Jenkins NA, Copeland NG, Bazan JF, Moore KW, Schall TJ. Lymphotactin: A cytokine that represents a new class of chemokine. Science 1994; 266:1395–1399.
    [58] Ebert LM, Schaerli P, Moser B. Chemokine-mediated control of T cell traffic in lymphoid and peripheral tissues. Mol Immunol 2005; 42:799– 809.
    [59] Grabovsky V, Dwir O, Alon R. Endothelial chemokines destabilize L-selectin- mediated lymphocyte rolling without inducing selectin shedding. J Biol Chem 2002; 277:20640–20650.
    [60] Aurrand-Lions M, Johnson-Leger C, Imhof BA. The last molecular fortress in leukocyte trans-endothelial migration. Nat Immunol 2002;3: 116–118.
    [61] Millan J, Hewlett L, Glyn M, Toomre D, Clark P, Ridley AJ. Lymphocyte transcellular migration occurs through recruitment of endothelial ICAM-1 to caveola- and F-actin-rich domains. Nat Cell Biol 2006; 8:113–123.
    [62] Sanchez-Madrid F, del Pozo MA. Leukocyte polarization in cell migration and immune interactions. EMBO J 1999; 18:501–511.
    [63] Homey B, Wang W, Soto H, Buchanan ME, Wiesenborn A, Catron D, Müller A, McClanahan TK, Dieu-Nosjean MC, Orozco R, Ruzicka T, Lehmann P, Oldham E, Zlotnik A. Cutting edge: The orphan chemokine receptor G protein-coupled receptor-2 (GPR-2, CCR10) binds the skinassociated chemokine CCL27 (CTACK/ALP/ILC). J Immunol 2000; 164:3465–3470.
    [64] Wang W, Soto H, Oldham ER, Buchanan ME, Homey B, Catron D, Jenkins N, Copeland NG, Gilbert DJ, Nguyen N, Abrams J, Kershenovich D, Smith K, McClanahan T, Vicari AP, Zlotnik A. Identification of a novel chemokine (CCL28),which binds CCR10 (GPR2). J Biol Chem 2000; 275:22313–22323.
    [65] Zabel BA, Agace WW, Campbell JJ, Heath HM, Parent D, Roberts AI, Ebert EC, Kassam N, Qin S, Zovko M, LaRosa GJ, Yang LL, Soler D, Butcher EC, Ponath PD, Parker CM, Andrew DP. Human G protein-coupled receptor GPR-9–6/CC chemokine receptor 9 is selectively expressed on intestinal homing T lymphocytes, mucosal lymphocytes, and thymocytes and is required for thymus-expressed chemokine- mediated chemotaxis. J Exp Med 1999;190:1241–1256.
    [66] Kunkel EJ, Campbell JJ, Haraldsen G. Lymphocyte CC chemokine receptor 9 and epithelial thymus-expressed chemokine (TECK) expression distinguish the small intestinal immune compartment: Epithelial expression of tissue-specific chemokines as an organizing principle in regional immunity. J Exp Med 2000;192:761–768.
    [67] D’Ambrosio D, Iellem A, Bonecchi R. Selective up-regulation of 2748 Mesenchymal Stem Cells and Potential for Homingchemokine receptors CCR4 and CCR8 upon activation of polarized human type 2 Th cells. J Immunol 1998; 161:5111–5115.
    [68] Levesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ.. Disruption of the CXCR4/ CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 2003; 111:187–196.
    [69] Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, Ponomaryov T, Taichman RS, Arenzana-Seisdedos F, Fujii N, Sandbank J, Zipori D, Lapidot T. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 2002;3:687– 694.
    [70] Yamaguchi J, Kusano KF, Masuo O. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 2003; 107:1322–1328.
    [71] Wynn RF, Hart CA, Corradi-Perini C, O'Neill L, Evans CA, Wraith JE, Fairbairn LJ, Bellantuono I. A small proportion of mesenchymal stem cells strongly expressesfunctionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood 2004; 104:2643–2645.
    [72] Von Lu¨ttichau I, Notohamiprodjo M, Wechselberger A . Human adult. Stem Cells Dev 2005;14:329–336.
    [73] Ringe J, Strassburg S, Neumann K. Towards in situ tissue repair: Human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2. J Cell Biochem 2007; 101:135–146.
