曲线曲面造型中的若干相关问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着产品设计和生产自动化程度的不断提高,许多产品在制作前要进行曲线与曲面的几何造型设计,例如船体的放样与设计,汽车车壳设计,飞机机翼、机身及机舱的设计,甚至刀架、刀片,鞋模和服装的设计都归结于曲线曲面造型的研究,这也是目前计算机辅助几何设计(CAGD)研究的核心内容.曲线曲面造型经历了参数样条方法、Coons曲面、Bezier曲线曲面和B样条方法.另外,利用插值、拟合、逼近、拼接等方法研究满足某种性质的曲线曲面在实际应用中也是非常重要的.本文研究了以Bezier曲线为测地线的可展曲面拼接,插值测地线的极小曲面逼近,过曲率线的参数曲面及可展曲面的构造,还研究了异度隐函数样条曲线曲面并将其应用于参数曲线的分段近似隐式化,给出了一种多层的3次样条拟插值格式,构造了一种简单有效的数值积分公式.主要工作包括:
     1.测地线是曲面上一类很重要的曲线.例如,制鞋工业中把皮革看成可展曲面,鞋面上的足背线相当于曲面上的测地线,服装业则以腰线为测地线.而在实际应用中,一片这样的曲面往往是不够用的,所以要考虑曲面的拼接问题.本文研究了以空间Bezier曲线为测地线的可展曲面的拼接问题,并给出了拼接条件.重点研究了以3次Bezier曲线为测地线的可展曲面的拼接,给出了其控制顶点所满足的关系方程.
     2.极小曲面具有很多重要的性质,在建筑设计、飞机制造、生物学、分子化学等领域都有重要应用.另外,在产品设计中,我们不仅希望曲面插值某些特征线,比如测地线,还希望消耗更少的材料.基于这一点,本文把测地线和极小曲面相结合,研究了插值测地线的极小曲面逼近问题.
     3.曲率线是曲面上另外一类很重要的曲线.曲面上的曲线,如果它在所有点的切方向都是主方向,则称为曲率线.我们利用Frenet标架表示曲面,推导出了曲线为所构造曲面上曲率线的充要条件,并引入了两个控制函数θ(s),λ(s)来控制曲面的形状,根据θ(s)的表达式将充要条件进行分类,给出了曲线既是曲率线又是测地线的条件.
     4.可展曲面和曲率线在几何设计和曲面分析中起着很重要的作用.本文给出了插值曲率线的可展曲面的构造方法,并且给出了曲面的具体表达形式.分析了可展曲面分别是柱面、锥面、切线面时的充要条件,并利用控制函数θ(s)控制曲面的形状.
     5.在曲线曲面造型中,隐式曲线曲面的应用是非常广泛的.我们通过添加辅助曲线曲面,提出了异度隐函数样条曲线曲面的方法,并对其插值性、凸性以及正则性进行了详细分析.在此基础上提出了一种简单有效的参数曲线分段近似隐式化的方法.
     6.在数值逼近的理论和应用研究中,拟插值是非常重要的.径向基拟插值和3次样条拟插值是常用的拟插值格式.本文提出了一种多层的一元3次样条拟插值格式,与LD,LR以及3次样条拟插值进行比较,有很好的逼近效果,并把这种格式应用于数值积分,构造了一种简单且有效的数值积分公式.
