弗氏佐剂和Al(OH)_3佐剂对小鼠脾脏Tregs及CD4~+T细胞相关基因的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
佐剂在免疫中的主要作用是增强机体抗原特异性免疫应答水平和持续时间,提高疫苗的接种效果。佐剂作为一种强烈的免疫刺激剂,能够在注射的局部或全身激发强烈而持久的免疫应答,诱导不同的细胞因子的分泌,进而对局部或全身的CD4+T细胞亚群的平衡状态产生一定的影响。佐剂对免疫平衡状态的改变可能对免疫系统产生一定的负面影响,造成一定程度的免疫性疾病或者抑制免疫系统对其它病原体的免疫应答。在当前我国畜牧业中,由于接种疫苗的种类以及接种次数均有所增加,造成佐剂的使用量相应增加。系统而全面的评估佐剂对于整体免疫系统的影响显得尤为重要。
     尽管已有较多研究从佐剂对Th1/Th2免疫平衡的影响这一角度进行了相关的研究,但是系统的研究单纯的佐剂对CD4+T细胞亚群的影响的研究还不多见,佐剂对Tregs的影响的研究也还匮乏。为了较全面的研究佐剂对CD4+T细胞亚群的影响,本研究采用单纯的弗氏完全佐剂及Al(OH)3佐剂这二种常见的佐剂作为研究对象,利用Balb/c小鼠作为实验动物,对该二种佐剂处理后的第14d后的脾脏内调节性T细胞及CD4+T细胞各亚群的相关基因进行了相关的研究。以期为系统的评估佐剂对整体免疫系统的影响提供理论基础。本研究的主要的研究内容及结果如下:
     实验选取30只Balb/c小鼠随机分为弗氏完全佐剂组、Al(OH)3佐剂组和对照组。三组小鼠分别经腹腔一次性注射生理盐水乳化的完全弗氏佐剂(1:1乳化)、1mg/mL的Al(OH)3悬混液、生理盐水各200μl。在佐剂处理后的14d麻醉小鼠后采集血液分离血清,同时无菌分离脾脏后进行Tregs流式细胞分析及CD4+T细胞相关基因的表达谱分析。
     采用流式细胞仪对弗氏佐剂和氢氧化铝佐剂处理小鼠的脾脏内CD4+T细胞、CD4+CD25-Foxp3+T细胞、CD4+Foxp3+T细胞以及CD4+CD25+Foxp3+T细胞进行分析。结果显示弗氏佐剂脾脏内CD4+CD25-Foxp3+T细胞、CD4+Foxp3+T细胞以及CD4+CD25+Foxp3+T细胞占总CD4+T细胞的百分比升高,而脾脏内CD4+T细胞占总脾细胞的百分比下降,与对照组比较差异均极显著(p<0.01);Al(OH)3佐剂组的这些指标与对照组比较差异均不显著(p>0.05);采用real-time RT-PCR及免疫组化的方法检测了三组小鼠脾脏内Foxp3基因的表达水平及Foxp3蛋白含量。结果显示三组小鼠脾脏内的Foxp3基因的表达水平及蛋白浓度差异不显著(p>0.05)。各组小鼠脾细胞的流式细胞散点图还表明弗氏佐剂组脾脏内一群CD4表达阴性,但是侧向角散射值较大的细胞类型显著增高,初步推测该类细胞为巨噬细胞。
     采用real-time RT-PCR基因芯片技术对弗氏佐剂和氢氧化铝佐剂处理小鼠的脾脏内Th1/Th2/Th3相关的共84个基因的表达水平进行了检测,结果显示弗氏佐剂组小鼠表达水平显著下降的基因有:BCL6、CCL5、CCR3、CCR4、CD28、CD4、CD80、CD86、CSF2、CTLA4、CXCR3、GATA3、ICOS、IFNG、IL-10、IL12RB2、IL-18、IL18BP、IL1R1、IL-2、IL27RA、IL2RA、I-L4、IL4RA、IRF1 JAK1、MAF、MAPK9、NFATC1、NFATC3、NFKB1、PTPRC、SOCS5、STAT1 STAT4;表达水平显著上升的基因有:IL-17 IL-23a、CEBPB、GFI1、IL-9、SPP1、YY1其余的基因表达水平差异不显著。氢氧化铝佐剂组与对照组比较仅IL-2基因表达水平显著上升,其余的差异均不显著。
     对弗氏佐剂和氢氧化铝佐剂处理小鼠的血清中的TGF-β1和IL-17的含量进行了ELISA检测,结果表明:弗氏佐剂组小鼠血清中TGF-β1和IL-17的含量显著提高,与对照组比较差异显著(p<0.05),而氢氧化铝佐剂组与对照组比较差异不显著(p>0.05)。对小鼠脾脏指数及显微切片观察结果表明:弗氏佐剂组脾脏指数显著提高,同时弗氏佐剂组脾脏内巨噬细胞显著增多。氢氧化铝佐剂组与对照组比较差异不显著。
     通过对以上实验结果的综合分析,表明单纯的弗氏佐剂腹腔处理小鼠,能显著增加小鼠脾脏内巨噬细胞数量,提高脾脏指数,同时还能够显著提高小鼠脾脏内Tregs的百分比,及Th17细胞相关的IL-17和IL-23的表达水平,并对脾脏内的Th1、Th2及总的CD4+T细胞相关的基因表达具有一定的抑制作用。而氢氧化铝佐剂对上述指标的差异均不显著。初步推测弗氏佐剂虽然能够有效的提高机体免疫系统针对抗原特异性的免疫应答水平,但是其对整体免疫系统的功能可能具有一定程度的抑制作用。
Adjuvants are used to boost the potency and longevity of specific immune response to antigens. As a strong agent in improving the body's specific immune response, adjuvants are able to stimulate a strong and lasting immune response where the local or systemic of body, which induces different cytokines which have an effect on the local or systemic CD4+T cell subsets balance. Changes in the immune balance caused by adjuvants may have some negative impacts on the immune system, which might cause a certain degree of immunity disease or suppress the immune response to other pathogens. With the type of vaccination and inoculation times increasing in the livestock industry in our country, which results in a corresponding increase in the use of adjuvant. The situation is even more prominent especially to evaluate the effects of adjuvants on systemic immune system.
     Although numerous reports indicated that adjuvants had a significant effect on the immune system of Thl/Th2 immune balance, there were less studies on a newly found CD4+CD25+regulatory T cells (Tregs) and Th17 cells which following the Thl and Th2. Little information is available on cytokine induction by adjuvant only. To comprehensively understand the effects of adjuvant on CD4+T cell subsets, Freund's complete adjuvant and Al (OH)3 adjuvant were used to evaluate their effects on Tregs and gene expression profile in spleen of Balb/c mice. Thirty Balb/c mice were randomly assigned to three groups; CFA group, AHA group and control group. Three groups were administered intraperitoneally with 200μL CFA (emulsified with PBS in a ratio of 1:1), AHA(1 mg/mL) or PBS respectively. All mice were necropsied at Day 14. This studies might provide a theoretical basis for assessing the impact of adjuvants on immune system. The main research contents and results as follows:
     The frequencies of CD4+Foxp3+T cells, CD4+CD25- Foxp3+T cells and CD4+CD25+Foxp3+T cells in splenocytes were assessed by flow cytometry and Foxp3 mRNA levels were detected using reverse transcription-PCR (RT-PCR) and immunohistochemical analysis. The result showed that CFA decreased the proportion of CD4+T cell in splenocytes and promoted the percent of CD4+Foxp3+T cells, CD4+CD25-Foxp3+T cells and CD4+CD25+Foxp3+T cells in CD4+T cells in splenocytes on day 14 (p< 0.01). But the levels of Foxp3 mRNA were no difference among the three groups(p> 0.05). AHA has no effect on foregoing index(p> 0.05). Results from the figures of flow cytometry analysis, there were a group of cells with CD4 negative, and with large side-angle scattering and the cells number was significantly increased in Freund's adjuvant group compared with the other groups. Based on the above characteristics, these cells might be macrophages.
