用户名: 密码: 验证码:
甘蓝(Brassica oleracea L.)耐镉性的品种差异及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业和农业的迅速发展,土壤中的重金属污染已经成为当今世界上主要的环境问题之一。Cd易在动、植物器官中积累且不易被分解,被认为是对人类最具毒性的污染物质之一。在中国,叶菜类蔬菜是仅次于谷类的人们重要的日常食物,且其具有较强的积累重金属的能力。目前有关作物Cd耐性、吸收与积累品种间差异的机理尚不完全清楚,从而限制了相关育种与栽培工作的开展。本研究在明确甘蓝(Brassica oleracea L.) Cd耐性和Cd含量品种间差异的基础上,利用水培实验,系统地研究Cd抑制甘蓝生长和Cd耐性、吸收与积累品种间差异的生理机制,并探索减少甘蓝Cd胁迫和吸收的化学调控技术。
     1、不同甘蓝品种对Cd胁迫的响应
     采用盆栽试验,比较研究了31个甘蓝品种对Cd浓度的反应。结果表明,100mg·kg-1Cd处理下,不同甘蓝品种的耐性及镉吸收积累能力具有显著的品种间差异。地上部干重的抑制率变幅为-15.4%~91.3%,镉对地上部的抑制作用大于根。根系Cd含量变幅为617~1789mg·kg-1,地上部的Cd含量变幅为47~183mg·kg-1,根系Cd含量显著高于地上部。初步筛选出10个对Cd耐性不同的甘蓝品种进行50μmo·L-1Cd的溶液处理,根据植株对Cd的耐性和从根部向地上部转运Cd的能力,筛选出春丰(Cd-耐性品种、低转运Cd)和绿丰(Cd-敏感品种、高转运Cd)2个品种进行甘蓝耐Cd机理的研究。
     2、镉胁迫对甘蓝生长和镉吸收的影响
     为了研究甘蓝的耐Cd机理,以2个Cd耐性不同的甘蓝品种(春丰,耐Cd品种;绿丰,Cd敏感品种)为试材,比较研究了不同Cd浓度(0、20、50、100μmol·L-1对甘蓝植株生长、Cd吸收和植株内Cd分布的影响。结果表明,20μmol·L-1的Cd对甘蓝根系伸长及植株干重产生显著的抑制作用,但春丰具有更强的耐Cd胁迫的能力。Cd主要分布在甘蓝的根系。春丰叶中的Cd含量显著低于绿丰,而根中Cd含量显著高于绿丰。绿丰和春丰吸收的Cd约70%-74%和66%-68%被转运到地上部。2个品种叶、茎和根系中的Cd大部分结合在细胞壁上,且春丰细胞壁上的Cd含量显著高于绿丰。与绿丰相比,春丰对Cd的耐性较强可能归因于春丰有更强的阻遏Cd向地上部运输和将Cd结合在细胞壁上的能力。
     3、镉胁迫对甘蓝光合特性和养分吸收的影响
     Cd敏感品种绿丰在低浓度Cd (20μmol·L-1)处理下表现出明显受抑,叶片净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Ti)、PSⅡ光化学效率(Fv/Fm)及PS II光合电子传递的量子效率(ΦDPS Ⅱ)显著降低;而Cd耐性品种春丰在高浓度Cd(50μmol·L-1和100μmol·L-1)处理下才受到显著影响,且相同的Cd水平下,春丰受抑程度显著低于绿丰。Cd胁迫降低了2品种叶绿素a和b含量,尤以对叶绿素a的的影响更甚,进而抑制了叶片光合能力。Cd胁迫显著抑制了2品种对Mn的吸收,促进了对Zn和S的吸收,抑制了Zn和S(绿丰)从根系向地上部的转运,且绿丰受抑幅度更大。此外,Cd处理还显著抑制了绿丰对Fe、Mg的吸收,降低了其叶片中Fe、Mg的含量,而对春丰无显著影响。Cd促进了春丰对P的吸收,而绿丰正相反。因此,与耐性品种春丰相比,Cd胁迫下敏感品种绿丰叶片中Mn、Fe、 Mg、Zn、Ca和P的含量显著降低,是影响其叶片光合作用,进而抑制植株生长的重要生理原因。
     4、镉胁迫对甘蓝膜脂过氧化及抗氧化酶系统的影响
     过量Cd会诱导植物体内活性氧(ROS)的产生,但植物体内的抗氧化防卫系统能够在一定范围内清除ROS。耐性品种春丰和敏感品种绿丰分别在Cd处理后第4d和2d,植株内的MDA含量没有受到显著影响,表明抗氧化酶系统在清除ROS中起了重要作用,其中主要是SOD和POD活性显著升高。除春丰叶片中GR活性持续增强外,2品种叶片和根系中SOD、POD、CAT、APX和GR活性随Cd处理时间的延长均呈先升后降的趋势,而MDA含量逐步增加,表明ROS的产生已经超过了防御系统的清除能力,产生了膜脂过氧化。与春丰相比,绿丰体内抗氧化酶活性短时间内急剧升高而又显著下降,至Cd处理第10d,各酶活性均显著低于春丰,而MDA含量显著高于春丰,说明绿丰受到了更大的氧化胁迫。可以认为,Cd处理诱导了ROS的产生,造成了膜脂过氧化,这是Cd伤害甘蓝植株的重要机制之一。抗氧化能力的不同,能部分解释春丰和绿丰对Cd的耐性差异。
     5、非蛋白巯基和有机酸在甘蓝耐镉性中的作用
     与对照相比,Cd处理显著增加了2个甘蓝品种叶片和根系中非蛋白巯基(NPT)、植物螯合肽(PCs)、柠檬酸和脯氨酸的含量,且耐Cd品种春丰增加的幅度显著高于敏感品种绿丰。与绿丰相比,春丰对Cd的耐性较强也许归因于其金属配位体,如PCs和柠檬酸的含量较高及渗透调节能力较强。然而,PCs和柠檬酸对解Cd毒的贡献也许小于细胞壁对Cd的固定(结合第三章的结果)。
     6、根系细胞壁在甘蓝耐镉性中的作用
     先前的研究已明确,根系细胞壁在甘蓝抗Cd胁迫中起重要作用。为了进一步研究甘蓝耐Cd机理,我们对2品种根系细胞壁成分进行了分析。结果表明:Cd胁迫显著增加了敏感品种绿丰细胞壁中果胶、半纤维素I和半纤维素II的含量及耐Cd品种春丰细胞壁中果胶和半纤维素II的含量。与绿丰相比,春丰细胞壁多糖含量增幅较小。Cd处理下,春丰果胶、半纤维素I和半纤维素II中糖醛酸的含量及绿丰果胶和半纤维素II中糖醛酸的含量均显著增加,而绿丰半纤维素I中糖醛酸的含量没有明显的变化。春丰糖醛酸含量显著高于绿丰,说明糖醛酸在甘蓝耐Cd性中起重要作用。2品种细胞壁各成分中的Cd含量以果胶中最高,它可能是Cd‘的主要结合位点。耐性品种春丰果胶中的Cd含量显著高于敏感品种绿丰,其糖醛酸残基与Cd的结合,可能是春丰耐Cd毒害的一个重要机制。
     7、外源一氧化氮供体硝普钠(SNP)对甘蓝镉毒害的缓解效应
     以Cd-敏感品种(绿丰)和Cd-耐性品种(春丰)为试料,研究了100μmol·L-1硝普纳(SNP, NO供体)对种子萌发、幼苗生长和生理的影响。结果表明:20-400μmol·L-1Cd单独处理抑制了2品种种子的萌发,50μmol·L-1Cd降低了植株的干物质重和叶绿素含量,绿丰受Cd的毒害更为明显。外源SNP同时处理下,Cd对甘蓝生长的抑制得到恢复。SNP对Cd胁迫下甘蓝植株的保护作用表现在:(a)显著降低了植株对Cd的吸收,明显减少Cd在叶片和根系细胞器中的积累;(b)降低了被Cd诱导增加的根系细胞壁多糖和多糖中糖醛酸的含量;(c)增强抗氧化酶活性和抗氧化物质的含量,降低了丙二醛(MDA)和过氧化氢(H202)的含量,保护了膜系统的完整性;(d)Cd诱导的非蛋白巯基(NP-SH)的增加被进一步提高,然而PCs的含量略有下降,表明GSH在保护2品种植株抵抗Cd毒害中起重要作用;(e)促进了根系对营养物质的吸收,增加了营养元素在叶片中的分布。Cd诱导S含量的增加被进一步增强,推测S的增加可能与NP-SH的合成有关;(f) SNP同时处理减轻了Cd对甘蓝净光合速率(Pn)的抑制,可能部分缘于SNP对光合机构的保护(提高了叶绿素含量、Fv/Fm值和ΦPSⅡ,增强了PSI I的活性)。综上所述,SNP对Cd胁迫下甘蓝植株的保护可能源于植物体内复杂的信号转导,交叉调控的生理和分子机制。
The contamination of soils with heavy metals is becoming a major environmental concern with the rapid development of agriculture and industries throughout the world. Cadmium (Cd) is considered to be one of the most toxic pollutants for humans due to its longevity and accumulation in their organs. Due to its high mobility in the soil-plant system, Cd is readily taken up by the roots and transported to other parts of plants. Leafy vegetables are an important component of human diet after cereals in China. They have an ability to take up heavy metals from contaminated soils and transport these metals to the shoots, which may lead to a risk for the health of the people. However, there is little information about varietal difference in Cd tolerance, uptake and accumulation, and which has in some extent limited the developments of its related breeding and cultivation programs to prevent Cd accumulation in crops. The investigation was carried out to study the physiological mechanism of varietal difference in Cd-uptake, accumulation and tolerance of cabbage and detrimental effects of Cd on growth, based on the research of varietal variation of Cd tolerance and Cd concentration, by using four levels of Cd hydroponic experiments. Meanwhile, the possibility of reducing Cd uptake and accumulation in cabbage by application of chemical regulators was also studied in the investigation. The major results were summarized as follows:
     1. Response of different varieties of cabbage to cadmium stress
     Pot experiment was conduced to investigate the reaction of31cabbage varieties to Cd toxicity. The results showed that these varieties had significant difference in Cd tolerance, uptake and accumulation when plants grew in the soil contaminated100mg·kg-1Cd. Among the varieties, the inhibition percentage of shoots dry weight varied from-15.4%to91.3%. The detrimental effects of Cd on shoots growth exceeded on roots. The range of Cd concentration in roots was from617to1789mg·kg-1and in shoots from47to183mg·kg-1, which roots exceeded shoots. Based on pot experiment,10varieties screened preliminarily as Cd-tolerance and Cd-sensitivity respectively were planted in a solution with50μmo·L-1 Cd. According to plant tolerance to Cd and the capacity to transport Cd from the roots to the shoots, Chunfeng and lufeng were eventually chosen as the Cd resistant and low Cd transportion variety and the Cd sensitive and high Cd transportion variety, respectively, to investigate the Cd tolerance mechanisms in cabbage.