    [1] Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 1976; 4:267-274.
    [2]施松涛,唐亮。间充质干细胞:新功能与新认识。中华口腔医学杂志,2009,44增刊:35-40.
    [3] Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, selfrenewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 1997;64:278-294.1
    [4] Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 2001; 19:180-192.
    [5] Owen M, Friedenstein AJ. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp 1988; 136:42-60.
    [6]金岩,于金华。口腔医学领域的干细胞研究。中华口腔医学杂志, 2009,44增刊:15-22.
    [7] Friedenstein AJ. Osteogenic stem cells in bone marrow. Bone and mineral research.1990:243-272.
    [8] Gronthos S, Mankani M, Brahim J, Postnatal human dental pulp stem cells(DPSCs)in vitro and in vivo. Proc Natl Acad Sci U S A, 2000; 97:13625-13630.
    [9] Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res. 2003; 18(4):696-704.
    [10] Zhang W, Walboomers XF, Shi S, Fan M, Jansen JA (2006). Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue Eng 12:2813-2823.
    [11] Stevens A, Zuliani T, Olejnik C, LeRoy H, Obriot H, Kerr-Conte J, Formstecher P, Bailliez Y, Polakowska RR.Human dental pulp stem cells differentiate into neuralcrest-derived melanocytes and have label-retaining and sphere-forming abilities.Stem Cells Dev. 2008 Dec;17(6):1175-84.
    [12] Sasaki R, Aoki S, Yamato M. Neurosphere generation from dental pulp of adult rat incisor. Eur J Neurosci. 2008;27:538-548.
    [13] Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S.SHED: stem cells from human exfoliated deciduous teeth.Proc Natl Acad Sci U S A. 2003;100(10):5807-12.
    [14] Kerkis I, Kerkis A, Dozortsev D, Stukart-Parsons GC, Gomes Massironi SM, Pereira LV. Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs 2006; 184:105-116.
    [15] Miura Y, Miura M, Gronthos S, Allen MR, Cao C, Uveges TE. Defective osteogenesis of the stromal stem cells predisposes CD18-null mice to osteoporosis. Proc Natl Acad Sci USA 2005; 102:14022-14027.
    [16] Seo BM, Sonoyama W, Yamaza T, Coppe C, Kikuiri T, Akiyama K. SHED repair critical-size calvarial defects in mice. Oral Dis 2008; 14:428-434.
    [17] Huang GT, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine.J Dent Res.2009; 88(9):792-806.
    [18] Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC. Spontaneous human adult stem cell transformation. Cancer Res 2005; 65:3035-3039.
    [19] Huang GT, Yamaza T, Shea LD, Djouad F, Kuhn NZ, Tuan RS, Shi S.Stem/Progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng Part A. 2010; 16(2):605-615.
    [20] Abe S, Yamaguchi S, Amagasa T. Multilineage cells from apical pulp of human tooth with immature apex. Oral Sci Int 2007; 4: 45-58.
    [21] Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod 2008; 34:166-171.
    [22] Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004; 364:149-155.
    [23] Shi S, Robey PG, Gronthos S.Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis.Bone. 2001; 29(6):532-539.
    [24] Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S.Stem cell properties of human dental pulp stem cells.J Dent Res. 2002; 81(8): 531-535.
    [25] Olsen BR, Reginato A M, Wang W. Bone development. Annu Rev Cell Dev Biol 2000;16:191–220.
    [26] Feng JQ, Luan X, Wallace J, Jing D, Ohshima T, Kulkarni AB, D’Souza RN, Kozak CA, MacDougall M. Genomic organization, chromosomal mapping, and promoter analysis of the mouse dentin sialophosphoprotein(Dspp) gene, which codes for both dentin sialoprotein and dentin phosphoprotein. J Biol Chem 1998; 273: 9457–9464.
    [27] MacDougall M, Simmons D, Luan X, Nydegger J, Feng J, Gu TT. Dentin phosphoprotein and dentin sialoprotein are cleavage products expressed from a single transcript coded by a gene on human chromosome 4. Dentin phosphoprotein DNA sequence determination. J Biol Chem 1997; 272:835–842.
    [28] Shi S, Robey PG, Gronthos S. Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone 2001; 29:532-539.