With the improvement of product design and production automation, many products need geometrical modeling design of curve and surface before fabricating. For example, loft and design of hull, design of car shell, design of airplane wing, body and cabin, even the design of knife rest, blade, mold, cloth all attribute to the research of curve and surface modeling, this is also the core content of Computer Aided Geometric Design (CAGD). Curve and surface modeling experience parametric spline, Coons surface, Bezeir curve and surface, B-spline, etc. In addition, by using interpolating, fitting, approximation, blending to study curve and surface which satisfy some condition is very importance in practical application. In this paper, we study the blending of developable surface which contains a Bezier curve as a geodesic, designing approximation minimal parametric surfaces with geodesies and the construction of parametric and developable surface through line of curvature. We also discuss functional spline curves and surfaces with different degree of smoothness and apply it to piecewise approximate implicitization of parametric curves, give a multi-level univariate quasi-interpolation scheme and construct an easy and valid integration formula. The main work is as follows:
     1. Geodesic is an important curve on a surface. For example, in shoe-making industry the leather is considered as developable surface, and the girth is the geodesic on the shoe surface. In garment-manufacture industry, the waist line is also the geodesic of the cloth. However, only one developable surface is not enough in practical application. So the G1connection of some developable surfaces should be considered. We study the G1connection of the developable surfaces containing G1abutting geodesics, and derive the corresponding conditions. We primarily study the condition of G1connection of two developable surfaces possessing cubic Bezier geodesies, and give the equations that the control points satisfy.
     2. Minimal surface has many important properties. It has lots of applications in architectural design, biology, molecular chemistry and so on. Moreover, in product design, we not. only hope the surfaces interpolate some characterizing curves, such as geodesies, but also hope to consume more less material. Based on these, we consider the problem of designing approximation minimal parametric surfaces with geodesies.
     3. Line of curvature ia another important characteristic curves on a surface. A curve on a surface is a line of curvature if its tangents are always in the direction of the principal curvature. We express the surface pencil by utilizing the Frenet frame and derive the necessary and sufficient condition for the given curve to be the line of curvature on the surface and introduce two control functions θ(s) and λ(s) to control the shape of the surface. Moreover, we classify the condition according to the expression of θ(s), and derive the condition when the given curve satisfy the line of curvature and the geodesic.
     4. Developable surface and line of curvature play an important role in geodesic design and surface analysis. We propose a new method to construct a developable surface possessing a given curve as the line of curvature of it, and give the concrete expression of the surface. We analyze the necessary and sufficient conditions when the resulting developable surface is cylinder, cone or tangent surface. The control function can control the shape of the resulting surface.
     5. Implicit curves and surfaces are extensively used in curve and surface modeling. By adding auxiliary curves and surfaces, the functional spline curves and surfaces with different degrees of smoothness are presented. We analyze the interpolation, convexity, and regularity in detail. Based on functional spline curves (with different degrees of smoothness), we propose an easy and valid method for implicitization.
     6. Quasi-interpolation is very important in the study of the approximation theory and applications. Radial Basis Function (RBF) and cubic spline quasi-interpolation are two common schemes. We propose a multi-level univariate quasi-interpolation scheme with better approximation than LD, LR and cubic spline quasi-interpolation. Moreover, we apply it to numerical integration and construct an easy and valid integration formula.
引文
[1]徐国良CAGD中的隐式曲线与曲面[J].数值计算与计算机应用,1997,18(2):114-124.
    [2]SEDERBERG T W, CHEN F. Implicitization using moving curves and sur-faces [C]//Computer Graphics Proceedings, Annual Conference Series.1995:301-308.
    [3]SEDERBERG T W, GOLDMAN R N, DU H. Implicitzation rational curves by the method of moving algebraic curves[J]. Journal of Symbolic Computation,1997,23(2-3):153-175.
    [4]SEDERBERG T W. Improperly parametrized rational curves [J]. Computer Aided Ge-ometric Design,1986,3(1):67-75.
    [5]COX D A, SEDERBERG T W, CHEN F. The moving line ideal basis of planar rational curves[J]. Computer Aided Geometric Design,1998,15(8):803-827.
    [6]VEHLO L, GOMES J. Approximate conversion from parametric to implicit surfaces [J]. Computer Graphics Forum,1996,15(5):327-337.
    [7]WANG R H, WU J M. Approximation implicitization bases on RBF networks and MQ quasi-interpolation[J]. Journal of Computational Mathematics,2007,25(1):97-103.