     Eighty-four gene expression profiles which related to Thl/Th2/Th3 were detected by real-time RT-PCR gene chip technology. The results showed that the expressions of genes BCL6, CCL5, CCR3, CCR4, CD28, CD4, CD80, CD86, CSF2, CTLA4, CXCR3, GATA3, ICOS, IFNG, IL-10, IL-12RB2, IL-18, IL-18BP, IL-1R1, IL-2, IL-27RA, IL-2RA, IL-4, IL-4RA, IRF1, JAK1, MAF, MAPK9, NFATC1, NFATC3, NFKB1, PTPRC, SOCS5, STAT1 and STAT4 were strongly down-regulated in Freund's adjuvant group; but IL-17, IL-23A, CEBPB, GFI1, IL-9, SPP1 and YY1 gene were significantly up-regulated. The gene expression levels of other genes was not significant. There was only IL-2 expression increased significantly in Aluminum hydroxide adjuvant group compared with the control group.
     The serum concentration of TGF-p and IL-17 of mice treated with Freund's adjuvant and aluminum hydroxide adjuvant were detected by ELISA. The results showed that the serum levels of TGF-βand IL-17 in were increased significantly in Freund's adjuvant group compared with the control group, and there was no significant difference between the aluminum hydroxide adjuvant group and the control group. Aluminum hydroxide adjuvant has no effect on the spleen index and the percentage of macrophages in spleen.
     The above results indicated that the Freund's adjuvant could significantly increase the percentage of macrophages in the spleen, Tregs spleen index and the serum concentration of IL-17 IL-23. It showed some inhibition functions on the levels of gene expression involvement with Thl, Th2, and total CD4+T cells to a certain extent. The effect of aluminum hydroxide adjuvant on the index were not significant different. We suggested that CFA could improve the level of immune system for antigen-specific immune response, but the overall function of the immune system might be inhibited to a certain extent.
引文
[1]Mosmann TR, Coffman R L. TH1 and TH2 cells:different patterns of lymphokine secretion lead to different functional properties[J]. Annu Rev Immunol,1989,7: 145-173.
    [2]Jager A, Dardalhon V, Sobel RA, et al. Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes[J]. J Immunol,2009,183(11):7169-7177.
    [3]Tan C, Aziz MK, Lovaas JD, et al. Antigen-Specific Th9 Cells Exhibit Uniqueness in Their Kinetics of Cytokine Production and Short Retention at the Inflammatory Site[J]. J Immunol,2010. [Epub ahead of print].
    [4]Eyerich S, Eyerich K, Pennino D, et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling[J]. J Clin Invest, 2009,119(12):3573-85.
    [5]Yu D, Vinuesa CG. The elusive identity of T follicular helper cells[J]. Trends Immunol,2010,31(10):377-383.
    [6]Gershon RK. A disquisition on suppressor T cells[J]. Transplant Rev,1975,26: 170-185.
    [7]Gershon RK, Kondo K. Infectious immunological tolerance [J]. Immunology,1971, 21:903-914.
    [8]Vadas MA, Miller JF, McKenzie IF, et al. Ly and la antigen phenotypes of T cells involved in delayed-type hypersensitivity and in suppression[J]. J Exp Med, 1976,144:10-19.
    [9]S Sakaguchi, N Sakaguchi, M Asano, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor a-chains (CD25): breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J].J Immunol,1995,155(3):1151-1164.
    [10]Hori, S., Nomura, T.& Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3[J]. Science,2003,299:1057-1061.
    [11]JD Fontenot, MA Gavin, AY Rudensky. Foxp3 programs the development and function of CD4+CD25+regulatory T cells[J]. Nature immunology,2003,4(4): 330-336.
    [12]Shohei Hori, Takashi Nomura, Shimon Sakaguchi. Control of Regulatory T Cell Development by the Transcription Factor Foxp3[J]. Science,2003,299 (5609): 1057-1061.
    [13]Read S, V Malmstrom, F Powrie, et al. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+regulatory cells that control intestinal inflammation[J]. J Exp Med,2000,192:295-302.
    [14]Takahashi T, T Tagami, S Yamazaki, et al. Immunologic self-tolerance maintained by CD25+CD4+regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4[J]. J Exp Med,2000,192: 303-309.
    [15]McHugh R S, M J Whitters, C A Piccirillo, et al. CD4+CD25+ immunoregulatory T cells:gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor[J]. Immunity,2002,16:311-323.
    [16]Jun Shimizul, Sayuri Yamazaki, Takeshi Takahashi, et al. Stimulation of CD25+CD4+regulatory T cells through GITR breaks immunological self-tolerance[J]. Nature Immunology,2002,3:135-142.
    [17]Huang C T, C J Workman, D Flies, et al. Role of LAG-3 in regulatory T cells[J]. Immunity,2004,21:503-513.
    [18]David A Horwitza, Song Guo Zhenga, J Dixon Gray. Natural and TGF-βMnduced Foxp3+CD4+CD25+regulatory T cells are not mirror images of each other[J]. Trends in Immunology,2008,29(9):429-435.
    [19]Lepault F, M C Gagnerault. Characterization of peripheral regulatory CD4+T cells that prevent diabetes onset in nonobese diabetic mice[J]. The Journal of Immunology,2000,164:240-247.
    [20]Ermann J, P Hoffmann, M Edinger, et al. Only the CD62L+subpopulation of CD4+CD25+regulatory T cells protects from lethal acute GVHD[J]. Blood, 2005,105:2220-2226.
    [21]Silvia Deaglio, Karen M. Dwyer, Wenda Gao Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression[J]. J Exp Med,2007,204 (6):1257-1265.
    [22]W Liu, AL Putnam, Z Xu-yu, et al. CD 127 expression inversely correlates with FoxP3 and suppressive function of human CD4+T reg cells[J]. J Exp Med, 2006,203:1701-1711.
    [23]N Seddiki, B Santner-Nanan, J Martinson, et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells[J]. J Exp Med,2006,203:1693-1700.
    [24]Song Guo Zheng. The Critical Role of TGF-β1 in the Development of Induced Foxp3+Regulatory T Cells[J]. Int J Clin Exp Med,2008,1:192-202.
    [25]Weiner H L. Induction and mechanism of action of transforming growth factor secreting Th3 regulatory cells[J]. Immunol Rev,2001,182:207-214.
    [26]Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses[J]. Annu Rev Immunol, 2004,22:531-562.
    [27]Shevach E M. CD4+CD25+ suppressor T cells:more questions than answers[J]. Nat Rev Immunol,2002,2:389-400.
    [28]Dieckmann, D C H Bruett, H Ploettner, et al. Human CD4+CD25+regulatory, contactdependent T-cells induce interleukin-10-producing, contact-independent type like regulatory T-cells[J]. J Exp Med,2002,196,247-253.
    [29]Yoshihiro Furuichi, Hirotake Tokuyama, Satoshi Ueha, et al. Depletion of CD25+CD4+T cells (Tregs) enhances the HBV-specific CD8+T cell response primed by DNA immunization[J]. World J Gastroenterol,2005,11(24): 3772-3777.
    [30]Crossman WJ, Verbsky JW, Barchet W, et al. Human Tregulatory cells can use the perforin pathway to cause autologous target cell death [J]. Immunity,2004, 21(4):589-601.