     2. Effects of Cd on growth and Cd uptake of cabbage seedlings
     In order to study possible Cd resistance mechanisms in cabbage, several parameters on metal uptake and distribution were compared between the variety Chunfeng (Cd-resistance) and Lufeng (Cd-sensitive).The results showed that low Cd (20μM) exposure for both varieties caused a sharp decline (P<0.05) in the root elongation and the dry weight of plant, with a much more severe responsein the Cd-sensitive varieties. Cd taken up by cabbage plant was mainly distributed in roots compared to shoots, and the variety Chunfeng contained significantly lower Cd concentrations in the leaves and higher Cd ones in roots than Lvfeng. About70-74%and66-68%of the Cd taken up by Lvfeng and Chunfeng, respectively, was transported to shoots. The majority of the Cd accumulated in the leaves, stems and roots of both varieties appeared to be bound on the cell walls. The higher Cd resistance in Chunfeng than in Lufeng may be attributed to higher capacity to limit Cd uptake into shoots and to complex Cd on cell walls.
     3. Effects of Cd on photosynthesis, chlorophyll fluorescence and nutrient uptake of cabbage seedlings
     Cadmium stress impacted photosynthesis and chlorophyll fluorescence of cabbage plants. Low Cd (20μM) exposure for the Cd-sensitive variety Lufeng caused a sharp decline (P<0.05) in the net photosynthetic rate (Pn), stomatal conductance (Gs), photochemical efficiency of PS Ⅱ (Fv/Fm) and quantum yield of electron flow through PS Ⅱ (OPS Ⅱ) compared to the control. However, these deteriorative effects for the Cd-tolerant variety Chunfeng could be found only at high Cd (50~100μM) levels. At same Cd level, the inhibitions of these parameters were more pronounced in Lufeng than in Chunfeng. Cd stress reduced the concentration of chlorophyll a and chlorophyll b, especially for chlorophyll b, which could be an important factor of photosynthesis inhibition. For these two varieties, Cd stress significantly inhibited the Mn uptake, promoted Zn and S uptake, restrained the transportion of Zn and S (for Lufeng) from roots to shoots, and the decreases of nutrient uptake in lufeng were more obvious than in Chunfeng. Moreover, Cd stress also significantly inhibited Liifeng on Fe and Mg uptake, reduced its Fe and Mg concentration in leaves, but not significant effect on Chunfeng. Cd stress promoted the P uptake by Chunfeng, but opposite results were observed in Lufeng. Therefore, physiologically, the decrease of Mn, Fe, Mg, Zn、Ca and P concentrations in leaves of Lufeng under Cd stress was the key reason for the restraint of leaf photosynthesis, and the decrease of plant growth.
     4. Effects of Cd on lipid peroxidation and activities of antioxidant capacity of cabbage seedlings
     Excess Cd can cause an increased formation of reactive oxygen species (ROS). However, plants have evolved antioxidantive defence systems to keep ROS under control. The concentration of MDA in Lufeng and Chunfeng plants had not been significantly affected2d and4d, respectively, after Cd treatments, suggesting the antioxidantive defence systems played an importance role, mainly SOD and POD activities significantly increased. Apart from GR activity in leaves of Chunfneg increasing, the SOD, POD, CAT, APX and GR in leaves and roots of two varieties all increased firstly and then decreased with extended Cd exposure of time, but the concentration of MDA significantly increased, which indicated that the increased formation of ROS had exceeded the capacity of antioxidantive defence systems to scavenge ROS, resulting in membrane lipid peroxidation. The activities of antioxidant enzymes in Lufeng plants rised sharply within a short time and then declined significantly compared to that in Chunfeng, to the10th day exposed to Cd, the enzymes all were significantly lower than that in Chunfeng, but the concentration of MDA markedly higher than in Chunfeng, indicating that Lufeng was subjected to a greater degree of oxidative stress. Taken together, Cd induces the formation of ROS, resulting in a lipid peroxidation, which was an important mechanism of Cd toxicity to cabbage plants. The difference of antioxidant capacity might partly explain the Cd resistance of Chunfeng and Lufeng.
     5. Role of non-protein thiols and organic acid in Cd tolerance of cabbage
     A hydroponic experiment was carried out to examine the role of non-protein thiols and organic acid in Cd tolerance of cabbage. The results showed that compared with the control groups, Cd treatment significantly increased concentrations of non-protein thiol, PCs, citric acids and proline in the leaves and roots of two varieties. The increases were more pronounced in Chunfeng than in Lufeng. Taken together, it is suggested the higher Cd resistance in Chunfeng than in Lvfeng may be attributed to metal binding ligands such as PCs and citric acid, and osmotic adjustment ability. However, the contributions of SH-PCs and citric acid to Cd detoxification might be smaller than that of the cell walls.
     6. Role of root cell wall in Cd tolerance of cabbage
     Previous research has showed that the cell wall of roots played a important role in cabbage resisting Cd toxicity. To further understand the Cd resistance mechanism in cabbage, changes in cell wall properties of roots under Cd treatments were examined. The results showed that Cd stress evidently increased the concentrations of pectin, hemicellulose I and hemicellulose II in the cell wall of Cd-sensitive variety Liifeng and pectin and hemicellulose II in that of Cd-resistant one Chunfeng. The increase was more pronounced in Lufeng than in Chunfeng. The concentration of the uronic acid in pectin, hemicellulose I and hemicellulose II in Chunfeng and in the pectin and hemicellulose II in Lufeng increased markedly under Cd treatments, but not vary much in hemicellulose I in Lufeng. Chunfeng contained significant higher the uronic acid content than Liifeng, which suggested an important role of the uronic acid in Cd tolerance in cabbage. In addition, among the cell wall polysaccharides in two varieties roots, the Cd content in pectin was the highest, suggesting the majority of the Cd accumulated in root cell walls was tightly bound to the pectin. The Cd concentration in pectin of the variety Chunfeng was significantly higher than that of the variety Lufeng. The results suggested the higher Cd resistance in Chunfeng than in Lvfeng may be attributed to Cd-bound on the uronic acid in pectin.
     7. Sodium nitroprusside (as nitric oxide donator) supplementation ameliorates cadmium-toxicity in cabbage
     A hydroponic experiment was performed using Cd-sensitive (var. Lufeng) and Cd-tolerant (var. Chunfeng) cabbage seedling to evaluate how different varieties responsed to Cd toxicity in the presence of sodium nitroprusside (SNP), a nitric oxide (NO) donor. Results showed that20-400μM Cd levels inhibited seed germination, and50μM Cd reduced the biomass and chlorophyll concent, with a much more severe response in the Cd-sensitive variety. Cd+SNP treatment restored the Cd-inhibited growth. Exogenous SNP dramatically alleviated Cd toxicity, mainly observed:(a) markedly reduced Cd uptake by plants, obviously diminished Cd accumulation in subcellular fraction of leaves and roots of two varieties,(b) restored the increase of Cd-induced polysaccharides and uronic acid in polysaccharides contents in cell walls of roots,(c) enhanced the activities of antioxidant enzymes and the concentration of antioxidant, whereas decreased the concentrations of malondialdehyde (MDA) and hydrogen peroxide (H2O2), and helped to maintain stability and integrity of membrane system.(d) elevated the increased NP-SH contents, whereas declined slightly in the PCs content, which suggested the GSH may play a important role in protecting cabbage plants from Cd toxicity.(e) promoted nutrients uptake and increased nutrient elements distribution in leavese, and upregulated Cd-induced increase in S content in both varieties, inferring S increment may be involved in NP-SH synthesis;(f) Exogenous SNP reduced the inhibition of Cd on net photosynthetic rate (P n), which might partly be attributed to the NO protection to photosynthetic apparatus such as increasing the chlorophyll content, Fv/Fm, OPS Ⅱ and PSI Ⅰ activity. Taken together, these data suggest that the protection of NO to cabbage seedling against Cd toxicity may be involved in complex signal transduction in plants and cross regulation of physiological and molecular mechanisms.