    [29] Yamada Y, Fujimoto A, Ito A, Yoshimi R, Ueda M. Cluster analysis and gene expression profiles: a cDNA microarray system-based comparison between human dental pulp stem cells (hDPSCs) and human mesenchymal stem cells (hMSCs) fortissue engineering cell therapy. Biomaterials 2006; 27: 3766-3781.
    [30] Jones DL, Wagers AJ. No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol. 2008; 9(1):11-21.
    [31] Zannettino ACW, Paton S, Arthur A, Khor F, Itescu S, Gimble JM. Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol 2008; 214: 413-421.
    [32] Kuznetsov SA, Mankani MH, Leet AI, Ziran N, Gronthos S, Robey PG. Circulating connective tissue precursors: extreme rarity in humans and chondrogenic potential in guinea pigs. Stem Cells 2007; 25: 1830-1839.
    [33] Valenti MT, Dalla Carbonare L, Donatelli L, Bertoldo F, Zanatta M, Lo Cascio V. Gene expression analysis in osteoblastic differentiation from peripheral blood mesenchymal stem cells. Bone 2008; 43:1084-1092.
    [34] Barbash IM, Chouraqui P, Baron J, Feinberg MS, Etzion S, Tessone A. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 2003; 108: 863-868.
    [35] Kortesidis A, Zannettino A, Isenmann S, Shi S, Lapidot T, Gronthos S. Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal stem cells. Blood 2005; 105:3793-3801.
    [36] Jiang HW, Ling JQ, Gong QM. The expression of stromal cell-derived factor 1 (SDF-1) in inflamed human dental pulp. J Endod. 2008; 34(11):1351-1354.
    [37] Havens AM, Chiu E, Taba M, Wang J, Shiozawa Y, Jung Y, Taichman LS, D'Silva NJ, Gopalakrishnan R, Wang C, Giannobile WV, Taichman RS.Stromal-derived factor-1alpha (CXCL12) levels increase in periodontal disease.J Periodontol. 2008; 79(5):845-53.
    [38] Ohazama A, Modino SA, Miletich I, Sharpe PT.Stem-cell-based tissue engineering of murine teeth.J Dent Res. 2004;83(7):518-522.
    [39] Li ZY, Chen L, Liu L, Lin YF, Li SW, Tian WD. Odontogenic potential of bone marrow mesenchymal stem cells. J Oral Maxillofac Surg 2007; 65(3): 494–500.
    [40] Mizuno N, Ozeki Y, Shiba H, Kajiya M, Nagahara T, Takeda K, Kawaguchi H, Abiko Y, Kurihara H. Humoral factors released from human periodontal ligament cells influence calcification and proliferation in human bone marrow mesenchymal stem cells. J Periodontol. 2008; 79(12): 2361-2370.
    [41] Kawaguchi H, Hirachi A, Hasegawa N, Iwata T, Hamaguchi H, Shiba H, Takata T, Kato Y, Kurihara H.Enhancement of periodontal tissue regeneration by transplantation of bone marrow mesenchymal stem cells. J Periodontol. 2004; 75(9):1281-1287.
    [42] Pieri F, Lucarelli E, Corinaldesi G, Fini M, Aldini NN, Giardino R, Donati D, Marchetti C. Effect of mesenchymal stem cells and platelet-rich plasma on the healing of standardized bone defects in the alveolar ridge: a comparative histomorphometric study in minipigs. J Oral Maxillofac Surg. 2009; 67(2):265-272.
    [43] Hasegawa N, Kawaguchi H, Hirachi A, Takeda K, Mizuno N, Nishimura M, Koike C, Tsuji K, Iba H, Kato Y, Kurihara H.Behavior of transplanted bone marrow-derived mesenchymal stem cells in periodontal defects. J Periodontol. 2006; 77(6):1003-1007.
    [1] Weissman IL, Sander M, German MS. Stem cells: units of development, units of regeneration, and units in evolution. Cell 2000;100: 157–168.
    [2] Pittenger MF, Mosca JD, McIntosh KR. Human mesenchymal stem cells: progenitor cells for cartilage, bone, fat and stroma. Curr. Top. Microbiol. Immunol. 2000; 251: 3–11.
    [3] Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM.Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418(6893):41-49.
    [4] Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman IL, Grompe M.Purified hematopoietic stem cells can differentiate into hepatocytes in vivo.Nat Med. 2000;6(11):1229-1234.