    [31]Xuefang Cao, Sheng F Cail, Todd A Fehniger, et al. Granzyme B and Perforin Are Important for Regulatory T Cell-Mediated Suppression of Tumor Clearance [J]. Immunity,27(4):635-646.
    [32]E Allison Green, Leonid Gorelik, Catrin M McGregor, et al. CD4+CD25+T regulatory cells control anti-islet CD8+T cells through TGF-β-TGF-β receptor interactions in type 1 diabetes[J]. PNAS,2003,100(19):10878-10883.
    [33]Loser K, Apelt J, VoskortM, et al. IL-10 controls ultraviolet induced carcinogenesis in mice[J]. J Immunol,2007,179 (1):365-371.
    [34]Green EA, Gorelik L, McGregor CM, et al. CD4+CD25+T regulatory cells control anti-islet CD8+T cells through TGF-beta-TGF-beta recep-tor interactions in type 1 diabetes[J]. Proc NatlAcad SciU S A,2003,100 (19): 10878-10883.
    [35]Han Y, Guo Q, ZhangM, et al. CD69+CD4+CD25-T cells, a new subset of regulatory T cells, supp ress T cell p roliferation through membrane2bound TGF2beta 1 [J]. J Immunol,2009,182 (1):111-120.
    [36]Gorbachev AV, Fairchild RL. CD4+CD25+regulatory T cells utilize FasL as a mechanism to restrict DC priming functions in cutaneous immune responses [J]. Eur J Immunol,2010,40(7):2006-2015.
    [37]Misra N, Bayry J, Lacroix-Desmazes S, et al. Cutting edge:human CD4+CD25+ T cells restrain the maturation and antigen-presenting function of dendritic cells[J]. J Immunol,2004,172(8):4676-4680.
    [38]Collison LW, Workman CJ, Kuo TT, et al. The inhibitory cytokine IL-35 contributes to regulatory T cell function [J]. Nature,2007,450 (7169):566-569.
    [39]Lim HW, Hillsamer P, Banham AH, et al. Cutting edge:direct suppression of B cells by CD4+ CD25+ regulatory T cells[J]. J Immunol,2005,175(7): 4180-4183.
    [40]zuma T, Takahashi T, Kunisato A, et al. Human CD4+ CD25+ regulatory T cells suppress NKT cell functions[J]. Cancer Res,2003,63(15):4516-4520.
    [41]Ghiringhelli F, Menard C, Terme M,et al. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner[J]. J Exp Med,2005,202(8):1075-1085.
    [42]Shevach EM. From vanilla to 28 flavors:multiple varieties of T regulatory cells[J]. Immunity,2006,25(2):195-201.
    [43]Cao D, Malmst rom V, Baecher Allan C. Isolation and functional characterization of regulatory CD25+CD4+T cells from the target organ of patients with rheumatoid arthritis[J]. Eur J Immunol,2003,33 (1):215-223.
    [44]Mottonen M, Heikkinen J, Mustonen I, et al. CD4+ CD25+ T cells with the phenotypicand functional characteristics of regulatory T cells are enriched in synovial fluid of patients with rheumatiod arthristis [J]. Clin Exp Immunol,2005, 140(2):360-367.
    [45]Casiraghi F, Aiello S, Remuzzi G. Transplant tolerance:progress and challenges[J]. J Nephrol,2010,23(3):263-270.
    [46]Zenclussen A C, Geflof K, Zenclussen M L et al. Abnormal T-Cell Reactivity against Paternal Antigens in Spontaneous Abortion:Adoptive Transfer of Pregnancy-Induced CD4+CD25+T Regulatory Cells Prevents Fetal Rejection in a Murine Abortion Model[J]. Am J Pathol,2005,166:811-822.
    [47]Aluvihare V R, Kallikourdis M, Betz A G, et al. Regulatory T cells mediate maternal tolerance to the fetus[J]. Nat Immunol,2004,5:266-271.
    [48]Stassen M, Schmitt E, Jonuleit H, et al. Human CD4+CD25+regulatory T cells and infectious tolerance[J]. Transplantation,2004,77(1):S23-S25.
    [49]Yasmine Belkaid. Regulatory T cells and infection:a dangerous necessity [J]. Nature Reviews Immunology,2007,7:875-888.
    [50]Belkaid Y, Tarbell K. Regulatory T cells in the control of host-microorganism interactions[J]. Annual review of immunology,2009,27:551-589.
    [51]Suvas S, Rouse BT. Tregs control of antimicrobial T cell responses [J]. Curr Opin Immunol,2006,18:344-348.
    [52]Peters N, Sacks D. Immune privilege in sites of chronic infection:Leishmania and regulatory T cells[J]. Immunol Rev,2006,213:159-179.
    [53]Johanns TM, Ertelt JM, Rowe JH, et al. Regulatory T cell suppressive potency dictates the balance between bacterial proliferation and clearance during persistent Salmonella infection[J]. PLoS Pathog,2010,6(8):e1001043.
    [54]Mikkelsen SR, Reckling SK, Egan EA, et al. In vivo depletion of CD4(+)CD25(hi) regulatory T cells is associated with improved antiviral responses in cats chronically infected with feline immunodeficiency virus [J]. Virology,2010,403(2):163-172.
    [55]Raghavan S,.Holmgren J. CD4+CD25+suppressor T cells regulate pathogen induced inflammation and disease[J]. Immunol Med Microbiol,2005,44: 121-127.
    [56]Bueno LL, Morais CG, Araujo FF, et al. Plasmodium vivax:induction of CD4+CD25+FoxP3+regulatory T cells during infection are directly associated with level of circulating parasites[J]. PLoS One,2010,5(3):e9623.
    [57]Hasenkrug K J, U Dittmer.. Immune control and prevention of chronic Friend retrovirus infection[J]. Front Biosci,2007,12:1544-1551.
    [58]Shuo Li, Eric J. Gowans, Claire Chougnet,et al. Natural Regulatory T Cells and Persistent Viral Infection[J]. J Virol,2008,82(1):21-30.
    [59]Stoop JN, van der Molen RG, Baan CC, et al. Regulatory T cells contribute to the impaired immune response in patients with chronic hepatitis B virus infection[J]. Hepatology,2005,41(4):771-778.
    [60]Boehmer H. Mechanisms of suppression by suppressor T cells [J]. Nat Immunol 2005,6(4):338-344.
    [61]Mondelli MU, Barnaba V. Viral and host immune regulatory mechanisms in hepatitis C virus infection[J]. Eur J Gast roenterol Hepatol,2006,118:327-331.
    [62]Harrington LE, Hatton RD, Mangan PR, et al. Interleukinl7-producing CD4 effector T cells develop via a lineage distinct from the T helper typel and 2 lineages[J]. Nat Immunol,2005,6(11):1123-1132.
    [63]Ferber I, S Brocke, C Taylor-Edwards, et al. Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE) [J]. J Immunol,1996,156:5-7.
    [64]Willenborg DO, S Fordham, C C Bernard, et al. IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis[J]. J Immunol,1996,157:3223-3227.
    [65]DO Willenborg, S Fordham, CC Bernard, et al. IFN-gamma plays a critical down-regulatory role in the induction and effector phase of myelin oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis[J]. The Journal of Immunology,1996,157(8):3223-3227.
    [66]Cua DJ, J Sherlock, Y Chen, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain[J]. Nature,2003, 421:744-748.
    [67]Langrish CL, ChenY, BlumenscheinWM, et al., IL-23 drives a pathogenic T cell population that induces autoimmune inflammation[J]. J Exp Med,2005,201(2): 233-240.
    [68]ParkH, LiZ, YangXO, et al. Adistinctlineage of CD4 Tcells regulates tissue inflammation by producing interleukin 17[J]. Nat Immunol,2005,6 (11): 1133-1141.