    [8]张晓磊.多元样条与分片代数簇计算中的若干研究[D].大连:大连理工大学,2008.
    [9]BAJAJ C L, CHEN J, XU G. Modeling with cubic A-patches [J]. ACM Transactions on Graphics,1995,14(2):103-133.
    [10]CHEN C, CHEN F, FENG Y Y. Blending quadric surfaces with piecewise algebraic surfaces [J]. Graphical Models,2001,63(4):212-227.
    [11]HARTMANN E. Blending of implicit surfaces with functional splines [J]. Computer-Aided Design,1990,22(10):500-506.
    [12]HARTMANN E. Implicit Gn-blending of vertices [J]. Computer Aided Geometric De-sign,2001,18(3):267-285.
    [13]LI J G, HOSCHEK J, HARTMANN E. Gn-1-function splines for interpolation and approximation of curves, surfaces and solids [J]. Computer Aided Geometric Design, 1990.7(1/4):209-220.
    [14]PALUSZNY M, PATTERSON R R. A family of tangent continuous cubic algebraic splines [J]. ACM Transactions on Graphics,1993,12(3):209-232.
    [15]FENG Y, CHEN F, DENG J, et al. Constructing piecewise algebraic blending surfaces [M]//Geometric Computation, Lecture Notes Ser. Comput.,11, River Edge, NJ:World Sci. Publishing,2004:34-64.
    [16]WU T R, ZHOU Y S. On blending of several quadratic algebraic surfaces [J]. Computer Aided Geometric Design,2000,17(8):759-766.
    [17]ZHANG S, BAO H, WEI B. Cubic algebraic curves based on geometric constraints [J]. Computer Aided Geometric Design,2001,4(18):299-307.
    [18]ZHU C G, WANG R H, SHI X Q, et al. Functional splines with different degrees of smoothness and their applications [J]. Computer-Aided Design,2008,40(5):616-624.
    [19]张三元.隐式曲线、曲面的几何不变量及几何连续性[J].计算机学报,1999,22(7):774-776.
    [20]WANG R H, SHI X Q, LUO Z X, et al. Multivariate Spline Functions and Their Applications [M]. Beijing/New York:Science Press/Kluwer Academic Publishers,1994.
    [21]TROOPETTE EON J. A new approach towards free-form surfaces control[J]. Com-puter Aided Geometric Design,1995,12:395-416.
    [22]DO CARMO M. Differential Geometry of Curves and Surfaces[M]. Englewood Cliffs: Prentice Hall,1976.
    [23]KIMMEL R, AMIR A, BRUCKSTEIN A M. Finding shortest paths on sur-faces[C]//Presented in Curves and Surfaces. Chamonix, France, June 1993. In:Lau-rent, Le. Mehaute, Schumaker, Eds. Curves and Surfaces in Geometric Design,1994: 259-268.
    [24]KIMMEL R, AMIR. A, BRUCKSTEIN A M. Finding shortest paths on surfaces using level sets propagation[J]. IEEE Trans PAMI, 1995,17(1):635-640.
    [25]KIMMEL R, KIRYATI N. Finding shortest paths on surfaces by fast global approx-imation and precise local refinement [J]. International Journal of Pattern Recognition a.nd Artifical Intelligence,1996,10(6):643-656.
    [26]WANG G, TANG K, TAI C H. Parametric representation of a surface pencil with common spatial geodesic[J]. Computer-Aided Design,2004,36(5):447-459.
    [27]ZHAO H, WANG G. A new method for designing a developable surface utilizing the surface pencil through a given curve[J]. Progress in Nature Science,2008,18:105-110.
    [28]梅向明,黄敬之.微分几何[M].北京:高等教育出版社,2003.
    [29]WILLMORE T J. An Introduction to Differential Geometry[M]. London:Oxford Uni-versity Press,1959.
    [30]ALLIEZ P, COHEN-STEINER D, DEVILLERS O, LEVY B, DESBRUM M. Anisotropic polygonal remeshing[C]//Proceeding of ACM SIGGRAPH,2003, pp.485-493.