    [5] Springer ML, Brazelton TR, Blau HM.Not the usual suspects: the unexpected sources of tissue regeneration.J Clin Invest. 2001; 107(11):1355-1356.
    [6] Brazelton TR, Rossi FM, Keshet GI, Blau HM.From marrow to brain: expression of neuronal phenotypes in adult mice.Science 2000; 290:1775-1779.
    [7] Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P.Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410(6829):701-705.
    [8] Chai Y, Jiang X, Ito Y, Bringas P Jr, Han J, Rowitch DH, Soriano P, McMahon AP, Sucov HM.Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis.Development. 2000; 127(8):1671-1679.
    [9] Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res. 2003; 18(4):696-704.
    [10] Gao J, Dennis JE, Muzic RF et al. The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs. 2001; 169(1):12-20.
    [11] Tocci A, Forte L. Mesenchymal stem cells: Use and perspectives. Hematol J 2003; 4: 92–96.
    [12] Javazon EH, Beggs KJ, Flake AW. Mesenchymal stem cells: Paradoxes of passaging. Exp Hematol 2004; 32: 414–425.
    [13] Taichman RS. Blood and bone: Two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 2005; 105: 2631–2639.
    [14] Son BR, Marquez-Curtis LA, Kucia M, Wysoczynski M, Turner AR, Ratajczak J, Ratajczak MZ, Janowska-Wieczorek A.Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases.Stem Cells. 2006; 24(5): 1254-1264.
    [15] McGrath KE, Koniski AD, Maltby KM, McGann JK, Palis J.Embryonic expression and function of the chemokine SDF-1 and its receptor, CXCR4. J.Dev Biol. 1999; 213(2):442-56.
    [16] Friedens tein AJ, Chailakhyan RK, Geras imov UV. Bone marrow osteogenic s tem cells: invitro cultivation and transplantation in diffus ionchambers. Cell Tis sue Kinet 1987; 20(3): 226-272.
    [17] Hung SC, Chen NJ ,Hs ieh SL. lsolation and characterization of size-s ieved s tem cells from human bone marrow . Stem cells 2002 ; 20(3): 249-258.
    [18] Luster, AD Chemokines—Chemotactic cytokines that mediate inflammation. N. Engl. J. Med. 1998; 338: 436–445.
    [19] Riviere C, Subra F, Cohen-Solal K, Cordette LV, Letestu R, Auclair C, Vainchenker W, Louache F. Phenotypic and functional evidence for the expression of CXCR4 receptor during megakaryocytopoiesis. Blood. 1999; 93: 1511–1523.
    [20] Wang Y, Deng Y, Zhou GQ.SDF-1alpha/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model.Brain Res. 2008; 1195: 104-112.
    [21] Jiang HW, Ling JQ, Gong QM.The expression of stromal cell-derived factor 1 (SDF-1) in inflamed human dental pulp.J Endod. 2008; 34(11):1351-1354.
    [22] Havens AM, Chiu E, Taba M, Wang J, Shiozawa Y, Jung Y, Taichman LS, D'Silva NJ, Gopalakrishnan R, Wang C, Giannobile WV, Taichman RS.Stromal-derived factor-1alpha (CXCL12) levels increase in periodontal disease.J Periodontol. 2008; 79(5):845-853.
    [23] Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC.Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1.Nat Med. 2004; 10(8): 858-864.
    [1] Malouf NN, Coleman WB, Grisham JW, et al. Adult-derived stem cells from the liverbecome myocytes in the heart in vivo. Am J Pathol. 2001; 158:1929–1935.
    [2] Wang X, Foster M, Al-Dhalimy M, Lagasse E, Finegold M, Grompe M. The origin and liver repopulating capacity of murine oval cells. Proc Natl Acad Sci USA. 2003; 100 [Suppl 1]:11881–11888.
    [3] Jackson KA, Mi T, Goodell MA. Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci USA. 1999; 96: 14482–14486.
    [4] Qu-Petersen Z, Deasy B, Jankowski R, et al. Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol. 2002; 157: 851–864.
    [5] Abdel-Latif A, Bolli R, Tleyjeh IM, Montori VM, Perin EC, Hornung CA, Zuba-Surma EK, Al-Mallah M, Dawn B.Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis.Arch Intern Med. 2007 ;167(10): 989-997.
