HOG信号途径和VeA调控系统对小麦赤霉病菌DON毒素合成的调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
赤霉病不仅影响小麦的安全生产,其病原禾谷镰刀菌(Fusarium graminearum)产生的真菌毒素严重威胁农产品质量安全。目前一些杀菌剂尽管能有效控制赤霉病,但反而会刺激镰刀菌产生更多的毒素。因此,在赤霉病持续防控上,开发既能防病又能抑制毒素的新型药剂显得尤为重要。前期研究初步表明,双组份组氨酸激酶信号途径(HOG信号途径)和VeA调控系统可能参与毒素的合成调控,为了更好的了解DON毒素合成的调控机制,本文系统的研究了小麦赤霉病菌HOG信号途径以及VeA调控系统中35个元件的生物学功能,研究发现:
     1)赤霉病菌HOG信号途径的反应调控元件FgRrg1不仅参与调控病菌毒素和色素的合成,而且控制病菌的致病性以及对逆境的适应性。FgRRG-1基因敲除突变体对氯化钠、氯化钾、山梨醇等渗透胁迫以及金属离子胁迫都高度敏感,对二甲酰亚胺类药剂扑海因和吡咯类杀菌剂适乐时表现高抗,同时突变体在麦穗上的致病性显著降低,DON毒素合成量减少。
     2)赤霉病菌的2C型丝氨酸/苏氨酸磷酸酶FgPtc3是HOG信号途径的负调控元件,FgPtc3不仅调控病菌毒素以及色素的合成,同时参与菌体生长发育过程以及多个代谢合成途径。PTC3基因缺失突变体生长缓慢,气生菌丝减少,产孢增加,细胞内甘油合成显著增加,脂肪体增多,对渗透以及细胞壁胁迫抗性增加,更重要的是,缺失突变体完全失去致病性,DON毒素合成显著降低,SAGE表达谱测定发现FgPtc3参与菌体多个代谢合成途径。FgPTC3基因能够恢复酵母PTc1突变体生长缺陷性,降低酵母体内Hog1磷酸化水平。并且研究发现FgPtc3具有PP2C磷酸酶活性,可以通过体外表达蛋白筛选该蛋白相应的活性抑制剂。
     3)赤霉病菌的酪氨酸磷酸酶FgPtp2与HOG信号途径没有明显的关联,但是该蛋白参与调控病菌的毒素合成以及多个生长代谢途径。FgPTP2基因敲除突变体生长非常缓慢,气生菌丝减少,产孢减少,但是对各种胁迫的敏感性没有发生改变,并且突变体致病性降低,DON毒素合成也降低,SAGE测定突变体基因组表达谱发现,FgPtp2参与调控多个代谢途径,能够调控菌体核糖体上相关蛋白的合成,从而影响菌体正常生长。
     4)赤霉病菌VeA调控系统中的FgVeA和FgVe1B在功能上有很多相似性,参与调控菌体的毒素合成以及多个生长代谢过程。FgVEA和FgVELB都与菌体生长发育密切相关,敲除突变体生长缓慢,气生菌丝减少,菌体表面疏水性降低。突变体产孢增加,对氯化钠,氯化钾等渗透胁迫,以及细胞壁胁迫抗性增加,对扑海因以及适乐时等杀菌剂敏感,并且菌体中甘油积累量也普遍高于野生型。FgVe1B与FgVeA都参与菌体的脂肪体,毒素,色素合成等多个次生代谢途径,并且控制病菌的致病性。赤霉病菌VeA调控系统中的LaeA同源基因不是菌体生长所必须的,基因的敲除除了对色素合成有微弱影响之外,对菌体的生长以及毒素的合成并没有影响。
     本文研究结果表明小麦赤霉病菌HOG信号途径的FgRrg1和FgPtc3以及VeA调控系统中的FgVeA和FgVe1B元件控制病菌毒素合成和病菌的致病性,可能成为潜在的杀菌剂新药靶。本研究结果为开发既能防病又能抑制毒素的新型药剂创制提供新线索。
Fusarium graminearum is the major causal agent of Fusarium head blight (FHB) on wheat, which causes yield loss and affects the quality of grains. The mycotoxins, such as deoxynivalenol (DON) and its derivatives produced by the fungus in infected grains, pose a serious threat to human and animal health. Despite the FHB can be effectively controlled by some fungicides, fungicides application may stimulate toxin production by the fungus. Therefore, the development of novel anti-mycotoxin and antifungal agents is urgently needed for effective management of FHB and mycotoxin contamination in cereals. Previous research has revealed the involvement of two-component histidine kinase signaling pathway (HOG signaling pathway) and VeA regulatory system in the regulation of DON biosynthesis, to get a better insight into the regulation mechanism of DON synthesis in F. graminearum, the biological functions of35genes involved in the HOG signaling pathway and VeA regulatory system were studied, results of our research showed that:
     1) The response regulator FgRrgl of F. graminearum in the HOG signaling pathway is involved in the regulation of DON and aurofusarin biosynthesis, playing important roles in pathogenicity and adaptation of fungi to a variety of environmental stresses. The FgRRG-1deletion mutant showed increased sensitivity to osmotic stress mediated by NaCl, KCl, sorbitol or glucose, and to metal cations Li+, Ca2+and Mg2+The mutant, however, was more resistant than the parent strain to dicarboximide and phenylpyrrole fungicides. Inoculation tests showed that the mutant exhibited decreased virulence on wheat heads, and produced a significantly low level of DON.