引文
1.陈怀满,郑春荣,周东美.土壤中化学物质的行为与环境质量,北京:科学出版社,2002
    2.陈怀满.土壤-植物系统中的重金属污染.北京:科学出版社,1996
    3.陈志良,仇荣亮,张景书,万云兵.重金属污染土壤的修复技术.工程与技术.2001,(4):17-19
    4.段昌群,王焕校。重金属对蚕豆的细胞遗传学毒理作用和对蚕豆根尖微核技术的探讨。植物学报,1995,37(1):14—24
    5.韩阳,李雪梅,朱延朱.环境污染与植物功能.2005,化学工业出版社
    6.江行玉,赵可夫.植物重金属伤害及其抗性机理.应用与环境生物学报,2001,7(1):92-99
    7.林君峰,高树芳,陈伟平等.蔬菜对土壤镉铜锌富集能力的研究.土壤与环境,2002,11(3):248-252
    8.刘传平,郑爱珍,田娜等.外源G S H对青菜和大白菜镉毒害的缓解作用.南京农业大学学报,2004,27(4):26~30
    9.刘威、束文圣,蓝崇等.宝山堇菜(Viola baoshanensis)一种新的镉超富集植物,科学通报,2003,48:2046-2049
    10.罗春玲,沈振国.植物对重金属的吸收和分布.植物学通报,2003,20(1):59-66
    11.莫文红,李懋学。镉离子对蚕豆根尖细胞分裂的影响。植物学通报,1992,9(3):30-34
    12.施积炎,陈英旭,林琦.根分泌物与微生物对污染土壤重金属活性的影响.中国环境科学,2004,24(3):316-319
    13.苏德纯,黄焕忠.油菜作为超积累植物修复镉污染土壤的潜力.中国环境科学,2002,22(1):48-51
    14.涂书新,孙锦荷,郭香芬,谷峰.植物根系分泌物与根际营养关系评述.土壤与环境,2000,9(1):64-67
    15.王松良,郑金贵.芸苔属蔬菜的Cd富集特性及其修复土壤Cd污染的潜力.福建农林大学学报(自然科学版),2004,33(1):94-99
    16.王松良.基于RAPD标记的芸苔属蔬菜茎叶镉累积特性与耐性分析.中国生态农业学报,2006,14(4):142-145
    17.王逸群,郑金贵,陈文列,陈莲云Hg2+、Cd2+污染对水稻叶肉细胞伤害的超微观察.福建农林大学学报(自然科学版).2004,33(4):410-413
    18.杨居荣,贺建群,黄翌.农作物镉耐性的种内和种间差异.I、种间差.应用生态学报,1994,5(2),192-196
    19.杨盛昌,吴绮.Cd对桐花树幼苗生长及某些生理特性的影响.海洋环境科学,2003,22(1):38—42
    20.张义贤.重金属对大麦(Hordeum vulgare)毒性的研究.环境科学学报,1997,17(2):199—204
    21.周青,张辉,黄晓华,陆敢超,梁婵娟,陆天虹,镧对镉胁迫下菜豆幼苗生长的影响,环境科学,2003,24(4):48-53
    22. Aebi H. Catalase in vitro. Methods in Enzymology,1984,105:121-126
    23. Ahsan N, Lee SH, Lee D-G, Lee H, Lee SW, Bahk JD, Lee B-H. Physiological and protein profiles alternation of germinating rice seedlings exposed to acute cadmium toxicity. C R Biol,2007,330: 735-746
    24. Ali NA, Bermal MP, Ater M. Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant Soil,2002,239:103-111
    25. Alia, Mohanty P, Matysik J. Effect of proline on the production of singlet oxygen. Amino Acids, 2001,21:195-200
    26. Allan D L, Jarrell W M. Proton and copper adsorption to maize and soybean root cell walls. Plant Physiol,1989,89:823-832
    27. Anotnoviics I, Bradshow AD, Turner RG. Heavy metal tolerance in plants. Adv Ecol Res,1971:7-1
    28. Antosiewicz DM, Sirko A, Sowinski P. Trace element transport in plants. In:Prasad MNV (Ed.), Trace elements as contaminants and nutrients. John Wiley and Sons, Inc., Hoboken NJ,2008, pp. 413-448
    29. Arakawa N, Tsutsumi K, Sanceda NG, Kurata T, Inagaki C. A rapid and sensitive method for the determination of ascorbic acid using 4,7-diphenyl-1,10-phenanthroline. Agric Bio Chem,1981, 45(5):1289-1290
    30. Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Gwozdz EA. The message of nitric oxide in cadmium challenged plants. Plant Sci,2011, doi:10.1016/j.plantsci.2011.03.019
    31. Arnon DI. Copper enzymes in isolated chloroplasts. Polyphenol-oxidase in Beta vulgaris. Plant Physiol,1949,24:1-15
    32. Arthur B, Crews H, Morgan C. Optimizing plant genetic strategies for minimizing environmental contamination in the food chain. Interna J Phytoremedi,2000,2(1):1-21
    33. Asada K. The water-eater cycle in chloroplasts:scavenging of active oxygens and dissipation of excess photons. Ann Rev Plant Physiol Plant Mol Biol,1999,50:601-639
    34. Bai H, Li QZ, Bai Y, et al. Effect of water cadmium pollution on primary growth of rice seedling. Journal of Jilin Agricultural University,2003,25(2):128-130
    35. Baker A.T.M. Metal tolerance. Neco phytol.1987,106(suppl.):93-111
    36. Baker AJM, Brooks RR.Terrestrial higher plants which hyperacumulate metallic elements-A review of their distribution, ecology and phytochemistry. Biorecovery.1989,1:81-126
    37. Bansal P, Sharma P, Dhinsda K. Impact of Pb2+ and Cd2+ on activities of hydrolytic enzymes in germinating pea seeds. Ann Agri-Bio Res,2001,6:113-122
    38. Baryla A, Carrier P, Franck F, Coulomb C, Sahut C, Havaux M. Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil:causes and consequences for photosynthesis and growth. Planta,2001,212:696-709
    39. Bates LS, Waldren RP, Tears ID. Rapid determination of free praline in water stress studies. Plant Soil,1973,39:205-207
    40. Baxter I, Tchieu J, Sussman MR, Boutry M, Palmgren MG, Gribskov M, Harper JF, Axelsen KB. Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiol,2003,132, 618-628
    41. Beligni MV, Lamattina L. Nitric oxide induces seed germination and de-etiolation, and inhibits hypocotyls elongation, three light-inducible responses in plants. Planta,2000,210:215-254
    42. Beligni MV, Lamattina L. Nitric oxide interferes with plant photo-oxidative stress by detoxifying reactive oxygen species. Plant Cell Environ,2002,25:737-748
    43. Belochi A, Kwan T, Gross P. Cloning and characterization of the OsNramp family from Oryza sativa, a new family of membrane proteins possibly implicated in the transport of metal ions. Plant Mol Biol,1997,33:1085-1092
    44. Berczi A, Moller IM. NADA-monodehydroascorbate oxidoreductase is one of the redox enzymes in spinach leaf plasma membranes. Plant Physiol,1998,116:1029-1036
    45. Bereczky Z, Wang HY, Schubert V, Ganal M, Bauer P. Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato. J Biol Chem,2003, 278:24697-24704
    46. Bernard C, Roosens N, Czernic P, Lebrun M, Verbruggen N. A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens. FEBS Letters,2004,569:140-148
    47. Boussama N, Quariti O, Ghorbal MH. Changes in growth and nitrogen assimilation in barley seedlings under cadmium stress. J Plant Nutr,1999,22:731-752
    48. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principal of protein-dye binding. Anal Biochem,1976,72:248-254
    49. Brune A, UrbachW, Dietz KJ. Compartmentation and transport of zinc in barley primary leaves as basic mechanism involved in zinc tolerance. Plant Cell Environ,1994,17:153-162
    50. Brunner I, Luster J, Gunthardt-Goerg MS, Frey B. Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Environ Pollut,2008,152:559-568
    51. Bunkelmann JR, Trelease RN. Ascorbate peroxidase:a prominent membrane protein in oilseed glyoxysomes. Plant Physiol,1996,110:589-598
    52. Cakmak I, Marschner H. Enhanced superoxide radical production in roots of zinc deficient plants. J Exp Bot,1988,39:1449-1460
    53. Callahan DL, Baker AJM, Kolev SD, Wedd AG. Metal ion ligands in hyperaccumulating plants. J Biol Inorg Chem,2006,11:2-12
    54. Campbell M, Dunn R, Ditterline R, et al.1991. Phytic acid represent 10 to 15% of total phosphorus in alfalfa root and crown. J Plant Nutr,1991,14:925-937
    55. Carpita NC, Gibeaut DM. Structural models of primary cell walls in flowering plants:consistency of molecular structure with the physical properties of the walls during growth. The Plant J,1993,3:1-30
    56. Casano LM, Gomez LD, Lascano HR, Gonzalez CA, Trippi VS. Inactivation and degradation of CuZn-SOD by active oxygen species in wheat chloroplasts exposed to photooxidative stress. Plant Cell Physiol,1997,38:433-440
    57. Cataldo DA, McFadden KM, Garland TR, Wildung RE. Organic constituents and complexation of nickel (Ⅱ), iron(Ⅲ), cadmium (Ⅱ), and plutonium(Ⅳ) in soybean xylem exudates. Plant Physiol, 1988,86:734-739
    58. Chai TY, Didierjean L, Burkard G, Genot G. Expression of agreen tissue -specific 11Kda proline-rich protein gene in bean in response to heavy metals. Plant Sci,1998,133:47-56
    59. Chardonnes AN, Tenbookom WM, Kuijper LDJ. Distribution of cadmium in leaves of cadmium tolerant and sensitive ecotypes of Silene vulgaris. Physiol Planta,1998,104:75-80
    60. Chen CT, Chen LM, Lin CC, Kao CH. Regulation of proline accumulation in detached rice leaves exposed to excess copper. Plant Sci,2001,160:283-290
    61. Chen F, Wang F, Sun H, Cai Y, Mao W. Zhang G, Vincze E, Wu F. Genotype-dependent effect of exogenous nitric oxide on Cd-induced changes in antioxidative metabolism, ultrastructure, and photosynthetic performance in barley seedlings (Hordeum vulgare). J Plant Growth Regul,2010, 29:394-408
    62. Chen WR, Feng Y, Chao YE. Genomic analysis and expression pattern of OsZIP1, OsZIP3,and OsZIP4 in two rice (Oryza sativa L.) genotypes with different zinc efficiency. Russ J Plant Physiol, 2008,55:400-409
    63. Cho UH and Seo NH. Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci,2005,168:113-120
    64. Chugh LK, Sawhney SK. Effect of cadmium on germination, amylases and rate of respiration of germinating pea seeds. Environ. Pollut,1996,92:1-5
    65. Chugh LK, Sawhney SK. Photosynthetic activities of Pisum sativum seedlings grown in presence of cadmium. Plant Physiol Biochem,1999,37:297-303
    66. Ci D, Jiang D, Dai T, Jing Q, Cao W. Effects of cadmium on plant growth and physiological traits in contrast wheat recombinant inbred lines differing in cadmium tolerance. Chemosphere,2009, 77:1620-1625