    [31]MAEKAWA T, WOLTER F-E, PATRIKALAKIS N M. Umbilics and lines of curvature for shape interrogation [J]. Computer Aided Geometric Design,1996,13(2):133-161.
    [32]PATRIKALAKIS N M, MAEKAWA T. Shape Interrogation for Computer Aided De-sign and Manufacturing[M]. Cambridge:Springer-Verlag,2002.
    [33]PETITJEAN S. A survey of methods for recovering quadrics in triangle meshes[J]. ACM Computing Surveys,2002,34(2):211-262.
    [34]GOLDMAN R. Curvature formulae for implicit curves and surfaces[J]. Computer Aided Geometric Design,2002,22(7):632-658.
    [35]BELYAEV A G, PASKO A A, KUNII T L. Ridges and ravines on implicit surfaces[J]. In:Computer Graphics International,1998, pp.530-535.
    [36]AUMANN G. Interpolation with developable Bezier patches[J]. Computer Aided Geo-metric Design,1991,8:409-420.
    [37]叶正麟,孟雅琴,刘克轩.可展Bezeir曲面[J].数值计算与计算机应用,1997,18(2):81-86.
    [38]SCHNEIDER M. Interpolation with developable strip-surfaces consisting of cylinders and cones[M].//Daehlen M, Lyche T, Schumaker L L. ed. Mathematical Methods for Curves and Surfaces Ⅱ. Nashville:Vanderbilt University Press,1998:437-444.
    [39]LANG J, ROSCHEL O. Developable (1,n)-Bezier surfaces[J]. Computer Aided Geo-metric Design,1992,9:291-298.
    [40]HOSCHEK J. Dual Bezier curves and surfaces[M]//Barnhill B E, Boehm W ed. Sur-faces in CAGD,1983,147-156.
    [41]BODDULURI R M C, RAVANI B. Design of developable surfaces using duality between plane and point geometries[J]. Computer-Aided Design,1993,25(10):621-632.
    [42]POTTMANN H, FARIN G. Developable rational Bezier and B-spline surfaces [J]. Com-puter Aided Geometric Design,1995,12(5):513-531.
    [43]STRUIK D J:Lectures on Classical Differential Geometry[M]. Cambridge:Addison-Wesley,1950.
    [44]BLISS G A. The geodesic lines on the anchor ring[J]. Annals of Mathematics,1902,4: 1-21.
    [45]MUNCHMEYER F C, HAW R. Applications of differential geometry to ship de-si gn[C]//Rogers D F, Nehring B C, and Kuo C, editors, Proceedings of Comuputer Applications in the Automation of Shipyard Operation and Ship Design IV, volume 9, pp.183-196, Annapolis, Maryland, USA, June 1982.
    [46]AZARIADIS P N, ASPRAGATHOS N A. Geodesic curvature preservation in surface flattening through constrained global optimization [J]. Computer-Aided Design,2001, 33:581-591.
    [47]AZARIADIS P N, ASPRAGATHOS N A. Design of plane developments of doubly curved surfaces[J]. Computer-Aided Design,1997,29(10):675-685.
    [48]SPIVAK M. A Comprehensive Introduction to Differential Geometry[M].2nd ed. Hous-ton:Publish or Perish,1979.
    [49]KASAP E, AKYILDIZ F T, ORBAY K. A generalization of surface family with com-mon spatial geodesic[J]. Applied Mathematics and Computation,2008,201:781-789.
    [50]FAUX I D, PRATT M J. Computational Geometry for Design and Manufacturing[M]. England:Ellis Horwood,1979.
    [51]NORLAN T J. Computer aided design of developable surfaces [J]. Marine Technology, 1971,8:233-242.
    [52]CHALFANT J S, MAEKAWA T. Design for manufacturing using B-spline developable surfaces[J]. Journal of Ship Production,1998,42:207-215.