     2) The type2C protein phosphatases FgPtc3is the negative regulator of the HOG signaling pathway in F. graminearum. FgPtc3is involved in the regulation of DON and aurofusarin biosynthesis, and also plays important roles in regulating many development processes and secondary metabolisms. The FgPTC3deletion mutant exhibited reduced aerial hyphae formation and deoxynivalenol (DON) production, but increased production of conidia. The mutant showed increased resistance to osmotic stress and cell wall-damaging agents, and accumulated a higher basal level of glycerol than the wild-type progenitor. Ultrastructural and histochemical analyses showed that conidia of the mutant contained an unusually high number of large lipid droplets. Pathogencity assays showed that the mutant is unable to infect flowering wheat head. Serial analysis of gene expression in the deletion mutant revealed that FgPtc3is associated with various metabolic pathways. Additionally, the FgPTC3partially rescued the growth defect of a yeast PTC1deletion mutant under various stress conditions, and also reduced the level of phosphorylated Hogl. The FgPtc3has the PP2C phosphatase activity, which may help in exploitation of drug targets based on screening of the protein activity inhibitors.
     3) The tyrosine phosphatase FgPtp2is not associated with the HOG signaling pathway, but plays important roles in the regulation of DON biosynthesis and secondary metabolisms. The FgPTP2deletion mutant exhibited a significant decrease in mycelial growth and conidiation, but do not change the sensitivity to variety stresses. In addition, the deletion mutant was impaired dramatically in virulence and produced a low level of DON. Serial analysis of gene expression in the mutant revealed that FgPtp2is associated with various metabolic pathways, especially with the synthesis of ribosomal protein.
     4) The FgVeA and FgVelB in the VeA regulatory system have some common functions in regulation of DON biosynthesis, and various cellular processes. The FgVEA and FgVELB deletion mutant exhibited a reduction in aerial hyphae formation, hydrophobicity, and deoxynivalenol (DON) biosynthesis, but increased the conidial production. Sensitivity tests to various stresses showed that the mutants exhibited increased resistance to osmotic stress and cell wall-damaging agents, but increased sensitivity to iprodione and fludioxonil fungicides, and the mutants contained an unusually high number of large lipid droplets, which is in agreement with the observation that the mutant accumulated a higher basal level of glycerol than the wild-type progenitor. Both FgVeA and FgVe1B play a critical role in pathogenicity,in a variety of biological functions and secondary metabolisms. The LaeA homologous genes are not essential for mycelial growth in F. graminearum, the deletion of the genes caused minor influence in pigment synthesis, and have no effect on DON production.
     Results of the research indicated that the FgRrgl and FgPtc3in HOG signaling pathway, as well as FgVeA and FgVe1B in VeA regulatory system are involved in pathogenicity and DON biosynthesis, which may represent attractive antimicrobial targets for disease control purposes. The results aslo may help in exploitation of drug targets for the design of new anti-mycotoxin and antifungal agents.