    67. Cieslinski G, Van Rees K, Szmigielska A, Krishnamurti G, Huang P. Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant Soil,1998,203:109-117
    68. Clemens S, Kim EJ, Neumann D, Schroeder JI. Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J,1999,18:3325-3333
    69. Clemens S. Toxic metal accumulation responses to exposure and mechanisms of tolerance in plants. Biochimie,2006,88:1707-1719
    70. Cobbett CS, Hussain D, Haydon MJ. Structural and functional relationships between type 1B heavy metal-transporting P-type ATPases in Arabidopsis. New Phytol,2003,159:315-321
    71. Cobbett CS. Phytochelatins and their roles in heavy metal detoxification. Plant Physiol,2000, 123:825-832
    72. Cohen CK, Fox TC, Garvin DE, Kochian LV. The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiol,1998,116:1063-1072
    73. Colangelo EP, Guerinot ML. Put the metal to the petal:metal uptake and transport throughout plants. Curr Opin Plant Biol,2006,9:322-330
    74. Cosgrove DJ. Growth of the plant cell wall. Nat Rev Mol Cell Biol,2005,6:850-861
    75. Cosio C, DeSantis L, Frey B, Diallo S, Keller C. Distribution of cadmium in leaves of Thlaspi caerulescens. J Exp Bot,2005,56:765-775
    76. Costa G, Morel JL. Cadmium uptake by Lupinus albus (L.):cadmium excretion, a possible mechanism of cadmium tolerance. J Plant Nutr,1993,16:1921-1929
    77. Costa G, Spitz E. Influence of cadmium on soluble carbohydrates, free amino acids, protein content of in vitro cultured Lupinus albus. Plant Sci,1997,128:131-140
    78. Crawford NM, Gao FQ. New insights into nitric oxide metabolism and regulatory functions. Trends Plant Sci.2005,10:195-200
    79. Curie C, Alonso JM, LeJean M, Ecker JR, Briat JF. Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem J,2000,347:749-755
    80. da Cunha KPV, do Nascimento CWA, de Mendonca Pimentel RM, Ferreira CP. Cellular localization of cadmium and structural changes in maize plants grown on a cadmium contaminated soil with and without liming. J Hazard Mater,2008,160:228-234
    81. Das P, Samantaray S, Rout GR. Studies on cadmium toxicity in plants:a review. Environ Pollut, 1997,98:29-36
    82. Dat J, Vandanabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F. Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci,2000,57:779-795
    83. Davis TA, Llanes F, Volesky B. Metal selectivity of Sargassum spp and their alginates in relation to their a-L-guluronic acid content and conformation. Environ Sci Technol,2003,37:261-267
    84. Davis TA, Volesky B, Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res,2003,37:4311-4330
    85. De Kenecht JA, Koeviets PLM, Verkleij JAC, Ernst WHO. Evidence against a role for phytochelatins in naturally selected increased cadmium tolerance in Silene Vulgaris (Moenech) Garcle. New Phytol,1992,122:681-688
    86. De Michele R, Vurro E, Rigo C, Costa A, Elviri L, Di Valentin M, Careri M, Zottini M, Sanita di Toppi L, Schiavo FL.Nitric oxide is involved in cadmium-induced programmed cell death in Arabidopsis suspension cultures. Plant Physiol,2009,150:217-228
    87. De Vos C, Vonk M, Vooijs R, Schat H. Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol,1992,98:853-858
    88. del Rio LA, Pastori GM, Sandalio JM, Hernandez JA. The active oxygen role of peroxisomes in senescence. Plant Physiol,1998,116:1195-1200
    89. Del Rio M., Font R., Fernandez-Martinez,J.; Dominguez,J.; de Haro, A. Field trials of Brassica carinata and Brassica juncea in polluted soils of the Guadiamar River area. Freenius Environ Bull, 2000,9:328-332
    90. Delledonne M, Zeier J, Marocco A, Lamb C. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci USA,2001,98:13454-13459
    91. Demiral T, Turkan I. Comparative lipid peroxidation, antioxidant defense systems and praline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot,2005,53:247-257
    92. Demmig-Adams B, Winter K, Kruger A. Photoinhibition and zeaxanthin formation in intact leaves. Plant Physiol,1987,84:218-220
    93. Deng X, Xia Y, Hu W, Zhang H, Shen Z. Cadmium-induced oxidative damage and protective effects of N-acetyl-L-cysteine against cadmium toxicity in Solanum nigrum L. J Hazard Mater,2010, 180:722-729
    94. Desikan R, Griffiths R, Hancock J, Neill S. A new role for and old enzyme:nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci USA,2002,99:16314-16318
    95. di Toppi LS, Gabbrielli R. Response to cadmium in higher plants. Environ Exp Bot,1999,41: 105-130
    96. Didierjean L, Frendo P, Nasser W, Genot G, Marivet J, Burkard G. Heavy metal-responsive genes in maize:Identification and comparison of their expression upon various forms of abiotic stress. Planta,1996,199:1-8
    97. Dietz, KJ, Baier M, Kramer,U. Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In:Prasad MNV, Hagemeyer J (eds.), Heavy Metal Stress in Plants:From Biomolecules to Ecosystems. Berlin:Springer-Verlag,1999, pp 73-97
    98. Douchiche O, Rihouey C, Schaumann A, Driouich A, Morvan C. Cadmium-induced alterations of the structural features of pectins in flax hypocotyl. Planta,2007,225:1301-1312
    99. Douchiche O, Soret-Morvan O, Chaibi W, Morvan C, Paynel F. Characteristics of cadmium tolerance in 'Hermes' flax seedlings:Contribution of cell walls. Chemosphere,2010,81:1430-1436
    100. Drager DB, Desbrosses-Fonrouge AG, Krach C, Chardonnens AN, Meyer RC, Saumitou-Laprade P, Kramer U. Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels. Plant J,2004,39:425-439
    101.Dronnet VM, Renard CMGC, Axelos MAV, Thibault JF. Heavy metals binding by pectins: selectivity, quantification and characterization. Carbohydr Polym,1996,30:253-263
    102. Dubois M, Gilles K A, Hamilton J K, Revers P A, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem.,1956,28:350-356
    103. Ebb S, Lau I, Ahner B, Kochian L. Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J & C. Presl). Planta,2002,214:635-640
    104. Eide D, Broderius M, Fet J, Guerinot ML. A novel iron-regulated metal transporter from plants indentified by functional expression in yeast. Proc Natl Acad Sci USA,1996,93:5624-5628
    105. Ekmekci Y, Tanyolac D, Ayhan B. Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. J Plant Physiol,2008,165:600-611
    106. Ernst WHO. Effects of heavy metals in plants at the cellular and organismic level. In:Schuurman G, Markert B, editors. Ecotoxicology. New York:John Wiley,1998, p.587-620
    107. Florijn PJ, Nelemans JA, VAN Beusichem ML. Cadmium uptake by lettuce varieties. Neth J Aagri Sci,1991,39:103-114
    108. Florijn PJ, Nelemans JA, Van Beusichem ML. The influence of the form of nitrogen nutrition on up take and distribution of cadmium in lettuce varieties. J Plant Nutr,1992,15:2405-2416
    109. Florijn PJ, VAN Beusichem ML. Uptake and distribution of cadmium in maizw inbred lines. Plant Soil,1993,150:25-32
    110. Galanbos J T. The reaction of carbazole with carbohydrate.I. Effect of borate and sulfamate on the carbazole color of sugars. Anal Biochem,1967,19:119-132
    111. Gallego SM, Benavides MP, Tomaro ML. Effect of cadmium ions on antioxidant defense system in sunflower cotyledons. Biol Plant,1999,42:49-55
    112. Gallego SM, Benavides MP, Tomaro ML. Effect of heavy metal ion excess on sunflower leaves: Evidence for involvement of oxidative stress. Plant Sci,1996,121:151-159
    113. Gauic H, Ghorbal MH, Meyer C. Effects of cadmium on activity of nitrate reductase and on other enzymes of the nitrate assimilation pathway in bean. Plant Physiol Bilchem,2000,38:629-638
    114. Ghnaya T, Nouairi I, Slama I, Messedi D, Grignon C, Abdelly C, Ghorbel MH. Cadmium effects on growth and mineral nutrition of two halophytes:Sesuvium portulacastrum and Mesembryanthemum crystallinum. J Plant Physiol,2005,162:1133-1140
    115. Giannopolitis CN, Ries SK. Superoxide dismutase.I. Occurrence in higher plants. Plant Physiol, 1977,59:309-314
    116. Gossett DR, Millhollon EP, Lucas MC. Antioxidant response to NaCl stress in salt tolerant and salt-sensitive cultivars of cotton. Crop Sci,1994,34:706-714
    117. Greger ME, Ogren E. Direct and indirect effects of Cd2+ on photosynthesis in sugar-beet (Beta-Vulgaris). Physiol Plantarum,1991,83:129-135
    118. Griffith OW. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem,1980,106:207-212
    119. Grill E, Loeffler S, Winnacker EL, Zenk MH. Phytochelatins, the heavy-metal-binding peptided of plants, are synthesized from glutathione by a specific y-glutamyl-cysteine dipeptidyl transpeptidase (phytochelatin synthase). Natl Acad SCi USA,1989,86:6838-6842