    [69]WeaverCT, Hatton RD, Mangan PR, et al. IL-17 family cytokines and the expanding diversity of effector T cell lineages[J]. Annu Rev Immunol,2007,25: 821-852.
    [70]Kolls JK, Linden A. Interleukin-17 family members and inflammation[J]. Immunity,2004:21:467-476.
    [71]Ogura H, Murakami M, Okuyama Y. Interleukin-17 promotes autoimmunity by triggering a positive-feedback loop via interleukin-6 induction[J]. Immunity, 2008,29:628-636.
    [72]Estelle Bettelli, Thomas Korn, Vijay K Kuchro, Th17:the third member of the effector T cell trilogy[J]. Current Opinion in Immunology,2007,19(6):652-657.
    [73]Hoeve M A, Savage N D L, Boer T, et al. Divergent effects of IL-12 and IL-23 on the production of IL-17 by human T cells[J]. Eur J Immunol,2006,36: 661-670.
    [74]Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells[J]. Nature,2006,441:235-238.
    [75]Yang XO, Panopoulos AD, Nurieva R, et al. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells[J]. J Biol Chem,2007,282 (13): 9358-9363.
    [76]Eun Sook Hwang. Transcriptional Regulation of T Helper 17 Cell Differentiation[J]. Yonsei Med J,2010,51(4):484-491.
    [77]Liang SC, Tan XY, Luxenberg DP, Karim R, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides[J]. J Exp Med,2006,203:2271-2279.
    [78]Wright JF, Guo Y, Quazi A, et al. Identification of an interleukin 17F/17A heterodimer in activated human CD4+T cells[J]. J Biol Chem,2007,282: 13447-13455.
    [79]van de Veerdonk FL, Gresnigt MS, Kullberg BJ, et al. Thl7 responses and host defense against microorganisms:an overview[J]. BMB Rep,2009,42(12): 776-787.
    [80]T Zelante, S Bozza, A De Luca, et al. Th17 cells in the setting of Aspergillus infection and Pathology[J]. Medical Mycology,2009,47:162-169.
    [81]Hirota K, Yoshitomi H, Hashimoto M, et al. Preferential recruitment of CCR6-expressing Th17 ceils to inflamed joints via CCL20 in rheumatoid arthritis and its animal model[J]. J Exp Med,2007,204(12):2803-2812.
    [82]Kao CY, Chen Y, Thai P, et al. IL-17 markedly up-regulates beta-efensin-expression in human airway epthelium via JAK and NF-KappaB signaling pathways[J]. Immunol,2004,173 (5):3482-3491.
    [83]Ye P, Rodriguez FH, Kanaly S, et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense[J]. J Exp Med,2001, 194(4):519-527.
    [84]Aujla SJ, Chan YR, Zheng M, et al. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia[J]. Nat Med,2008,14(3):275-281.
    [85]Happel K I, P J Dubin, M Zheng, et al. Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae[J]. J Exp Med,2005,202:761-769.
    [86]Lu, Y J J Gross, D Bogaert, et al. Interleukin-17A mediates acquired immunity to pneumococcal colonization[J]. PLoS Pathog,2008,4:e1000159.
    [87]SJ Aujla, YR Chan, M Zheng, et al. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia[J]. Nature Medicine,2008,14,275-281.
    [88]Sellge G, Magalhaes JG, Konradt C, et al. Th17 cells are the dominant T cell subtype primed by Shigella flexneri mediating protective immunity [J]. J Immunol,2010,184(4):2076-2085.
    [89]Kagami S, Rizzo HL, Kurtz SE, et al. IL-23 and IL-17A, but Not IL-12 and IL-22, Are Required for Optimal Skin Host Defense against Candida albicans[J]. J Immunol,2010, [Epub ahead of print].
    [90]Cheng SC, van de Veerdonk F, Smeekens S, et al. Candida albicans dampens host defense by downregulating IL-17 production[J]. J Immunolm,2010,185(4): 2450-2457.
    [91]Teresa Zelante, Antonella De Luca, Carmen D'Angelo, et al. IL-17/Th17 in anti-fungal immunity:What's new?[J]. European Journal of Immunology,2009, 39(3):645-648.
    [92]Mou Z, Jia P, Kuriakose S, et al. Interleukin-17-Mediated Control of Parasitemia in Experimental Trypanosoma Congolense Infection in Mice[J]. Infect Immun, 2010, [Epub ahead of print].
    [93]Bai H, Cheng J, Gao X, et al. IL-17/Th17 promotes type 1 T cell immunity against pulmonary intracellular bacterial infection through modulating dendritic cell function[J]. J Immunol,2009,183(9):5886-5895.
    [94]Jagef A, Kuchroo VK. Effector and regulatory T-cell subsets in autoimmunity and tissue inflammation[J]. Scand J Immunol,2010,72(3):173-184.
    [95]Paunovic V, Carroll HP, Vandenbroeck K, et al. Signalling, inflammation and arthritis:crossed signals:the role of interleukin (IL)-12,-17,-23 and-27 in autoimmunity [J]. Rheumatology,2008,47(6):771-776.
    [96]Nistala K, Moncrieffe H, Newton KR, et al. Interleukin-17-producing T cells are enriched in the joints of children with arthritis, but have a reciprocal relationship to regulatory T cell numbers[J]. Arthritis Rheum,2008,58 (3):875-887
    [97]Kim HR, Kim HS, Park MK, et al. The clinical role of IL-23p19 in patients with rheumatoid arthritis[J]. Seand J Rheumatol,2007,36(3):259-264.
    [98]Parsonage G, Filer A, Bik M, et al. Prolonged, granulocyte-macrophage Colony-stimulating factor-dependent, neutrophil survival following rheumatoid synovial fibroblast activation by IL-17 and TNF alpha[J]. Arthritis Res Ther, 2008,10(2):R47.
    [99]Erik Lubberts. Th17 cytokines and arthritis[J]. Seminars in Immunopathology, 2010,32(1):43-53.
    [100]Hsu HC, Yang P, Wang J, et al. Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice[J]. Nat Immunol,2008,9(2):166-175.
    [101]Szabo SJ, Kim ST, Costa GL, et al. A novel transcription factor, T-bet, directs Thl lineage commitment[J]. Cell,2000,100:655-669.
    [102]Ouyang W, Ranganath SH, Weindel K, et al. Inhibition of Thl development mediated by GATA-3 through an IL-4-independent mechanism[J]. Immunity, 1998,9:745-755.
    [103]Ho IC, Lo D, Glimcher LH. c-maf promotes T helper cell type 2 (Th2) and attenuates Thl differentiation by both interleukin 4-dependent and-independent mechanisms[J]. J Exp Med,1998,188:1859-1866.
    [104]Terry B. Strom, Maria Koulmanda. Recently Discovered T Cell Subsets Cannot Keep Their Commitments[J]. J Am Soc Nephrol,2009,20:1677-1680.
    [105]Zheng W, Flavell RA. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells[J]. Cell,1997,89: 587-596.
    [106]Marie-Laure Michela, Daniella Mendes-da-Cruza, Alexandre Castro Keller, et al. Critical role of ROR-yt in a new thymic pathway leading to IL-17-producing invariant NKT cell differentiation[J]. PNAS,2008,105(5):19845-19850.
    [107]Korn T, Bettelli E, Gao W, et al. IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells[J]. Nature,2007,448:484-487.
    [108]Awasthi A, Carrier Y, Peron JP, Bettelli E, et al. A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat Immunol,2007,8:1380-1389.
    [109]Stumhofer JS, Silver JS, Laurence A, et al. Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10[J]. Nat Immunol,2007,8: 1363-1371.
    [110]Zhou L, Ivanov, Spolski R, et al. IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways [J]. Nat Immunol,2007,8:967-974.