引文
Alexander, N. J., McCormick, S. P. and Hohn, T. M. (1999) TR112, a trichothecene efflux pump from Fusarium sporotrichioides:gene isolation and expression in yeast. Mol Gen Genet, 261,977-984.
    Alexander, N. J., McCormick, S. P., Larson, T. M. and Jurgenson, J. E. (2004) Expression of Tri15 in Fusarium sporotrichioides. Curr Genet,45,157-162.
    Alexander, N. J., Proctor, R. H. and McCormick, S. P. (2009) Genes, gene clusters, and biosynthesis of trichothecenes and fumonisins in Fusarium. Toxin Rev,28,198-215.
    Arino, J., Casamayor, A. and Gonzalez, A. (2011) Type 2C protein phosphatases in fungi. Eukaryot Cell,10,21-33.
    Audenaert, K., Callewaert, E., Hofte, M., De Saeger, S. and Haesaert, G. (2010) Hydrogen peroxide induced by the fungicide prothioconazole triggers deoxynivalenol (DON) production by Fusarium graminearum. BMC Microbiol,10,112.
    Audic, S. and Claverie, J. M. (1997) The significance of digital gene expression profiles. Genome Res,7,986-995.
    Bai, G. H. and Shaner, G. (1994) Scab of Wheat-Prospects for Control. Plant Dis,78,760-766.
    Banno, S., Noguchi, R., Yamashita, K., Fukumori, F., Kimura, M., Yamaguchi, I., et al. (2007) Roles of putative His-to-Asp signaling modules HPT-1 and RRG-2, on viability and sensitivity to osmotic and oxidative stresses in Neurospora crassa. Curr Genet,51, 197-208.
    Bayram, O., Krappmann, S., Ni, M., Bok, J. W., Helmstaedt, K., Valerius, O., et al. (2008a) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science,320,1504-1506.
    Bayram, O., Krappmann, S., Seiler, S., Vogt, N. and Braus, G. H. (2008b) Neurospora crassa ve-1 affects asexual conidiation. Fungal Genet Biol,45,127-138.
    Binder, E. M., Tan, L. M., Chin, L. J., Handl, J. and Richard, J. (2007) Worldwide occurrence of mycotoxins in commodities, feeds and feed ingredients. Anim Feed Sci Tech,137, 265-282.
    Bok, J. W. and Keller, N. P. (2004) LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot Cell,3,527-535.
    Bok, J. W., Noordermeer, D., Kale, S. P. and Keller, N. P. (2006) Secondary metabolic gene cluster silencing in Aspergillus nidulans. Mol Microbiol,61,1636-1645.
    Boutigny, A. L., Atanasova-Penichon, V., Benet, M., Barreau, C. and Richard-Forget, F. (2010) Natural phenolic acids from wheat bran inhibit Fusarium culmorum trichothecene biosynthesis in vitro by repressing Tri gene expression. Eur J Plant Pathol,127,275-286.
    Boutigny, A. L., Barreau, C., Atanasova-Penichon, V., Verdal-Bonnin, M. N., Pinson-Gadais, L. and Richard-Forget, F. (2009) Ferulic acid, an efficient inhibitor of type B trichothecene biosynthesis and Tri gene expression in Fusarium liquid cultures. Mycol Res,113, 746-753.
    Brown, D. W., Butchko, R. A. and Proctor, R. H. (2006) Fusarium genomic resources:tools to limit crop diseases and mycotoxin contamination. Mycopathologia,162,191-199.
    Brown, D. W., McCormick, S. P., Alexander, N. J., Proctor, R. H. and Desjardins, A. E. (2002) Inactivation of a cytochrome P-450 is a determinant of trichothecene diversity in Fusarium species. Fungal Genet Biol,36,224-233.
    Butchko, R. A., Adams, T. H. and Keller, N. P. (1999) Aspergillus nidulans mutants defective in stc gene cluster regulation. Genetics,153,715-720.
    Calvo, A. M., Bok, J., Brooks, W. and Keller, N. P. (2004) veA is required for toxin and sclerotial production in Aspergillus parasiticus. Appl Environ Microb,70,4733-4739.
    Catlett, N. L., Yoder, O. C. and Turgeon, B. G. (2003) Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot Cell,2,1151-1161.
    Chang, C. and Stadler, R. (2001) Ethylene hormone receptor action in Arabidopsis. Bioessays,23, 619-627.