    120. Grill E, Winnacker EL, Zenk MH. Phytochelatins:the principal heavy-metal complexing peptides of higher plants. Science,1985,230:674-676
    121. Grill E, Winnacker EL. Phytochelatins. A class of heavy metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc Nall Acad Sci USA,1987,84:439-443
    122. Grill Z, Winnacker ZL, Zenk MH. Phytochelatims:the prin-Cipal heavy-metal compexing Peptides of higher Plants. Science,1985,230:674-676
    123. Guo WJ, Meetam M, Goldsbrough PB. Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol, 146:1697-1706
    124. Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, Oconnell MJ. Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomycespombe. Plant Cell,1999,11:1153-1163
    125. Haag-Kerwer A, Schafer HJ, Heiss S, Walter C, Rausch T. Cadmium exposure in Brassica junces causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. J Exp Bot, 1999,341:1827-1835
    126. Hall JL, Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot,2002, 53:1-11
    127. Hall JL, Williama LE. Transition metal transporters in plant. J Exp Bot,2003,54:2601-2613
    128. Hall JL. Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot,2002, 53:1-11
    129. Halliwell B, Gutteridge JMC. In:Free radicals in biology and medicine,3rd ed. Oxford:Clarendon Press; 2000
    130. Hammerschmidt R, Nuckles EM, Kuc J. Association of enhanced peroxidase activity with induced systemnic resistance of cucumber to collectotrchum lagenarium. Physiol Plant Pathol,1982, 20:73-82
    131. Hare PD, Cress WA. Metabolic implications of stress-induced praline accumulation in plants. Plant Growth Regul,1997,21:79-102
    132. Hart JJ, DiTomaso JM, Linscott DL, Kochian LV. Characterization of the transport and cellular compartmentation of paraquat in roots of intact maize seedlings. Pestic Biochem Physiol,1992, 43:212-222
    133. Haydon MJ, Cobbett CS. Transporters of ligands for essential metal ions in plants. New Phytol, 2007,174:499-506
    134. Hayens RJ. Ion exchange properties of roots and ionic interactions within the root apoplasm:Their role in ion accumulation by plants. Botanical Review,1980,46:75-99
    135. Heath RL, Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys,1968,125:189-198
    136. Hogan GD, Rauser WE. Role of copper binding, absorption and translocation in copper tolerance of Agrostis gigantean Roth. J Exp Bot,1981,32:27-36
    137. Hong Z, Lakkineni K, Zhang Z, Verma DPS. Removal of feedback inhibition of △1-pyrroline-5-carboxylate synthetase results in increased praline accumulation and protection of plants from osmotic stress. Plant Physiol,2000,122:1129-1136
    138. Horst WJ, Fecht-Christoffers M, Naumann A, Wissemeier AH, Maier P. Physiology of manganese toxicity and tolerance in Vigna unguiculata (L.) Walp. J Plant Nutr Soil Sci,1999,162:263-274
    139. Hsu YT, Kao CH. Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regul, 2004,42:227-238
    140. Hu KD, Hu LY, Li YH, Zhang FQ, Zhang H. Protective roles of nitric oxide on germination and antioxidant metabolism in wheat seeds under copper stress. Plant Growth Regul,2007,53:173-183
    141. Huang X, Rad U, Durner J. Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cells. Planta,2002,215:914-923
    142. Iiasegawa I, Emiko T, Michio S. Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP1). Plant and Soil,1997,196:277-281
    143. Ingle RA, Mugford ST, Rees JD, Campbell MM, Smith JAC. Constitutively high expression of the histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants. The Plant Cell Online,2005,17:2089
    144. Innocenti G, Pucciariello C, Gleuher ML, Hopkins J, de Stefano M, Delledonne M, Puppo A, Baudouin E, Frendo P. Glutathione synthesis is regulated by nitric oxide in Medicago truncatula roots. Planta,2007,225:1597-1602
    145. Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi s, Takahashi M, Nakanishi H, Mori S, Nishizawa NK. Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J,2006,45:335-346
    146. Jackson A P, Antonoviics I, Bradshow A D and Turner R G. Heavy metal tolerance in plants. Adv EcolRes,1971,7:1
    147. Jiang MY, Zhang JH. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol,2001,42:1265-1273
    148. Jimenez A, Hernandez JA, Pastori G, del Rio LA, Sevilla F. Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol,1998,118.
    149. Jones DL, Darah PR, Kochian LV. Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake. Plant Soil,1996,180:57-66
    150. Juregui MA, Reisenauer H. Calcium carbonate and manganese dioxide as regulators of available manganese and iron. Soil Science,1982,134:105
    151. Kabata-Pendias A, Pendias H. Trace Elements in Soils and Plants,2nd ed. CRC Press, Boca Raton, FL,1992, USA
    152. Kahle H. Prsponse of roots of trees to heavy metals. Environ Exp Bot,1993,33:99-119
    153. Kalavrouziotis IK, Kostakioti E, Koukoulakis PH, Papadopoulos AH, Leotsinidis M, Sakazli E. The impact of Cl× Cd interrelationship on planning wastewater reuse in cabbage. Water Air Soil Pollut, 2011,214:565-573
    154. Kartel MT, Kupchik LA, Veisov BK. Evaluation of pectin binding of heavy metal ions in aqueous solutions. Chemosphere,1999,38:2591-2596
    155. Kerkeb L, Kramer U. The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. Plant Physiol,2003,131:716-724
    156. Kim JM, Kim H, Kwon SB, Lee SY, Chung SC, Jeong DW, Min BM.Intracellular glutathione status regulates mouse bone marrow monocyte-derived macrophage differentiation and phagocytic activity. Biochem Biophy Res Commun.2004,325:101-108
    157. Kneer R, Zenk MH. Phytochelatins protect plant enzymes from heavy metal poisoning. Phytochemistry,1992,31:2663-2667
    158. Konno H, Nakashima S, Katoh K. Metal-tolerant Scopelophila cataractae moss accumulates copper in the cell wall pectin of protonemata under copper-enriched conditions. J Plant Physiol,2010, 167:358-364
    159. Konno H, Nakato T, Nakashima S, Katoh K. Lygodium japonicum fern accumulates copper in the cell wall pectin. J Exp Bot,2005,56:1923-1931
    160. Kopyra M, Gwozdz EA. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinns luteus. Plant Physiol Biochem,2003, 41:1011-1017
    161. Kramer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC. Free histidine as a metal chelator in plants that accumulate nickel. Nature,1996,379:635-638
    162. Krupa Z, Moniak M. The stage of leaf maturity implicates the response of the photosynthetic apparatus to cadmium toxicity. Plant Sci,1998,138:149-156
    163. Krupa Z. Cadmium against higher plant photosynthesis-a variety of effects and where do they possibly come from? Z Naturforsch,1999,54c:723-729
    164. Krzeslowska M. The cell wall in plant cell response to trace metals:polysaccharide remodeling and its role in defense strategy. Acta Physiol Plant,2011,33:35-51
    165. Kuo PC, Abe KY. Nitric oxide-associated regulation of hepatocyte glutathione synthesis is a guanylyl cyclase-independent event. Surgery,1996,120:309-314
    166. Kupper H, Setlik I, Spiller M, Kupper FC, Prasil. Heavy metal-induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation. J Phycol,2002,38:429-441
    167. Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G. Nitric oxide:the versatility of an extensive signal molecule. Ann Rev Plant Biol,2003,54:109-136
    168. Laspina NV, Groppa MD, Tomaro ML, Benavides MP. Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci,2005,169:323-330
    169. Lee J, Shim D, Song WY, Hwang I, Lee Y (2004). Arabidopsis metallothioneins 2a and 3 enhance resistance to cadmium when expressed in Vicia faba guard cells. Plant Mol Bio,2004,54:805-815
    170. Lee S, Kim YY, Lee Y, An G. Rice PIB-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiol,2007,145,831-842
    171. Lee S, Moon JS, Ko TS, Petros D, Goldsbrough PB, Korban SS. Overexpression of Arabidopsis Phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol. 2003,131:656
    172. Lee SH, Ahsan N, Lee KW, Kim DH, Lee DG, Kwak SS, Kwon SY, Kim TH, Lee BH. Simultaneous overexpression of both CuZn-superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J Plant Physiol,2007, 164:1626-1638
    173. Li Y, Dhankher OP, Carreira L, Lee D, Chen A, Schroeder JI, Balish RS, Meagher RB. Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol,2004,45:1787-1797
    174. Lima AIG, Pereira SIA, Figueira E, Caldeira GCN, Caldeira H. Cadmium detoxification in roots of Pisum salivum seedlings:relationship between toxicity levels, thiol pool alterations and growth. Environ Exp Bot,2006,55:149-162.