    [53]CHU C H, SEQUIN C H. Developable Bezier patches:properties and design [J]. Computer-Aided Design,2002,34(7):511-527.
    [54]AUMANN G. A simple algorithm for designing developable Bezier surfaces[J]. Com-puter Aided Geometric Design,2003,20(8-9):601-619.
    [55]BO P, WANG W. Geodesic-controlled developable surfaces for modelling paper bend-ing[J]. Computer Graphics Forum,2007,26(3):365-374.
    [56]SANCHEZ-REYES J, DORADO R. Constrained design of polynomial surface from geodesic curves[J]. Computer-Aided Design,2008,40:49-55.
    [57]PALUSZNY M. Cubic polynomial patches through geodesics[J]. Computer-Aided De-sign,2008,40:56-61.
    [58]FARIN G. Curves and Surfaces for Computer Aided Geometric Design[M].2nd ed. New York:Academic Press,1990.
    [59]FARIN G. Discrete coons patches[J]. Computer Aided Geometric Design,1999,16: 691-700.
    [60]GREINER G. Variational design and fairing of spline surfaces[J]. Computer Graphics Forum,1994,13:143-154.
    [61]Moreton H C, Sequin C H. Functional minimization for fair surface design[J]. Computer Graphics,1992,26:167-176.
    [62]Consin C, Monterde J. Bezier surfaces of minimal area, in:Sloot P, Tan K, Dongarra J, Hoekstra A(Eds.), Proceeding of the Int. Conf. of Comuputational Science, ICCS'2002, Amsterdam, vol.2. Lecture Notes in Comput. Sci., vol.2330,2002, pp.72-81.
    [63]Polthier K, Rossman W. Discrete constant mean curvature and their index [J]. Journal fur die Reine und Angewandte Mathematik,2002,549:47-77.
    [64]Monterde J. The Plateau-Bezier problem, in:The processings of the X Conf. on Math-ematics of Surfaces, Leeds, UK, Lecture Notes in Comput. Sci., col.2768, Springer-verlag, Berlin/NewYork,2003, pp.262-273.
    [65]Arnal A, Kluch A, Monterde J. Triangular Bezier surfaces of minimal area, in: Processings of the Int. Workshop on Computer Graphics and Geometric Modeling, CG&GM'2003, Montreal, Lecture Notes in Comput. Sci., vol.2669, Springer-Verlag, Berlin/NewYork,2003, pp.366-375.
    [66]Monterde J. Bezier surfaces of minimal area:the Dirichlet approach [J]. Computer Aided Geometric Design,2004,21:117-136.
    [67]Xu G, Wang G Z. Quintic parametric polynomial minimal surfaces and their proper-ties[J]. Differential Geometry and its Applications,2004,28:697-704.
    [68]MUNCHMEYER F C. On surface imperfections[M]//Martin R R, ed., Mathematics of Surfaces II, Oxford:Oxford University Press,1987:459-474.
    [69]JESSOP H T, HARRIS F C. Photoelasticity, Principles and Methods[M]. New York, Dover Publications,1950.
    [70]MARTIN R R. Principal patches-a new class of surface patches based on differen-tial geometry[C]//Ten Hagen P J W ed., Eurographics'83, Proc.4th Ann. European Association for Computer Graphics Conference and Exhibition, Zagreb, Yugoslavia, North-Holland, Amsterdam,1983:47-55.
    [71]NUTBOURNE A W, MARTIN R R. Differential Geometry Applied to Curve and Surface Design Vol.1:Foundations [M]. Ellis Horwood, Chichester, UK,1988.
    [72]DUTTA D, MARTIN R R, PRATT M J. Cyclides in surface and solid modeling[J]. IEEE Computer Graphics and Applications,1993,13(1):53-59.
    [73]PRATT M J. Cyclides in computer aided geometric designfJ]. Computer Aided Geo-metric Design,1990,7(1-4):221-242.