    [6] Vainio S, Karavanova I, Jowett A, Thesleff I.Identification of BMP-4 as a signal mediating secondary induction between epithelial and mesenchymal tissues during early tooth development.Cell. 1993; 75(1):45-58.
    [7] Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, Morel L, Petersen BE, Scott EW. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 2002; 416: 542–545.
    [8] Ying QL, Nichols J, Evans EP, Smith AG. Changing potency by spontaneous fusion. Nature 2002;416:545–548
    [9] Wang, X. et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 2003; 422: 897–901
    [10] Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K, Lois C, Morrison SJ, Alvarez-Buylla A.Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes.Nature. 2003; 425(6961):968-673.
    [11] Harris RG, Herzog EL, Bruscia EM, Grove JE, Van Arnam JS, Krause DS.Lack of a fusion requirement for development of bone marrow-derived epithelia. Science. 2004;305(5680): 90-93.
    [12] Gro¨tz KA, Al-Nawas B, Brahm R. Terminal end of the human odontoblast processes. Letter to the editor. Clin Oral Invest 2000; 4: 106-107.
    [13] Brahm R, Gro¨tz KA, Al-Nawas B, et al. Odontoblast-decay following therapeutic irradiation, a confocal laser scanning microscopy study. International Association of Dental Research, abstract, 2001, 833.
    [14] Morio I.Recombinant study of the mouse molar cervical loop and dental papilla by renal transplantation.Arch Oral Biol. 1985; 30(7):557-561.
    [15]于金华,金岩,史俊南,聂鑫,王亦菁,庄姮,李玉成,大鼠牙胚同种异体异位移植的组织学观察。临床口腔医学杂志。2005, 21(05): 280-282.
    [16] Yokohama-Tamaki T, Ohshima H, Fujiwara N, Takada Y, Ichimori Y, Wakisaka S, Ohuchi H, Harada H.Cessation of Fgf10 signaling, resulting in a defective dental epithelial stem cell compartment, leads to the transition from crown to root formation.Development. 2006; 133(7):1359-1366.
    [17] Herzog EL, Chai L, Krause DS. Plasticity of marrow-derived stem cells. Blood 2003; 102: 3483–3493.
    [18] Prockop DJ.Marrow stromal cells as stem cells for nonhematopoietic tissues.Science. 1997; 4; 276(5309):71-74.
    [19] Jin H, Aiyer A, Su J, Borgstrom P, Stupack D, Friedlander M, Varner J.A homing mechanism for bone marrow-derived progenitor cell recruitment to the neovasculature.J Clin Invest. 2006; 116(3):652-662.
    [20] Liechty KW, MacKenzie TC, Shaaban AF et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after inutero transplantation in sheep. Nat Med 2000; 6: 1282–1286.
    [21] Gussoni E, Soneoka Y, Strickland CD et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 1999; 401: 390–394.
    [22] Jackson KA, Majka SM, Wang H et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 2001; 107:1395–1402.
    [23] Koide Y, Morikawa S, Mabuchi Y, Muguruma Y, Hiratsu E, Hasegawa K, Kobayashi M, Ando K, Kinjo K, Okano H, Matsuzaki Y. Two distinct stem cell lineages in murine bone marrow.Stem Cells. 2007; 25(5):1213-1221.
    [24] Mouquet F, Pfister O, Jain M, Oikonomopoulos A, Ngoy S, Summer R, Fine A, Liao R.Restoration of cardiac progenitor cells after myocardial infarction by self-proliferation and selective homing of bone marrow-derived stem cells. Circ Res. 2005; 97(11):1090-1092.
    [25] Harada H, Kettunen P, Jung HS, Mustonen T, Wang YA, Thesleff I. Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling.J Cell Biol. 1999;147(1):105-120.
    [26] Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi Stem cell properties of human dental pulp stem cells.J Dent Res. 2002;81(8):531-535.
    [27] Bianco P, Riminucci M, Gronthos S, Robey PG 2001 Bone marrow stromal stem cells: Nature, biology, and potential applications. Stem Cells 2001; 19:180–192.
    [28] Lichtman MA. The ultrastructure of the hemopoietic environment of the marrow: A review. Exp Hematol. 1981;9: 391–410.
    [29] Weiss L The haematopoietic microenvironment of bone marrow: An ultrastructural study of the stroma in rats. Anat Rec,1976 ;186:161–184.