    175. Liu CP, Shen ZG, Li XD. Accumulation and detoxification of cadmium in Brassica pekinensis and B. chinensis. Biol Plantarum,2007,51:116-120
    176. Liu CP, Shen ZG, Li XD. Uptake of Cadmium by Different Cultivars of Brassica pekinens (Lour.) Rupr. and Brassica chinensis L. and Their Potential for Phytoremediation. Bull Environ Contam Toxicol,2006,76:732-739
    177. Liu XQ, Peng KJ, Wang AG, Lian CL, Shen ZG. Cadmium accumulation and distribution in populations of Phytolacca Americana L. and the role of transpiration. Chemosphere,2010, 78:1136-1141
    178. Liu YG, Wang X, Zeng GM, Qu D, Gu JJ, Zhou M, Chai LY. Cadmium-induced oxidative stress and response of the ascorbate-glutathione cycle in Bechmeria nivea (L.) Gaud. Chemosphere,2007, 69:99-107
    179. Loeffler S, Hochberger A, Grill E, Gekeler W, Winnacker EL, Zenk MH. Termination of the phytochelatin synthase reaction through sequestration of heavy metals by the reaction product. FEBS Lett,1989,258:42-46
    180. Lopez-Millan AF, Sagardoy R, Solanas M, Abadia A, Abadia J. Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ Exp Bot,2009,65:376-385
    181. Lou LQ, Shen ZG, Li XD. The copper tolerance mechanisms of Elsholtzia haichowensis, a plant from copper-enriched soils. Environ Exp Bot,2004,51:111-120
    182. Lu LL, Tian SK, Yang XE, Wang XC. Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii. J Exp Bot,2008,59:3203-3213
    183. Luna CM, Gonzalez CA, Trippi VS. Oxidative damage caused by an excess of copper in oat leaves. Plant Cell Physiol,1994,35:11
    184. Ma JF, Hiradates A, Malsumoto H. High aluminum resistance in buck-wheat Ⅱ. Oxalic acid detoxifies aluminum internally. Plant physiol,1998,117:753-759
    185. Macfie S M, Welbourn P M. The cell wall as a barrier to uptake of metal ions in the unicellular green alga Chlamydomonas reinhardtii (Chlorophyceae). Arch Environ Con Tox,2000,39:413-419
    186. Magdalena K. The cell wall in plant cell response to trace metals:polysaccharide remodeling and its role in defense strategy. Acta Physiol Plant,2011,33:35-51
    187. Mallick N, Mohn FH. Use of chlorophyll fluorescence in metal-stress research:a case study with green microalga Scenedesmus. Ecotoxicol Environ Safety,2003,55:64-69
    188. Marschner H, Romheld V. In vito measurement of root-induced PH changes at the soil-root interface: effect of plant spacies and nitrogen source. Z Pflanzenphisiol,1983,111:241-251
    189. Marschner H. Functions of mineral:macronutrients in Mineral Nutrition of Higher Plants (the second Edition) Londer:Marschner H E Academic Press FNC,1995,265-277
    190. Marschner H. Mineral nurtion of higher plants (zsd ed). Academic Perss. San Diego. CA, USA, 1995
    191. Mata CG and Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol,2001,126:1196-1204
    192. May MJ, Vernouxl T, Leaver C, Montagu MV, Inzd D. Glutathione homeostasis in plants: implications for environmental sensing and plant development. J Exp Bot,1998,49:649-667
    193. McCarthy I, Romero-Puertas MC, Palma JM, Sandalio LM, Corpas FI, Gomez M, Del Rio LA. Cadmium induces senescence symptoms in leaf peroxisomes of pea plants. Plant Cell Environ,2001, 24:1065-1073
    194. McGrath SP, Dunham SJ. Potential phytoextraction of zinc and cadmium from soils using hyperaccumulator plants. In:Proceedings International Seminar on Use Plants for Environmental Remediation. Kosaikaikan. Tokyo. Japan.1997,110-117
    195. McGrath SP, Zhao FJ. Phytoextraction of metals and metalloids from contaminated soils. Curr. Opin. Biotechnol,2003,14:277-282
    196. Mediavilla S, Santiago H, Escudero A. Stomatal and mesophyll limitations to photosynthesis in one evergreen and one deciduous Mediterranean oak species. Photosynthetica,2002,40:553-559
    197. Meharg A A, Macnair MR. Suppression of the high affinity phosphate uptake system:a mechanism of arsenate tolerance in Holcus Lanatus L. J Exp Bot,1992,43:529-524
    198. Mehary AA. The role of the plasmalemma in metal tolerance in angiosperms. Physiol Plant,1993, 88:191-198
    199. Mehta SK, Gaur JP. Heavy metal-induced praline accumulation and its role in ameliorating metal toxicity in Chlorella vulgaris. New Phytol,1999,143:253-259.
    200. Mench ME. Marlin A. Mobilization of Cd and other metals from two soils by root exudates of Zea Mays L., Nicotiana tabacum L Nicotiana urstica L. Plant and Soil,1991,132:187-196
    201.Mendoza-C6zatl DG, Butko E, Spring F, Torpey JW, Komives EA, Kehr J, Schroeder JI. Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-sidtance transport of cadmium and the effect of cadmium on iron translocation. Plant J,2008,54:249-259
    202. Mihoub A, Chaoui A, ElFerjani E. Biochemicalchangesassociatedwith cadmium and copper stress in germinating pea seeds (Pisum sativum L.). C R Biol,2005,328:33^41
    203. Milone MT, Sgherri C, Clijsters H. Antioxidative responses of wheat treated with realistic concentration of cadmium. Environ Exp Bot,2003,50:265-276
    204. Mittler R. Oxidative stree, antioxidants and stress tolerance. Trends Plant Sci,2002,7:405-410.
    205. Mittova V, Volokita M, Guy M, Tai M. Activities of SOD and the ascorbate-glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennelli. Physiol Plant,2000,110:42-51
    206. Mobin M, Khan N. Photosynthetic activity, pigment composition and antioxidative response of two mustard(Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol,2007,164:601-610
    207. Mobin M, Khan NA. Photosynthetic activity, pigment composition and antioxidative response of two mustard(Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. Plant physiol,2007,164:601-610
    208. Moellering D, Mcandrew J, Patel RP, Cornwell T, Lincoln T, Cao X, Messina JL, Forman HJ, Jo H, Darley-Usmar VM. Nitric oxide-dependent induction of glutathione synthesis through increased expression of g-glutamylcysteine synthetase. Arch Biochem Biophy,1998,358:74-82
    209. Montanini B, Blaudez B, Jeandroz S, Sanders D, Chalot M. Phylogenetic and functional analysis of the Cation Diffusion Facilitator (CDF) family:improved signature and prediction of substrate specificity. BMC Genomics,2007,8:107
    210. Montarges-Pelletier E, Chardot V, Echevarria G, Michot LJ, Bauer A, Morel JL. Identification of nickel chelators in three hyperaccumulating plants:an X-ray spectroscopic study. Phytochemistry, 2008,69:1695-1709
    211. Moral R, Navararro Pedreno I, Mataix J. Effects of cadmium on nutrient distribution, yield and growth of tomato grown in soilless culture, J.Plant Nutr,1994,17:675-682
    212. Moreau M, Lindermayr C, Durner J, Klessig DF. NO synthesis and signaling in plants-where do we stand? Physiol Plant,2010,138:372-383
    213. Moreno-Caselles J, Moral, R, Perez-Espinosa A, Perez-Murcia, MD. Cadmium accumulation and distribution in cucumber plant, J Plant Nutr,2000,23:243-250
    214. Moya JL, Ros R, Picazo I. Influence of cadmium and nickel on growth, net photosynthesis and carbohydrate distribution in rice plants. Photosynth Res,1993,36:75-80
    215. Murgia I, Tarantino D, Vannini C, Bracale M, Carravieri S, Soave C. Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to Paraquat-induced photooxidative stress and to nitric oxide-induced cell death. Plant J,2004,38:940-953
    216. Nakanishi H, Ogawa 1, Ishimaru Y, Mori S, Nishizawa NK. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2 +transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr,2006,52:464-469
    217. Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol,1981,22:867-880
    218. Neill S, Bright J, Desikan R, Hancock J, Harrison J, Wilson I. Nitric oxide evolution and perception. J Exp Bot,2008,59:25-35
    219. Neill SJ, Desilan R, Hancock JT. Hydrogen peroxide signaling. Curr Opin Plant Biol,2002, 5:388-395
    220. Neumann D, zur Nieden U, Lichtenberger O, Leopold I. How does Armeria maritime tolerate high heavy metal concentration? J Plant Physiol,1995,146:704-717
    221. Nishizono H, Ichikawa H, Suziki S, Ishii F. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense. Plant and Soil,1987,101:15-20
    222. Noctor G, Foyer CH. Ascorbate and glutathione:Keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol,1998,49:249-279
    223. Ortiz D, Ruscitti T, Mccue K, Ow DW. Transport of metal-binding peptides by HWMT1, affission yeast ABC-type vacuolar membrane Protein. J Biol Chem,1995,270:4721-4728
    224. Ortiz DF, Kreppel L, Speiser DM, Scheel G, Mo Donald G, Ow DW. Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO,1992, 11:3491-3499
    225. Padmaja K, Parsad DDK, Parsad ARK. Inhibition of chlorophyll synthesis in Phaseolus vulgaris L. seedling by cadmium acetate. Photosynthetica,1990,24:399-404
    226. Pagliano C, Raviolo M, Dalla Vecchia F, Gabbrielli R, Gonnelli C, Rascio N, Barbato R, La Rocca N. Evidence for PSI1 donor-side type photoinhibition induced by cadmium treatment of rice (Oryza sativa). J Photochem Photobiol B Biol,2006,84:70-78
    227. Panda SK, Chaudhury I, Khan MH. Heavy metals induce lipid peroxidation and affect antioxidants in wheat leaves. Biologia Plantarum,2003,46:289-294
    228. Pandey N., Sharma C.P., Effect of metal CO2+,Ni2+ and Cd2+ on growth and metabokism of cabbage. Plant Sci,2002,163:753-758
    229. Papoyan A, Kochian LV. Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiol,2004,136:3814-3823
    230. Pence NS, Larsen PB, Ebbs SD, Letham DLD, Lasat MM, Garvin DF, Eide D, Kochian LV. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci USA,2000,97:4956
    231. Peng K, Lou C, You W, Lian C, Li X, Shen Z. Manganese uptake and interactions with cadmium in the hyperaccumulator-Phytolacca Americana L.2008,154:674-681