    Chen, Y. and Zhou, M. G. (2009) Characterization of Fusarium graminearum isolates resistant to both carbendazim and a new fungicide JS399-19. Phytopathology,99,441-446.
    Choi, Y. E. and Goodwin, S. B. (2011) MVE1, encoding the velvet gene product homolog in Mycosphaerella graminicola, is associated with aerial mycelium formation, melanin biosynthesis, hyphal swelling, and light signaling. Appl Environ Microbiol,11,942-953.
    Desjardins, A. E., Proctor, R. H., Bai, G. H., McCormick, S. P., Shaner, G., Buechley, G., et al. (1996) Reduced virulence of trichothecene-nonproducing mutants of Gibberella zeae in wheat field tests. Mol Plant Microbe In,9,775-781.
    Dixon, K. P., Xu, J. R., Smirnoff, N. and Talbot, N. J. (1999) Independent signaling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell,11,2045-2058.
    Dongo, A., Bataille-Simoneau, N., Campion, C., Guillemette, T., Hamon, B., Iacomi-Vasilescu, B., et al. (2009) The group III two-component histidine kinase of filamentous fungi is involved in the fungicidal activity of the bacterial Polyketide Ambruticin. Appl Environ Microb,75,127-134.
    Dreyer, J., Eichhorn, H., Friedlin, E., Kurnsteiner, H. and Kuck, U. (2007) A homologue of the Aspergillus velvet gene regulates both cephalosporin C biosynthesis and hyphal fragmentation in Acremonium chrysogenum. Appl Environ Microb,73,3412-3422.
    Dujon, B., Sherman, D., Fischer, G., Durrens, P., Casaregola, S., Lafontaine, I., et al. (2004) Genome evolution in yeasts. Nature,430,35-44.
    Duran, R. M., Cary, J. W. and Calvo, A. M. (2007) Production of cyclopiazonic acid, aflatrem, and aflatoxin by Aspergillus flavus is regulated by veA, a gene necessary for sclerotial formation. Appl Microbiol Biotechnol,73,1158-1168.
    Dyer, R. B., Plattner, R. D., Kendra, D. F. and Brown, D. W. (2005) Fusarium graminearum TR114 is required for high virulence and DON production on wheat but not for DON synthesis in vitro. JAgric Food Chem,53,9281-9287.
    Ehrlich, K. C. and Cotty, P. J. (2002) Variability in nitrogen regulation of aflatoxin production by Aspergillus flavus strains. Appl Microbiol Biotechnol,60,174-178.
    Eriksen, G. S., Pettersson, H. and Lundh, T. (2004) Comparative cytotoxicity of deoxynivalenol, nivalenol, their acetylated derivatives and de-epoxy metabolites. Food Chem Toxicol,42, 619-624.
    Flaherty, J. E., Pirttila, A. M., Bluhm, B. H. and Woloshuk, C. P. (2003) PAC1, a pH-regulatory gene from Fusarium verticillioides. Appl Environ Microb,69,5222-5227.
    Fujimura, M., Ochiai, N., Ichiishi, A., Usami, R., Horikoshi, K. and Yamaguchi, I. (2000) Fungicide resistance and osmotic stress sensitivity in os mutants of Neurospora crassa. Pestic Biochem Phys,67,125-133.
    Fujimura, M., Ochiai, N., Oshima, M., Motoyama, T., Ichiishi, A., Usami, R., et al. (2003) Putative homologs of SSK22 MAPKK kinase and PBS2 MAPK kinase of Saccharomyces cerevisiae encoded by os-4 and os-5 genes for osmotic sensitivity and fungicide resistance in Neurospora crassa. Biosci Biotech Bioch,67,186-191.
    Galchevagargova, Z., Derijard, B., Wu, I. H. and Davis, R. J. (1994) An osmosensing signal-transduction pathway in mammalian-cells. Science,265,806-808.
    Gardiner, D. M., Kazan, K. and Manners, J. M. (2009a) Novel genes of Fusarium graminearum that negatively regulate deoxynivalenol production and virulence. Mol Plant Microbe In, 22,1588-1600.