    [111]Volpe E, Servant N, Zollinger R, et al.A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses[J]. Nat Immunol,2008,9:650-657.
    [112]Erika Wissinger, Seema Vekaria, Lorna Edwards, et al. IL-33 administration promotes both Th2 and Th17 responses and improves resolution during influenza infection[J]. The Journal of Immunology,2010,184,92.7.
    [113]Yang XO, Nurieva R, Martinez GJ, et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs[J]. Immunity,2008,29:44-56.
    [114]Xu L, Kitani A, Fuss I, et al. regulatory T cells induce CD4+CD25-Foxp3-T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta[J]. J Immunol,2007,178:6725-6729.
    [115]Mucida D, Park Y, Kim G, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid[J]. Science,2007,317:256-260.
    [116]Korn T, Oukka M, Kuchroo V, Bettelli E:Th17 cells:Effector T cells with inflammatory properties [J]. Semin Immunol,2007,19:362-371.
    [117]Shigeru Saito. Th17 cells and regulatory T cells:new light on pathophysiology of preeclampsia[J]. Immunology and Cell Biology,2010,88:615-617.
    [118]Fiona J Culley, Alasdair M J Pennycook, John S Tregoning, et al. Differential Chemokine Expression following Respiratory Virus Infection Reflects Thl-or Th2-Biased Immunopathology[J]. Journal of Virology,2006,80(9):4521-4527.
    [119]Sacks D, Noben-Trauth N. The immunology of susceptibility and resistance to Leishmania major in mice[J]. Nat Rev Immunol,2002,2:845-858.
    [120]Taylor JJ, Mohrs M, Pearce EJ, et al. Regulatory T cell responses develop in parallel to Th responses and control the magnitude and phenotype of the Th effector population[J]. J Immunol,2006,176:5839-5847.
    [121]Miyara M, Amoura Z, Parizot C, et al. The immune paradox of sarcoidosis and regulatory T cells[J]. J Exp Med,2006,203:359-370.
    [122]Kora T, Reddy J, Gao W, et al. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation[J]. Nat Med.2007,13: 423-431.
    [123]Pillemer BB, Qi Z, Melgert B, et al. STAT6 activation confers upon T helper cells resistance to suppression by regulatory T cells[J]. J Immunol,2009,183(1): 155-163.
    [124]Pace L, Pioli C, Doria G. IL-4 modulation of CD4+CD25+T regulatory cell-mediated suppression[J]. J Immunol,2005,174:7645-7653.
    [125]Thornton AM, Donovan EE, Piccirillo CA, et al. IL-2 is critically required for the in vitro activation of CD4+CD25+T cell suppressor function[J]. J Immunol, 2004,172:6519-6523.
    [126]Fontenot JD, Rasmussen JP,Gavin MA, et al. A function for interleukin 2 in Foxp3-expressing regulatory T cells[J]. Nat Immunol,2005,6:1142-1151.
    [127]Liu Y, Zhang P, Li J, et al. A critical function for TGF-b signaling in the development of natural CD4+CD25+Foxp3+regulatory T cells[J]. Nat Immunol. 2008,9:632-640.
    [128]Abbas Abul K. Functional diversity of helper T lymphocytes [J]. Nature,1996, 383(6603):787-793.
    [129]Steven G Reed, Sylvie Bertholet, Rhea N Coler, et al. New horizons in adjuvants for vaccine development [J]. Trends in Immunology,2008,30(1): 22-32.
    [130]O'Hagan Derek T MF59 is a safe and potent vaccine adjuvant that enhances protection against influenza virus infection [J]. Expert Review of Vaccines,2007, 6(5):699-710.
    [131]Da Silva Cunha IB, Salomao K, Shimizu M, et al, Antitrypanosomal activity of Brazilianpropolis from Apis mellifera. ChemPharm Bull,2004,52:602-604.
    [132]Jin H L, Li Y J, Ma Z H, et al. Effect of chemical adjuvants on DNA vaccination[J]. Vaccine,2004,22:2925-2935.
    [133]PetrovskyN, Aguilar J C. Vaccine adjuvants:Current state and future trends [J]. Immunol Cell Biol,2004; 82 (5):488-496.
    [134]Vishukumar Aimanianda, Jean Haensler, Sebastien Lacroix-Desmazes,et al. Novel cellular and molecular mechanisms of induction of immune responses by aluminum adjuvants[J]. Trends in Pharmacological Sciences,2009,30(6): 287-295.
    [135]Ganne V, Eloit M, Laval A, et al. Enhancement of the eficacy of a replication-defective adenovirus-vectored vaccine by the addition of oil adjutants[J]. Vaccine,1994,12(13):1190-1196.
    [136]Aucouturier J, Dupuis L, Deville S et al. Montanide ISA 720 and 51:a new generation of water in oil emulsions as adjuvants for human vaccines [J]. Expert Rev Vaccines,2002; 1 (1):111-118.
    [137]J Kovacs-Nolan, L Latimer, A Landi, et al. The novel adjuvant combination of CpG ODN, indolicidin and polyphosphazene induces potent antibody-and cell-mediated immune responses in mice[J]. Vaccine,2009,27(14):2055-2064.
    [138]M Pizza, MM Giuliani, M.R. Fontana, et al. Mucosal vaccines:non toxic derivatives of LT and CT as mucosal adjuvants [J]. Vaccine,2001,19(17-19): 2534-2541.
    [139]Gao X, Ding G, Wang Z, et al. Adjuvant treatment suppresses IL-17 production by T cell-independent myeloid sources in nonobese diabetic mice[J]. Mol Immunol,2010,47(14):2397-2404.
    [140]Nikoopour E, Schwartz JA, Huszarik K, et al. Th17 polarized cells from nonobese diabetic mice following mycobacterial adjuvant immunotherapy delay type 1 diabetes[J]. J Immunol,2010,184(9):4779-4788.
    [141]Da Silva CA, Pochard P, Lee CG, et al. Chitin Particles are Multifaceted Immune Adjuvants[J]. Am J Respir Crit Care Med,2010. [Epub ahead of print].
    [142]Kumar HM, Singh PP, Qazi NA, et al. Development of novel lipidated analogs of picroside as vaccine adjuvants:Acylated analogs of picroside-II elicit strong Thl and Th2 response to ovalbumin in mice[J]. Vaccine,2010. [Epub ahead of print].
    [143]Wu HY, Maron R, Tukpah AM, et al:Mucosal anti-CD3 monoclonal antibody attenuates collagen-induced arthritis that is associated with induction of LAP+ regulatory T cells and is enhanced by administration of an emulsome-based Th2-skewing adjuvant[J]. J Immunol,2010,185(6):3401-3407.
    [144]Van der Stede Y, Verdonck F, Vancaeneghem S,CpG-oligodinucleotides as an effective adjuvant in pigs for intramuscular immunizations[J]. Vet Immunol Immunopathol,2002,86(1-2):31-41.
    [145]金博,程留芳,裘奇,等.不同免疫佐剂对丙肝核酸疫苗效果的影响[J].中国免疫学杂志,2007,23:202-207.
    [146]Lai CY, Hung JT, Lin HH, et al. Immunomodulatory and adjuvant activities of a polysaccharide extract of Ganoderma lucidum in vivo and in vitro[J]. Vaccine, 2010,28(31):4945-4954.
    [147]Anamika Khajuria, Amit Gupta, Fayaz Malik, et al. A new vaccine adjuvant (BOS 2000) a potent enhancer mixed Thl/Th2 immune responses in mice immunized with HBsAg[J]. Vaccine,2007,25:4586-4594.