    232. Peres da Rocha Oliveiros Marciano D, Toledo Ramos F, Neiva Alvim M, Ronaldo Magalhaes J, Giovanni Costa Franca M. Nitric oxide reduces the stress effects of aluminum on the process of germination and early root growth of rice. J Plant Nurt Soil Sci,2010,173:885-891
    233. Perez-Coll CS, Herkovits J, Fridman O, Daniel PD, Eramo JL. Metallothineins and cadmium uptake by the liver in Bufo arenarum. Environ Pollut,1997,97:311-315
    234. Persans MW, Yan X, Patnoe JM, Kramer U, Salt DE. Molecular dissection of the role of histidine in nickel hyperaccumulation in Thlaspi goesingense (Halacsy). Plant Physio,1999,121:1117-1126
    235. Pflugmacher S. Promotion of oxidative stress in the aquatic macrophyte Ceratophyllum demersum during biotransformation of the cyanobacterial toxin microcystin-LR. Aquat Toxicol,2004, 70:169-178
    236. Pichtel J, Bradway DJ. Conventional crops and organic amendments for Pb, Cd and Zn treatment at a severely contaminated site. Bioresource Technol,2008,99:1242-1251
    237. Pietrini F, Iannelli MA, Pasqualini S, Massacci A. Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. Plant Physiol,2003,133:829-837
    238. Pineros MA, Shaff JZ, Kochian LV. Development,characterization and application of a cadmium-selective microelectrode for the measurement of cadmium fluxes in roots of Thlaspi species and wheat. Plant Physiol,1998,116:1393-1401
    239. Pittman JK. Managing the manganese:molecular mechanisms of manganese transport and homeostasis. New Phytol,2005,167:733-742
    240. Pollard A, Wyn Jones RG. Enzyme activities in concentrated solutions of glycinebetaine and other solutes. Planta,1979,144:291-298
    241. Przymusinski R, Woz'ny A. The reactions of lupine (Lupinus luteus cultivar Ventus) roots on the presence of lead in the medium. Biochem Physiol Pflanzen,1985,180:309-318
    242. Pushnik JC, Miller GW. Iron regulation of chloroplast photosynthetic function:mediation of PSI development. J Plant Nutr,1989,12:407-421
    243. Quariti O, Baussama N, Zarrouk M, Cherif A, Ghorbal MH. Cadmium-and copper-induced changes in tomato membrane lipids. Phytochemistry,1997,45:1343-1350
    244. Rahoui S, Chaoui A, ElFerjani E. Differential sensitivity to cadmium in germinating seeds of three cultivars of faba bean (Viciafaba L.). Acta Physiol Plant,2008,30:451-456
    245. Ralph PJ, Burchett MD. Photosynthetic response of Halophila ovalis to heavy metal stress. Environ Pollut,1998,103:91-101
    246. Ramos I, Esteban E, Lucena JJ, Garate A. Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd-Mn interaction. Plant Sci 162:761-767Rauser WE (1990) Phytochelatins. Annu Rev Biochem,2002,59:61-86
    247. Rascio N, Dalla Vecchia F, Ferretti M, Merlo L, Ghisi R. Some effects of cadmium on maize plants. Arch Environ Contam Toxicol,1993,25:244-249
    248. Rascio N, Vecchia FD, Rocca NL, Barbato R, Pagliano C, Raviolo M, Gonnelli C, Gabbrielli R. Metal accumulation and damage in rice (cv. Vialone nano) seedlings exposed to cadmium. Environ Exp Bot,2008,62:267-278
    249. Rauser WE, Acker CA. Localization of cadmium in granules within differentiating and mature root. Cact J Bot,1987,65:643-646
    250. Rauser WE, Meuwly P. Retention of cadmium in roots of maize seedlings:role of complexation by phytochelatins and thiol peptides. Plant Physiol,1995,109:195-202
    251. Rauser WE. Phytochelatins and related peptides-structure, biosynthesis and function. Plant Physiol, 1995,109:1141-1149
    252. Rauser WE. Phytochelatins. Annu Rev Biochem,1990,59:61-86
    253. Rauser WE. Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin and metallothioneins. Cell Biochem Biophys,1999,32:19-48
    254. Reeves RD, Baker AJM. Metal-accumulating plants. In:Raskin I, Ensley BD (Eds) Phytoremediation of Toxic Metals:Using Plants to Clean up the Environment. John Wiley & Sons, New York,2000, p 193-229
    255. Rodriguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, G6mez M, del Rio LA, et al. Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ,2006,29:1523-1544
    256. Rogers EE, Eide DJ, Guerinot ML. Altered selectivity in an Arabidopsis metal transporter. Proc Natl Acad Sci USA,2000,97:12356-12360
    257. Romero-Puertas MC, McCarthy I, Sandalio LM, Palma JM, Corpas FJ, G6mez M, et al. Cadmium toxicity and oxidative metabolism of pea leaf peroxisomes. Free Rad Res,1999,31(Suppl):25-32
    258. Romero-puertas MC, Rodriguez-serrano M, Corpas FJ, G6mez M, Del Rio LA, Sandali LM. Cadmium-induced subcellular accumulation of O2 and H2O2 in pea leaves. Plant Cell Environ, 2004,27:1122-1134
    259. Rossi G, Figliolia A., Socciarelli S., et al. Capability of Brassica napus to accumulate cadmium, zinc and copper from soil. Acta Biotechnology,2002, (1-2):133-140
    260. Ryan P, Delhaize E, Jones D. Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol,2001,52:527-560
    261. Sakurai N. Cell wall functions in growth and development, a physical and a chemical point of view. Bot Mag,1991,104:235-251
    262. Salah, SA, Barrington SF. Effect of soil fertility and transpiration rate on young wheat plants (Triticum aestivum) Cd/Zn uptake and yield. Agr Water Manage,2006,82:177-192
    263. Salt DE, Prince RC, Baker AJM, Pikering U. Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ Sci Technol,1999, 33:713-717
    264. Salt DE, Prince RC, Baker AJM, Raskin I, Pickering IJ. Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Enciron Sci Technol,1999, 33:713-717
    265. Salt DE, Prince RC, Pickering U, Raskin I. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol,1995,109:1427-1433
    266. Salt DE, Prince RC, Pickering IJ. Chemical speciation of accumulated metals in plants:evidence from X-ray absorption spectroscopy. Microchem J,2002,71:255-259
    267. Salt DE, Rauser WE. Mg-ATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol,1995,107:1293-1301
    268. Sandalio LM, Dalurzo HC, Gomes M, Romero-Puertas MC, del Rio LA. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot,2001,52:2115-2126
    269. Sanita di Toppi L, Gabbrielli R. Response to cadmium in higher plants. Environ Exp Bot,1999, 41:105-130
    270. Sarvari Eva, Solti A, Basa B, Meszaros I, Levai L, Fodor F. Impact of moderate Fe excess under Cd stress on the photosynthetic performance of poplar (Populus jacquemontiana var. glauca cv. Kopeczkii). Plant Physiol Biochem,2011,49:499-505
    271. Schaedle M, Bassham JA. Chloroplast glutathione reductase. Plant Physiol,1977,59:1011-1012.
    272. Schat H, Llugany M, Vooijs R, Hartley-Whitaker J, Bleeker PM. The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J Exp Bot,2002,379:2381-92
    273. Schat H, Sharma SS, Vooijs R. Heavy metal-induced accumulation of free proline in a metal-tolerant and a non-tolerant ecotype of Silene vulgaris. Physiologia Plantarum,101:477-482
    274. Schutzendubel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A. Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol,2001,127(3):887-898
    275. Sedlak J, Lindsay RH. Estimation of total, protein-bound, and non-protein sulfhydryl groups on tissue by Ellman's reagent. Anal Biochem,1968,25:192-208
    276. Selvam A, Wong JWC. Cadmium uptake potential of Brassica napus cocropped with Brassica parachinensis and Zea Mays. J Hazard Mater,2009,167:170-178
    277. Sheoran IS, Singhal HR, Singh R. Effect of cadmium and nickel on photosynthesis and the enzymes of the photosynthetic carbon reduction cycle in pigeonpea (Cajanus cajan L.). Photosynth Res,1990, 23:345-351.
    278. Siedlecka A, Kurpa Z, Samuelsson G, Oequist G, Gardestroem P. Primary carbon metabolism in Phaseolus vulgaris plants under Cd(Ⅱ)/Fe interaction. Plant Physiol Biochem,1997,35:951-957.
    279. Siedlecka A, Kurpa Z. Cd/Fe interaction in higher plants-its consequences for the photosynthetic apparatus. Photosynthetica,1999,36:321-331
    280. Siedlecka A, Samuelsson G, Gardenstrom P, Kleczkowski LA, Krupa Z. The activatory model of plant response to moderate cadmium stress-relationship between carbonic anhydrase and Rubisco. In: Garab G, editor. Photosynthesis:mechanisms and effects. Dordrecht:Kluwer Academic Publishers; 1998,p.2677-2680
    281.Sigfridsson KGV, Bernat G, Mamedov F, Styring S. Molecular interference of Cd2+with photosystem Ⅱ. Biochim Biophys Acta,2004,1659:19-31
    282. Singh AK, Sharma L, Mallick N. Antioxidative role of nitric oxide on copper toxicity to a chlorophycean alga, Chlorella.2004, Ecotox Environl Safe,2004,59:223-227
    283. Singh HP, Batish DR, Kaur G, Arora K, Kohli RK. Nitric oxide (as sodium nitroprusside) supplementation ameliorates Cd toxicity in hydroponically grown wheat roots. Environ Exp Bot, 2008,63:158-167
    284. Smeets K, Ruytinx J, Semane B, Belleghem FV, Remans T, Sanden SV, Vangronsveld J, Cuypers A. Cadmium-induced transcriptional and enzymatic alterations related to oxidative stress. Environ Exp Bot,2008,63:1-8
    285. Somashekaraia BV, Padmaja K, Prasad ARK. Phytotoxicity of cadmium ions on germinating seedlings of mung bean(Phaseolus vulgaris) involvement of lipid peroxides in chlorophyll degradation. Physiol Plant,1992,85:85-89
    286. Sousa Al, Cacador I, Lilleba AI, Pardal MA. Heavy metal accumulation in Halimione portulacoides: Intra-and extra-cellular metal binding sites. Chemosphere,2008,70:850-857
    287. Stiborova M. Cd2+ ions affect the quaternary structure of ribulose-l-,5-bisphosphate carboxylase from barley leaves. Biochem Physiol Pflanzen,1988,183:371-378
    288. Stobart AK, Griffiths WT, Ameen-Bukhari I, Sherwood RP. The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Physiol Plant,1985,63:293-298
    289. Stohs SJ, Bagchi D. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med.1995, 18:321-336