    [74]FAROUKI R T. Graphical methods for surface differential geometry[M]//Martin R R, editor, The Mathematics of Surfaces II. Clarendon Press,1987:363-385.
    [75]FAROUKI R T. On integrating lines of curvature[J]. Comuputer Aided Geometric Design,1998,15(2):187-192.
    [76]BECK J M, FAROUKI R T, HINDS J K. Surface analysis methods[J]. IEEE Computer Graphics and Applications,1986,6(12):18-36.
    [77]HOSAKA M. Modeling of Curves and Surfaces in CAD/CAM[M]. Springer-Verlag, New York,1991.
    [78]ALOURDAS P G, HOTTEL G R, TUOHY S T. A design and interrogation system for modeling with rational splines, In:S.K. Chakrabarti et al., eds., Proc. Ninth Inter-national Symposium on OMAE, Volume 1, Part B, Houston, TX, ASME, New York, 1990, pp.555-565.
    [79]PORTEOUS I R. Ridges and umbilics of surfaces[M]//Martin R, editor, The Mathe-matics of Surfaces Ⅱ. Oxford University Press,1987:447-458.
    [80]PORTEOUS I R. The circles of a surface. In Martin R, editor, The Mathematics of Surfaces III, pp.135-143. Oxford University Press,1988.
    [81]GUTIERREZ C, SOTOMAYOR J. Lines of curvature, umbilic points and Caratheodory conjecture [J]. Resenhas IME-UPS,1998,3(3):291-322.
    [82]MAEKAWA T, PATRIKALAKIS N M. Interrogation of differential geometry properties for design and manufacture [J]. The Visual Computer,1994,10(4):216-237.
    [83]MAEKAWA T. Robust Computational Methods for Shape Interrogation[D]. Cam-bridge:Massachusetts Institute of Technology,1993.
    [84]CHE W J, PAUL J C. Lines of curvature and umbilical points for implicit surfaces[J]. Computer Aided Geometric Design,2007,24(7):395-409.
    [85]ZHANG X P, CHE W J, PAUL J C. Computing lines of curvature for implicit sur-faces[J]. Computer Aided Geometric Design,2009,26(9):923-940.
    [86]KALOGERAKIS E, NOWROUZEZAHRAI D, SIMARI P, SINGH K. Extracting lines of curvature from noisy point clouds[J]. Computer-Aided Design,2009,41(4):282-292.
    [87]SHARPE R J, THORNE R W. Numerical method for extracting an arc length parametrization from paremetric curves[J]. Computer-Aided Design,1982,14(2):79-81.
    [88]WALTER M, FOURNIER A. Approximate arc length parametrization[J]. Anais do IX SIBGRAPI,1996,143-150.
    [89]FAROUKI R T, SAKKALIS T. Real rational curves are not'unit speed'[J]. Computer Aided Geometric Design,1991,8(2):151-157.
    [90]LI C Y, WANG R H, ZHU C G. Design and G1 connection of developable surfaces through Bezier geodesies [J]. Applied Mathematics and Computation,2011,218:3199-3208.
    [91]LI C Y. WANG R H. ZHU C G. Parametric representation of a surface pencil with a common line of curvature [J]. Computer-Aided Design,2011,43:1110-1117.
    [92]FARIN G. Curves and Surfaces for Computer Aided Geometric Design:A Practical Guide [M].3th ed., San Diego:Academic Press,1997.
    [93]GARRITY T, WARREN J. Geometric continuity [J]. Computer Aided Geometric De-sign,1991,8(1):51-65.
    [94]WARREN J. Blending algebraic surfaces [J]. ACM Transactions on Graphics,1989, 8(4):263-278.
    [95]HARTMANN E, FENG Y Y. On the convexity of functional splines [J]. Computer Aided Geometric Design,1993,10(2):127-142.
    [96]吴宗敏,刘剑平.关于隐函数样条的凸性分析[J].数学的实践与认识,1993,2:41-47.