    [148]Mara G Shainheit, Patrick M Smith, Lindsey E Bazzone, et al. Dendritic Cell IL-23 and IL-1 Production in Response to Schistosome Eggs Induces Th17 Cells in a Mouse Strain Prone to Severe Immunopathology[J]. The Journal of Immunology,2008,181:8559-8567.
    [149]Marc Veldhoen, Richard J Hocking, Richard A Flavell, et al. Signals mediated by transforming growth factor-initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease [J]. Nature Immunology,2006, 7:1151-1156.
    [150]Matthew A Burchill, Dean T Nardelli, Douglas M England, et al. Inhibition of Interleukin-17 Prevents the Development of Arthritis in Vaccinated Mice Challenged with Borrelia burgdorferi[J]. Infection and Immunity,2003,71(6): 3437.3442.
    [151]Anish Suri, Boris Calderon, Thomas JEsparza, et al. Immunological Reversal of Autoimmune Diabetes Without Hematopoietic Replacement of β Cells [J]. Science,2006,311(5768):1778-1780.
    [152]Stephanie Dillon, Sudhanshu Agrawal, Kaustuv Banerjee, et al. Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance[J]. J Clin Invest,2006,116(4):916-928.
    [153]Alexandra Zanin-Zhorov, Rafael Bruck, Guy Tal, et al. Heat Shock Protein 60 Inhibits Thl-Mediated Hepatitis Model via Innate Regulation of Thl/Th2 Transcription Factors and Cytokines[J]. The Journal of Immunology,2005,174: 3227-3236.
    [154]Qun Wu, Richard J Martin, John G. Rino, et al. IL-23-dependent IL-17 production is essential in neutrophil recruitment and activity in mouse lung defense against respiratory Mycoplasma pneumoniae infection[J]. Microbes and Infection,2007,9(1):78-86.
    [155]Fabio Re,Jack L. Strominger. Toll-like Receptor 2 (TLR2) and TLR4 Differentially Activate Human Dendritic Cells[J]. The Journal of Biological Chemistry,2001,37692-37699.
    [156]Carmen Infante-Duarte, Heidi F Horton, Michael C, et al. Microbial Lipopeptides Induce the Production of IL-17 in Th Cells[J].The Journal of Immunology,2000,165:6107-6115.
    [157]Brigitta Stockinger, Marc Veldhoen, Bruno Martin. Th17 T cells:Linking innate and adaptive immunity [J]. Seminars in Immunology,2007,19(6): 353-361.
    [158]Freitas EO, Casas CP, Borja-Cabrera GP, et al. Acylated and deacylated saponins of Quillaja saponaria mixture as adjuvants for the FML-vaccine against visceral leishmaniasis[J]. Vaccine,2006,24:3909-3920.
    [159]A P Hu, J M Du, J Y Li, et al. Oridonin promotes CD4+/CD25+Treg differentiation, modulates Thl/Th2 balance and induces HO-1 in rat splenic lymphocytes [J]. Inflammation Research,2008,57(4):163-170.
    [160]Scott P, Kaufmann SH. The role of T-cell subsets and cytokines in the regulation of infection[J]. Immunol Today,1991,12:346-348.
    [161]Oliveira SJ, Mamoni RL, Musatti CC, et al. Cytokines and lymphocyte proliferation in juvenile and adult forms of paracoccidioidomycosis:comparison with infected and non-infected controls[J]. Microbes Infect,2002,4:139-144.
    [162]de Oliveira LL, Coltri KC, Cardoso CR, et al. T helper 1-inducing adjuvant protects against experimental paracoccidioidomycosis[J]. PLoS Negl Trop Dis, 2008,2(3):e183.
    [163]Dennis M Klinman. Immunotherapeutic uses of CpG oligodeoxynucleotides[J]. Nature Reviews Immunology,2004,4:249-259.
    [164]Sanjiv Sur, James S Wild, Barun K Choudhury, et al. Long Term Prevention of Allergic Lung Inflammation in a Mouse Model of Asthma by CpG Oligodeoxynucleotides[J]. The Journal of Immunology,1999,162:6284-6293.
    [165]EB Lindblad, MJ Elhay, R Silva, et al. Adjuvant modulation of immune responses to tuberculosis subunit vaccines[J]. Infect Immun,1997,623-629.
    [166]Ha Y, Lee YH, Ahn KK, et al. Reproduction of postweaning multisystemic wasting syndrome in pigs by prenatal porcine circovirus 2 infection and postnatal porcine parvovirus infection or immunostimulation[J]. Vet Pathol, 2008,45(6):842-848.
    [167]Krakowka S, Ellis J, McNeilly F, et al. Mycoplasma hyopneumoniae bacterins and porcine circovirus type 2 (PCV2) infection:induction of postweaning multisystemic wasting syndrome (PMWS) in the gnotobiotic swine model of PCV2-associated disease[J]. Can Vet J,2007,48(7):716-724.
    [168]Grasland B, Loizel C, Blanchard P, et al. Reproduction of PMWS in immunostimulated SPF piglets transfected with infectious cloned genomic DNA of type 2 porcine circovirus[J]. Vet Res,2005,36(5-6):685-697.
    [169]D Sen, L Forrest, TB Kepler, et al. Selective and site-specific mobilization of dermal dendritic cells and Langerhans cells by Th1-and Th2-polarizing adjuvants[J]. PNAS,2010,107(18):8334-8339.
    [170]Hiroyoshi Nishikawa, Takuma Kato, Michiko Hirayama, et al. Regulatory T Cell-Resistant CD8+ T Cells Induced by Glucocorticoid-Induced Tumor Necrosis Factor Receptor Signaling[J]. Cancer Res,2008,68:5948-5954.
    [171]Richard J DiPaolo, Todd S Davidson, John Andersson, et al. Induced Organ-Specific T Regulatory (Treg) Cells Prevent Autoimmunity by Reducing the Ability of Dendritic Cells (DC) to Present Self-Antigen[J]. The Journal of Immunology,2007,178,131.4.
    [172]S Sakaguchi, T Yamaguchi, T Nomura, et al. Regulatory T Cells and Immune Tolerance[J]. cell,2008,133(5):775-787.
    [173]Hyung W Lim, Peter Hillsamer, Allison H, et al. Banham Cutting Edge:Direct Suppression of B Cells by CD4+CD25+ Regulatory T Cells[J]. The Journal of Immunology,2005,175:4180-4183.
    [174]Francois Ghiringhelli, Cedric Menard, Francois Martin, et al. The role of regulatory T cells in the control of natural killer cells:relevance during tumor progression[J]. Immunological Reviews,2006,214(1):229-238.
    [175]Sun M, Yang P, Du L, et al. Increased Regulatory T Cells in Spleen during Experimental Autoimmune Uveoretinitis[J]. Ocul Immunol Inflamm,2010, 18(1):38-43.
    [176]Tian B, Hao J, Zhang Y, et al. Up-regulating CD4+CD25+FOXP3+ regulatory T cells in pancreatic lymph nodes in diabetic NOD mice by adjuvant immunotherapy[J]. Transplantation,2009,87(2):198-206.
    [177]Terry B. Strom, Maria Koulmanda. Recently Discovered T Cell Subsets Cannot Keep Their Commitments [J]. J Am Soc Nephrol,2009,20:1677-1680.
    [178]Shimon Sakaguchi, Masahiro Ono, Ruka Setoguchi, et al. Foxp3+CD25+CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease[J]. Immunological Reviews,2006,212(1):8-27.
    [179]Shohei Hori, Takashi Nomura, Shimon Sakaguchi. Control of Regulatory T Cell Development by the Transcription Factor Foxp3[J]. Science,2003,299 (5609): 1057-1061.
    [180]Dario A A Vignali, Lauren W Collison, Creg J Workman. How regulatory T cells work[J]. Nature Reviews Immunology,8,2008,523-532.