    290. Stolt JP, Sneller FEC, Bryngelsson T, Lundborg T, Schat H. Phytochelatin and cadmium accumulation in wheat. Environ Exp Bot,2003,49:21-28
    291. Sun R, Zhou Q, Jin C. Cadmium accumulation in relation to organic acids in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. Plant Soil,2006,285:125-134
    292. Suresh K, Subramanyam C. Polyphenols are involved in copper binding to cell walls of Neurospora crassa. J Inorg Biochem.1998,69:209-215
    293.Tabuchi A, Matsumoto H. Changes in cell-wall properties of wheat (Triticum aestivum) roots during aluminum-induced growth inhibition. Physiol Plant,2001,112:353-358
    294. Taiz L. Plant cell expansion:regulation of cell wall mechanical properties. Ann Rev Plant Physiol, 1984,68:585-675
    295. Tausz M, Sircelj H, Grill D. The glutathione system as a stress marker in plant ecophysiology:is a stress-response concept valid? J Exp Bot,2004,55:1955-1962
    296. Tewari RK, Hahn EJ, Paek KY. Modulation of copper toxicity-induced oxidative damage by nitric oxide supply in the adventitious roots of Panax ginseng. Plant Cell Rep,2008,27:171-181
    297. Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci USA.2000,97:4991-4996
    298. Tian QY, Sun DH, Zhao MG, Zhang WH. Inhibition of nitric oxide synthase (NOS) underlies aluminum-induced inhibition of root elongation in Hibiscus moscheutos. New Phytol,2007, 174:322-331
    299. Tolra RP, Poschenrieder C, Barcelo J. Zinc hyperaccumulation in Thlaspi caerulescens. Ⅱ. Influence on organic acids. J Plant Nutr,1996,19:1541-1550
    300. TullioM, Pierandrei F, Salerno A. Tolerance to cadmium of Vesicular arbuscular mycorrhizae spores isolated from a cadmium-polluted and unpolluted soil. Biol Fertil Soils,2003,37:211-214
    301. Ueno D, Ma JF, Iwashita T, Zhao FJ, McGrath SP. Identification of the form of Cd in the leaves of a superior Cd accumulating ecotype of Thlaspi caerulescens using Cd-NMR. Plantna,2005, 221:928-936
    302. Uraguchi S, Kiyono M, Sakamoto T, Watanabe I, Kuno K. Contributions of apoplasmic cadmium accumulation, antioxidative enzymes and induction of phytochelatins in cadmium tolerance of the cadmium-accumulating cultivar of black oat(Avena strigosa Schreb.). Planta,2009a,230:267-276
    303. Uraguchi S, Mori S, Kuramata M, Kawasaki A, et al. Root-to-shoot Cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in rice.J Exp Bot,2009b, 60:2677-2688
    304. Van Der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JAC, Hooykaas PJJ. Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol,1999,119:1047-1055
    305. Van Le H, Kuraishi S, Sakurai N. Aluminum-induced rapid root inhibition and changes in cell-wall components of squash seedlings. Plant Physiol,1994,106:971-976
    306. Vazquez S, Goldsbrough P, Carpena RO. Assessing the relative contributions of phytochelatins and the cell wall to cadmium resistance in white lupin. Physiol Plantarum,2006,128:487-495
    307. Verbruggen N, Hermans C, Schat H. Molecular mechanisms of metal hyperaccumulation in plants. New Phytol,2009,181:759-776
    308. Verret F, Gravot A, Auroy P, Preveral S, Forestier C, Vavasseur A, Richaud P (2005). Heavy metal transport by AtHMA4 involves the N-terminal degenerated metal binding domain and the C-terminal His(11) stretch. FEBS Letters,2005,579:1515-1522
    309. Wagner GJ. Accumulation of cadmium in crop plants and its consequences to human health. Adv Agron,1993,51:173-212
    310. Wang J. Computer simulated evaluation of possible mechanisms for quenching heavy metal ion activity in plant vacuoles. Plant Physiol,1991,97:1154-1160
    311. Wang YS, Yang ZM. Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant Cell Physiol,2005,46:1915-1923
    312. Wendehenne D, Durner J, Klessig DF. Nitric oxide:a new player in plant signaling and defence responses. Curr Opin Plant Biol,2004,7:449-455
    313. Wendehenne D, Gould K, Lamotte O, Durner J, Vandelle E, Lecourieux D, Courtois C, Barnavon L, Bentejac M, Pugin A. NO signaling functions in the biotic and abiotic stress responses. BMC Plant Biol 2005,5(Suppl.1):S35, doi:10.1186/1471-2229-5-S1-S35
    314. Wojas S, Sklodowska A, Clemens S, Bal W, Kopera E, Antosiewicz DM. Overexpression of AtPCSI and CePCS1 in tobacco, Acta Physiologiae Plantarum,2005,27:99-100
    315. Wojcik N, Mazurkiewicz E, Marciniak M, Tukiendorf A. Glutathione localization and its role in Cd-tolerance of Arabidopsis thaliana. Acta Physiologiae Plantarum,2005,27:101-107
    316. Wong HL, Sakamoto T, Kawsaki T, Umemura K, Shimamoto K. Down-regulation of metallothionein, a reactive oxygen scavenger by the small GTPase OsRacl in rice. Plant Physiol, 2004,135:1447-1456
    317. Wu F, Qian Q, Zhang G Genotypic differences in effect of cadmium on growth parameters of barley during ontogenesis. Communi Soil Sci Plant Analysis,2003,34:2021-2034
    318. Wu F, Zhang G, Dominy P, Wu H, Bachir DML. Differences in yield components and kernel Cd accumulation in response to Cd toxicity in four barley genotypes. Chemosphere,2007,70:83-92
    319. Wu F, Zhang G, Dominy P. Four barley genotypes respond differently to cadmium:lipid peroxidation and activities of antioxidant capacity. Environ Exp Bot,2003,50:67-77
    320. Wu F, Zhang G. Genotypic differences in effect of Cd on growth and mineral concentrations in barley seedlings. Bull Environ Contam Toxicol,2002,69:219-227
    321. Wu FB, Dong J, Qian QQ, Zhang GP. Subcellular distribution and chemical form of Cd and Cd-Zn interaction in different barley genotypes. Chemosphere,2005,60:1437-1446
    322. Wu QT, Xu ZL, Ye H, J. W. C. Wong JWC. Chemical composition of root and stem saps in relation to cadmium resistance and accumulation in Brassica parachinensis. Pedosphere,2007,17:352-359
    323. Wycisk K, Kim EJ, Schroeder JI, Kramer U. Enhancing the first enzymatic step in the histidine biosynthesis pathway increases the free histidine pool and nickel tolerance in Arabidopsis thaliana. FEBS Lett,2004,578:128-134
    324. Xiao X, Feng Q, Ding Y, Zhang S, Jia H. The effect of Cd on ultrasturcture of wheat. Procedia Earth and Planetary Science,2009,1:1253-1257
    325. Xiong J, An L, Lu H, Zhu C. Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta,2009,230:755-765
    326. Xiong J, Fu G, Tao L, Zhu C. Roles of nitric oxide in alleviating heavy metal toxicity in plants. Arch Biochem Biophys,2010,497:13-20
    327. Xu J, Wang W, Yin H, Liu X, Sun H, Mi Q. Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress. Plant Soil,2010,326:321-330
    328. Xu ZQ, Zhou QX, Liu WT. Joint effects of cadmium and lead on seedlings of four Chinese cabbage cultivars in northeastern China. J Environ Sci,2009,21:1598-1606.
    329. Yang JL, Li YY, Zhang YJ, Zhang SS, Wu YR, Wu P, Zheng SJ. Cell wall polysaccharides are specifically involved in the exclusion of aluminium from the rice root apes. Physiol Plant,2008, 146:602-611
    330. Yang X, Feng Y, He Z, Stoffella PJ. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol,2005,18:339-353
    331. Yang X, Baligar VC, Martens DC, Clark RB. Influx, transport, and accumulation of cadmium in plant species grown at different Cd2+ activities. J Environ Scie Health Part B,1995,30:569-583
    332. Yang YY, Jung JY, Song WY, Suh HS Lee Y. Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism of tolerance. Plant Physiol, 2000,124:1019-1026
    333. Yin M.L.. Rufus L.C., Albert A.S., Jerry F.M. Genotypic variation in kernel cadmium concentration in sunflower germplasm under varying soil conditions. Crop Sci,1995,35:137-141
    334. Zhang FQ, Wang YS, Lou ZP, Dong JD. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedling(Kandelia candel and Bruguiera gymnorrhizd). Chemosphere,67:44-50
    335. Zhang FQ, Zhong HQ, Wang GP, Xu LL, Shen ZG. Cadmium-induced accumulation of hydrogen peroxide in the leaf apoplast of Phaseolus aureus and Vicia sativa and the roles of different antioxidant enzymes. J Hazard Mater,2009,168:76-84
    336. Zhang G, Fukami M, Sekimoto H. Genotypic differences in effects of cadmium on growth and nutrient compositions in wheat. J.Plant Nutr,2000,23:1337-1350
    337. Zhang LP, Mehta SK, Liu ZP, Yang ZM. Copper-induced praline synthesis is associated with nitric oxide generation in Chlamydomonas reinhardtii. Plant Cell Physiol,2008,49(3):411-419
    338. Zhao FJ, Jiang RF, Dunham SJ, McGrath SP. Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytol,2006,172:646-654
    339. Zhao FJ, McGrath SP, Crosland AR. Comparison of three wet digestion methods for the determination of plant sulphur by inductively coupled plasma atomic emission spectrometry (ICP-AES). Commun. Soil Sci Plant Analy,1994,25:407-418
    340. Zhao FJ, McGrath SP, Crosland, AR. Comparison of three wet digestion methods for the determination of plant sulphur by inductively coupled plasma atomic emission spectrometry (ICP-AES). Commun Soil Sci Plant Anal,1994,25:407-418
    341. Zhao FJ, Wang JR, Barker JHA, Schat H, Bleeker PM, McGrath SP. The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytol,2003,159:403-410
    342. Zheng C, Jiang D, Liu F, Dai T, Liu W, Jing Q, Cao W. Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity. Environ Exp Bot,2009,67:222-227
    343. Zheng S J, Lin X Y, Yang J L, Liu Q, Tang C X.. The kinetics of aluminum adsorption and desorption by root cell walls of an aluminum resistant (Triticum aestivum L.) cultivar. Plant and Soil,2004,261:85-90
    344. Zhou W, Qiu B. Effects of cadmium hyperaccumulation on physiological characteristics of Sedum alfredii Hance (Crassulaceae). Plant Sci,2005,169:737-745
    345. Zhu YL, Pilon-Smits EAH, Tarun AS, Weber SU, Jouanin L, Terry N. Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol,1999,121:1169-1177

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700