    [97]陈发来,有理曲线的近似隐式化表示[J].计算机学报,1998,21(9):855-859.
    [98]SEDERBERG T W, ZHENG J, KLIMASZEWSKI K, et al. Approximate implicitiza-tion using monoid curves and surfaces[J]. Graphical Model and Image Processing,1999, 61(4):177-198.
    [99]ZHU C G, WANG R H. Geometric interpolants with different degrees of smoothness [J]. International Journal of Computer Mathematics,2010,87(9):1907-1917.
    [100]ZHU C G, WANG R H. Numerical solution of Burgers'equation by cubic B-spline quasi-interpolation[J]. Applied Mathematics and Computation,2009,208:260-272.
    [101]LING L. A univariate Quasi-multiquadric interpolation with better smoothness[J]. Computers and Mathematics with Applications,2004,48:897-912.
    [102]HARDY R L. Theory and applications of the multiquadric-biharmonic method 20 years of discovery 1968-1988[J]. Computers and Mathematics with Applications,1990, 19(8-9):163-208.
    [103]FRANKE R. Scattered data interpolation:Tests of some methods[J]. Mathematics and Computation,1982,38:181-200.
    [104]BEATSON R K, POWELL M J D. Univariate multiquadric approximation:Quasi-interpolation to scattered data[J]. Constructive Approximation,1992,8(3):275-288.
    [105]WU Z M, SCHABACK R. Shape preserving properties and convergence of univari-ate multiquadric quasi-interpola.tion[J]. Acta Mathematical Applicatae Sinica(English Series),1994,10(4):441-446.
    [106]DE BOOR C. Splines as linear combinations of B-splines[M]//Lorentz G G et al. Approximation Theory Ⅱ. New-York:Academic Press,1976:1-47.
    [107]BARRERA D, IBANEZ M J, SABLONNIERE P. Near-best discrete quasi-interpolants on uniform and nonuniform partitions[C]//Cohen A, Merrien J L and Schumaker L L(eds), Curve and Surface Fitting. Saint-Malo 2002, Brentwood:Nash-boro Press,2003,31-40.
    [108]BARRERA D, IBANEZ M J, SABLONNIERE P, SBIBIH D. Near minimally normed spline quasi-interpolants on uniform partitions [J]. Journal of Computational and Ap-plied Mathematics,2005,181:211-233.
    [109]BARRERA D, IBANEZ M J, SABLONNIERE P, SBIBIH D. Near-best quasi-interpolants associted with H-splines on a three-direction mesh[J]. Journal of Com-putational and Applied Mathematics,2005,183:133-152.
    [110]DAGNINOA C, LAMBERTI P. On the construction of local quadratic spline quasi-interpolants on bounded rectangular domains [J]. Journal of Computer and Applied Mathematics,2008,221:367-375.
    [111]SABLONNIERE P. Univariate spline quasi-interpolatants and applications to numer-ical analysis [J]. Rendiconti del Seminario Universita e Politecnico di Torino,2005,63: 211-222.
    [112]SABLONNIERE P. Quadratic spline quasi-interpolatants on bounded domains of Rd, d=1,2,3[J]. Rendiconti del Seminario Universita e Politecnico di Torino,2003, 61:61-78.
    [113]SCHOENBERG I J. Contributions to the problem of approximation of equidistant data by analytic funtions[J]. Quarterly of Applied Mathematics,1946,4:112-141.
    [114]DE BOOR C. A Practical Guide to Splines[M]. Revised edition. Springer-Verlag, New-York,2001.
    [115]王仁宏.多元齿的结构与插值[J].数学学报,1975,18(2):91-106.
    [116]王仁宏,李崇君,朱春钢.计算几何教程[M].北京:科学出版社,2008.
    [117]DAVIS P J, RABONOWITZ P. Numerical Integration[M]. Blaisdell, Waltham,1967.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700