    [181]Qizhi Tang, Jeffrey A Bluestone. The Foxp3+regulatory T cell:a jack of all trades, master of regulation[J]. Nature Immunology,2008,9,239-244.
    [182]Tian B, Hao J, Zhang Y,et al. Upregulating CD4+CD25+FOXP3+regulatory T cells in pancreatic lymph nodes in diabetic NOD mice by adjuvant immunotherapy[J]. Transplantation,2009,87(2):198-206.
    [183]Manirarora JN, Kosiewicz MM, Parnell SA, et al. APC activation restores functional CD4(+)CD25(+) regulatory T cells in NOD mice that can prevent diabetes development[J]. PLoS One,2008,3(11):e3739.
    [184]Robert L Coffman. Origins of the TH1-TH2 model:a personal Perspective [J]. Nature Immunology,2006,7 (6):539-541.
    [185]Shigeru Saito, Akitoshi Nakashima, Tomoko Shima, et al. Th1/Th2/Th17 and Regulatory T-Cell Paradigm in Pregnancy [J]. American Journal of Reproductive Immunology,2010,63(6):601-610.
    [186]Liang Zhou, Mark MW Chong, Dan R Littman, et al. Plasticity of CD4+T Cell Lineage Differentiation[J]. Immunity,2009,30(5):646-655.
    [187]Mandy J McGeachy, Kristian S Bak-Jensen, Yi Chen, et al. TGF-and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain TH-17 cell-mediated pathology[J]. Nature Immunology,2007,8:1390-1397.
    [188]Noriko Morishima, Izuru Mizoguchi, Kiyoshi Taked, et al. TGF-β is necessary for induction of IL-23R and Th17 differentiation by IL-6 and IL-23[J]. Biochemical and Biophysical Research Communications,2009,386(1): 105-110.
    [189]N N Hanse, C Cheadle, G B Diette, et al. Short communication:Analysis of CD4+T-cell gene expression in allergic subjects using two different microarray platforms[J]. Allergy,2008,63(3):366-369.
    [190]Jinfang Zhu, Hidehiro Yamane, William E Paul, et al. Differentiation of Effector CD4 T Cell Populations[J]. Annu Rev Immunol,2010,28:445-489.
    [191]Susumu Nakae, Yoichiro Iwakura, Hajime Suto, et al. Phenotypic differences between Thl and Th417 cells and negative regulation of Thl cell differentiation by IL-17[J]. Journal of Leukocyte Biology,2007,81:1258-1261.
    [192]Sergio Romagnani. The Th1/Th2 paradigm[J]. Immunology Today,1997,18(6): 263-266.
    [193]N Kaibara, T Hotokebuchi, K Takagishi, et al. Pathogenetic difference between collagen arthritis and adjuvant arthritis[J]. JEM,1984,159(5):1388-1396.
    [194]Toder V, Strassburger D, Irlin Y, et al. Nonspecific immunopotentiators and pregnancy loss:complete Freund adjuvant reverses high fetal resorption rate in CBA×DBA/2 mouse combination [J]. Am J Reprod Immunol,1990,24: 63-66.
    [195]Strassburger D, Irlin Y, Carp H, et al. Immune features in complete Freund adjuvant-treated CBA/J mouse model[J]. Am J Reprod Immunol,1992, 28(3-4):277-80.
    [196]Dyana K Daltona, Laura Haynesa, Cong-Qiu Chu, et al. Interferon y Eliminates Responding Cd4 T Cells during Mycobacterial Infection by Inducing Apoptosis of Activated Cd4 T Cells[J]. JEM,2000,192(1):117-122.
    [197]Chi Chung Wang, Jeremy JW Chen, Pan-Chyr Yang. Multifunctional transcription factor YY1:a therapeutic target in human cancer? [J]. Expert Opin Ther Targets,2006,10 (2):253-266.
    [198]Masako Moriuchi, Hiroyuki Moriuchi. YY1 Transcription Factor Down-regulates Expression of CCR5, a Major Coreceptor for HIV-1[J]. Journal of Biological Chemistry,2003,278,13003-13007.
    [199]Susanne J Szabo, Sean T Kim, Gina L Costa, et al. A Novel Transcription Factor, T-bet, Directs Thl Lineage Commitment[J]. Cell,2000,100(6):655-669.
    [200]Susanne J Szabo Brandon M Sullivan, Claudia Stemmann, et al. Distinct Effects of T-bet in TH1 Lineage Commitment and IFN-Production in CD4 and CD8 T Cells[J]. Science,2002,295 (5553):338-342.
    [201]Cong-Qiu Chua, Susan Wittmera, Dyana K, et al. Failure to Suppress the Expansion of the Activated Cd4 T Cell Population in Interferon y-Deficient Mice Leads to Exacerbation of Experimental Autoimmune Encephalomyelitis[J]. JEM,2000,192(1):123-128.
    [202]Zhang DH, Cohn L, Ray P, Bottomly K, Ray A.1997. Transcription factor GATA-3 is differentially expressed in murine Thl and Th2 cells and controls Th2-specific expression of the interleukin-5 gene[J]. J Biol Chem,272: 21597-21603.
    [203]Usui T, Preiss JC, Kanno Y, et al. T-bet regulates Thl responses through essential effects on GATA-3 function rather than on IFNG gene acetylation and transcription[J]. J Exp Med,2006,203:755-766.
    [204]Pai SY, Truitt ML, Ho IC, et al. GATA-3 deficiency abrogates the development and maintenance of T helper type 2 cells[J]. Proc Natl Acad Sci,2004,101: 1993-1998.
    [205]Park H, Li Z, Yang XO, Chang SH, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17[J]. Nat Immunol. 2005,6:1133-1141.
    [206]Tim Sparwasser, Lothar Hultner, Eva Sophie Koch, et al. Immunostimulatory CpG-Oligodeoxynucleotides Cause Extramedullary Murine Hemopoiesis[J]. The Journal of Immunology,1999,162:2368-2374.
    [207]Staber F G., D Metcalf. Cellular and molecular basis of the increased splenic hemopoiesis in mice treated with bacterial cell wall components[J]. Proc Natl Acad Sci,1980.77:4322-4325.
    [209]Justine T Tigno-Aranjuez, Ritika Jaini, Vincent K Tuohy, et al. Encephalitogenicity of Complete Freund's Adjuvant Relative to CpG Is Linked to Induction of Th17 Cells[J]. The Journal of Immunology,2009,183, 5654-5661.
    [210]Nikoopour E, Schwartz JA, Huszarik K, et al. Th17 polarized cells from nonobese diabetic mice following mycobacterial adjuvant immunotherapy delay type 1 diabetes[J]. J Immunol,2010,184(9):4779-4788.
    [211]Ramji DP, Foka P. CCAAT/enhancer-binding proteins:structure, function and regulation[J]. Biochem J,2002,365(Pt 3):561-575.
    [212]Dipak P, RAMJI, Pelagia FOKA. CCAAT/enhancer-binding proteins:structure, function and regulation[J]. J Biochem,2002,365:561-575.
    [213]Ruddy MJ, Wong GC, Liu XK, et al. Functional cooperation between interleukin-17 and tumor necrosis factor-alpha is mediated by CCAAT/enhancer-binding protein family members[J]. J Biol Chem,2004, 279(4):2559-2567.
    [214]Ashkar S, Weber GF, Panoutsakopoulou V, et al. Eta-1 (osteopontin):an early component of type-1 (cell-mediated) immunity[J]. Science,2000,287:860-864.
    [215]Renkl AC, Wussler J, Ahrens T, et al. Osteopontin functionally activates dendritic cells and induces their differentiation toward a Thl-polarizing phenotype[J]. Blood,2005,106:946-955.