    [30] Thesleff I, Aberg T Molecular regulation of tooth development. Bone 1999; 25:123–125.
    [31] Akintoye SO, Lam T, Shi S et al. Skeletal site-specific characterization of orofacial and iliac crest human bone marrow stromal cells in same individuals. Bone 2006; 38(6):758-68.
    [1] McCulloch CA. Progenitor cell populations in the periodontal ligament of mice. Anat Rec 1985; 211: 258-262.
    [2] McCulloch CA, Nemeth E, Lowenberg B, Melcher AH. Paravascular cells in endostealspaces of alveolar bone contribute to periodontal ligament cell populations. Anat Rec 1987; 219: 233-242.
    [3] Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res. 2003; 18(4):696-704.
    [4] Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, Shi S.Investigation of multipotent postnatal stem cells from human periodontal ligament.Lancet. 2004; 364(9429):149-55.
    [5] Bartold PM, McCulloch CA, Narayanan AS, et al. Tissue engineering: a new paradigm for periodontal regeneration based on molecular and cell biology. Periodontol 2000 2000; 24:253-269
    [6] Intini G.Future approaches in periodontal regeneration: gene therapy, stem cells, and RNA interference.Dent Clin North Am 2010;54(1):141-155.
    [7] Yao S, Pan F, Prpic V, Wise GE.Differentiation of stem cells in the dental follicle.J Dent Res. 2008;87(8):767-771.
    [8] Diekwisch TG. The developmental biology of cementum.Int J Dev Biol.2001; 45(5-6): 695-706.
    [9]金岩,口腔颌面组织胚胎学,陕西科学技术出版社,256-257。
    [10] Bartold PM, McCulloch CAG, Narayanan AS, Pitaru S. Tissue engineering: a new paradigm for periodontal regeneration base on molecular and cell biology. Periodontol 2000. 2000; 24: 253–269.
    [11] Wang HL, Greenwell H, Fiorellini J. Research, Science and Therapy Committee. Periodontal regeneration. J Periodontol 2005; 76:1601–1622.
    [12] Zohar R, Tenenbaum HC. How predictable are periodontal regenerative procedures? J Can Dent Assoc 2005; 71: 675–680.
    [13] Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation2002; 105:93–98.
    [14] Tang YL, Qian K, Zhang YC, Shen L, Phillips MI. Mobilizing of haematopoietic stem cells to ischemic myocardium by plasmid mediated stromal-cellderived factor-1alpha (SDF-1alpha) treatment. Regul Pept 2005; 125: 1-8
    [15] Wojakowski W, Tendera M, Micha?owska A,Majka M, Kucia M, Ma?lankiewicz K, WyderkaR, Ocha?a A, Ratajczak MZ. Mobilization ofCD34/CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation 2004; 110: 3213-3220.
    [16] Mavier P, Martin N, Couchie D, Préaux AM, Laperche Y, Zafrani ES. Expression of stromal cellderived factor-1 and of its receptor CXCR4 in liver regeneration from oval cells in rat. Am J Pathol 2004; 165: 1969-1977.
    [17] Grzesik WJ, Narayanan AS.Cementum and periodontal wound healing and regeneration.Crit Rev Oral Biol Med. 2002; 13(6):474-84.
    [18] Kapila YL, Lancero H, Johnson PW.The response of periodontal ligament cells to fibronectin.J Periodontol. 1998; 69(9):1008-1019.
    [19] Ivanovski S, Haase HR, Bartold PM. Isolation and characterization of fibroblasts derived from regenerating human periodontal defects. Arch Oral Biol 2001; 46: 679–688.
    [20] Witzgall R, Brown D, Schwarz C, Bonventre JV. Localization of proliferating cell nuclear antigen, vimentin, c-Fos, and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells. J. Clin. Invest. 1994; 93: 2175–2188.
    [21] Kang SK, Lee DH, Bae YC et al. Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats. Exp Neurol 2003; 183:355–366.
    [22] Mouiseddine M, Francois S, Semont A et al. Human mesenchymal stem cells home specifically to radiation-injured tissues in a non-obese diabetes/severe combined immunodeficiency mouse model. Br J Radiol 2007; 80:49–55.
    [23] Nagaya N, Fujii T, Iwase T et al. Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol 2004; 287:2670–2676.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700