    [216]Ehrchen JM, Roebrock K, Foell D, et al. Keratinocytes determine Thl immunity during early experimental leishmaniasis[J]. PLoS Pathog,2010,6(4): e1000871.
    [217]Renauld JC, Vink A, Louahed J, et al. Interleukin-9 is a major anti-apoptotic factor for thymic lymphomas[J]. Blood,1995,85:1300-1305.
    [218]Dugas B, Renauld JC, Pene J et al. Interleukin-9 potentiates the interleukin-4-induced immunoglobulin (IgG, IgM and IgE) production by normal human B lymphocytes[J]. Eur J Immunol 1993,23:1687-1692
    [219]Petit-Frere C, Dugas B, Braquet P, Mencia-Huerta JM. Interleukin-9 potentiates the interleukin-4-induced IgE and IgGl release from murine B lymphocytes[J]. Immunology,1993,79:146-151.
    [220]Veldhoen M, Uyttenhove C, Van Snick J, et al. Transforming growth factor-beta'reprograms'the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset[J]. Nat Immunol,2008,9:1341-1346.
    [221]Dardalhon V, Awasthi A, Kwon H, et al. IL-4 inhibits TGF-beta-induced Foxp3+T cells and, together with TGF-beta, generates IL-9+IL-10+Foxp3(-) effector T cells[J]. Nat Immunol 2008,9:1347-1355.
    [222]Pejman Soroosh, Taylor A Doherty. Th9 and allergic disease[J]. Immunology, 2009,127(4):450-458.
    [223]Leonid Gorelik, Stephanie Constant, Richard A Flavell. Mechanism of Transforming Growth Factor β-induced Inhibition of T Helper Type 1 Differentiation [J]. JEM,2002,195(11):1499-1505.
    [224]Leonid Gorelik, Patrick E Fields, Richard A Flavell. Cutting Edge:TGF-β Inhibits Th Type 2 Development Through Inhibition of GATA-3 Expression [J]. The Journal of Immunology,2000,165:4773-4777.
    [225]WanJun Chen, Wenwen Jin, Neil Hardegen, et al. Conversion of Peripheral CD4+CD25-Naive T Cells to CD4+CD25+Regulatory T Cells by TGF-β Induction of Transcription Factor Foxp3[J]. JEM,2003,198(12):1875-1886.
    [226]Paul R Mangan, Laurie E Harrington1, Darrell B O'Quinn, et al. Transforming growth factor-βinduces development of the TH17 lineage[J]. Nature,2006,441, 231-234.
    [227]Marc Veldhoen, Richard J Hocking, Christopher J Atkins, et al. TGFP in the Context of an Inflammatory Cytokine Milieu Supports De Novo Differentiation of IL-17-Producing T Cells[J]. Immunity,2006,24(2):179-189.
    [228]Oppmann B, Lesley R, Blom B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12[J]. Immunity,2000,13(5):715-25.
    [229]Leonid Gorelik, Richard A Flavell. Transforming growth factor-in T-cell biology[J]. Nature Reviews Immunology,2002,46-53.
    [230]Ming O Li, Yisong Y. Wan, Shomyseh Sanjabi, et al. TRANSFORMING GROWTH FACTOR-p REGULATION OF IMMUNE RESPONSES [J]. Annual Review of Immunology,2006,24:99-146.
    [231]Roberto Tinocol, Victor Alcalde, Yating Yang, et al. Cell-Intrinsic Transforming Growth Factor-β Signaling Mediates Virus-Specific CD8+T Cell Deletion and Viral Persistence In Vivo[J]. Immunity,2009,31(1):145-157.
    [232]Shomyseh Sanjabi, Munir M. Mosaheb, Richard A Flavell. Opposing Effects of TGF-β and IL-15 Cytokines Control the Number of Short-Lived Effector CD8+ T Cells[J]. Immunity,2009,31(1):131-144.
    [233]Mei-Ling Chen, Mikael J Pittet, Leonid Gorelik, et al. Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-P signals in vivo[J]. PNAS,2005,102(2):419-424.
    [234]Kazuhiko Nakamura, Atsushi Kitani, Warren Strober, et al. Cell Contact-Dependent Immunosuppression by Cd4+Cd25+Regulatory T Cells Is Mediated by Cell Surface-Bound Transforming Growth Factor β[J]. JEM,2001, 194 (5):629-644.
    [235]Erika Silva-Campaa, Lilian Flores-Mendozaa, Monica Resendiz, et al. Induction of T helper 3 regulatory cells by dendritic cells infected with porcine reproductive and respiratory syndrome virus[J]. Virology,2009,387(2): 373-379.
    [236]Charles F. Anderson, Rosalia Liral, Shaden Kamhawi, et al. IL-10 and TGF-β Control the Establishment of Persistent and Transmissible Infections Produced by Leishmania tropica in C57BL/6 Mice[J]. The Journal of Immunology,2008, 180:4090-4097.
    [237]Mutoloki S, Cooper GA, Marjara IS, et al. High gene expression of inflammatory markers and IL-17A correlates with severity of injection site reactions of Atlantic salmon vaccinated with oil-adjuvanted vaccines[J]. BMC Genomics,2010,11:336.
    [238]Sudipta Bhowmick, Tuhina Mazumdar, Nahid Ali. Vaccination Route That Induces Transforming Growth Factor β Production Fails To Elicit Protective Immunity against Leishmania donovani Infection[J]. Infection and Immunity, 2009,77(4):1514-1523.
    [239]Susumu Nakae, Aya Nambu, Katsuko Sudo, Yoichiro Iwakura Suppression of Immune Induction of Collagen-Induced Arthritis in IL-17-Deficient Mice[J]. The Journal of Immunology,2003,171:6173-6177.
    [240]Andriani C Pateral, Lesley Pesnicak, John Bertin, et al. Interleukin 17 Modulates the Immune Response to Vaccinia Virus Infection[J]. Virology,2002, 299(1):56-63.
    [241]PEARSON CM. Development of arthritis, periarthritis and periostitis in rats given adjuvants[J]. Proc Soc Exp Biol Med,1956,91(1):95-101.
    [242]Pearson CM, Wood FD. Passive transfer of adjuvant arthritis by lymph node or spleen cells[J]. J Exp Med,1964,120:547-560.
    [243]van Eden W, Thole JER, van der Zee R, et al. Cloning of the mycobacterial epitope recognised by T lymphocytes in adjuvant arthritis[J]. Nature,1988,331: 171-173.
    [244]Jolanda HM van Bilsen, Josee PA Wagenaar-Hilbers, Elmieke PJ Boot, et al. Searching for the Cartilage-associated Mimicry Epitope in Adjuvant Arthritis[J]. Autoimmunity,2002,35(3):201-210.
    [245]Mia Y, Zhang L, Hossain A, Zheng CL, et al. Dimethyl dioctadecyl ammonium bromide (DDA)-induced arthritisin rats:a model of experimental arthritis[J]. J Autoimmunity,2000,14:303-310.
    [246]Cannon GW, Woods ML, Glayton F, et al. Induction of arthritis in DA rats by incomplete Freund's adjuvant[J]. J Rheumatol,1993,20:7-11.
    [247]Susumu Nakae, Yoichiro Iwakura, Hajime Suto, et al. Phenotypic differences between Thl and Th17 cells and negative regulation of Thl cell differentiation by IL-17[J]. Journal of Leukocyte Biology,2007,81:1258-1268.
    [248]Asa Andersson, Seok-Chul Yang, Min Huang, et al. IL-7 Promotes CXCR3 Ligand-Dependent T Cell Antitumor Reactivity in Lung Cancer[J]. The Journal of ImmunologyJune,2009,182(11):6951-6958.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700