    Gardiner, D. M., Kazan, K. and Manners, J. M. (2009b) Nutrient profiling reveals potent inducers of trichothecene biosynthesis in Fusarium graminearum. Fungal Genet Biol,46,604-613.
    Gardiner, D. M., Osborne, S., Kazan, K. and Manners, J. M. (2009c) Low pH regulates the production of deoxynivalenol by Fusarium graminearum. Microbiology,155,3149-3156.
    Gonzalez, A., Ruiz, A., Serrano, R., Arino, J. and Casamayor, A. (2006) Transcriptional profiling of the protein phosphatase 2C family in yeast provides insights into the unique functional roles of ptcl. J Biol Chem,281,35057-35069.
    Haas, H. and Marzluf, G. A. (1995) NRE, the major nitrogen regulatory protein of Penicillium chrysogenum, binds specifically to elements in the intergenic promoter regions of nitrate assimilation and penicillin biosynthetic gene clusters. Curr Genet,28,177-183.
    Hoff, B., Kamerewerd, J., Sigl, C., Mitterbauer, R., Zadra, I., Kurnsteiner, H., et al. (2010) Two components of a velvet-like complex control hyphal morphogenesis, conidiophore development, and penicillin biosynthesis in Penicillium chrysogenum. Eukaryot Cell,9, 1236-1250.
    Hohmann, S. (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev,66,300-372.
    Hohn, T. M., Desjardins, A. E. and Mccormick, S. P. (1995) The Tri4 gene of Fusarium Sporotrichioides encodes a cytochrome-P450 monooxygenase involved in trichothecene biosynthesis. Mol Gen Genet,248,95-102.
    Hohn, T. M., Krishna, R. and Proctor, R. H. (1999) Characterization of a transcriptional activator controlling trichothecene toxin biosynthesis. Fungal Genet Biol,26,224-235.
    Hou, Z., Xue, C., Peng, Y., Katan, T., Kistler, H. C. and Xu, J. R. (2002) A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Mol Plant Microbe Interact,15,1119-1127.
    Huang, K. N. and Symington, L. S. (1995) Suppressors of a Saccharomyces-Cerevisiae Pkc1 mutation identify alleles of the phosphatase gene Ptcl and of a novel gene encoding a putative basic leucine-zipper protein. Genetics,141,1275-1285.
    Jansen, C, von Wettstein, D., Schafer, W., Kogel, K. H., Felk, A. and Maier, F. J. (2005) Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. Proc Natl Acad Sci USA,102,16892-16897.
    Jenczmionka, N. J., Maier, F. J., Losch, A. P. and Schafer, W. (2003) Mating, conidiation and pathogenicity of Fusarium graminearum, the main causal agent of the head-blight disease of wheat, are regulated by the MAP kinase gpmkl. Curr Genet,43,87-95.
    Jiang, J., Yun, Y., Fu, J., Shim, W. B. and Ma, Z. (2011) Involvement of a putative response regulator FgRrg-1 in osmotic stress response, fungicide resistance and virulence in Fusarium graminearum. Mol Plant Palhol,12,425-436.
    Jiang, L. H., Yang, J. R, Fan, F. Y., Zhang, D. J. and Wang, X. L. (2010) The Type 2C protein phosphatase FgPtc1p of the plant fungal pathogen Fusarium graminearum is involved in lithium toxicity and virulence. Mol Plant Pathol,11,277-282.
    Jiao, F., Kawakami, A. and Nakajima, T. (2008) Effects of different carbon sources on trichothecene production and Tri gene expression by Fusarium graminearum in liquid culture. FEMS Microbiol Lett,285,212-219.
    Jones, C. A., Greer-Phillips, S. E. and Borkovich, K. A. (2007) The response regulator RRG-1 functions upstream of a mitogen-activated protein kinase pathway impacting asexual development, female fertility, osmotic stress, and fungicide resistance in Neurospora crassa. Mol Biol Cell,18,2123-2136.
    Jongeneel, C. V., Iseli, C., Stevenson, B. J., Riggins, G. J., Lal, A., Mackay, A., et al. (2003) Comprehensive sampling of gene expression in human cell lines with massively parallel signature sequencing. Proc Natl Acad Sci U S A,100,4702-4705.
    Jurgenson, J. E., Bowden, R. L., Zeller, K. A., Leslie, J. F., Alexander, N. J. and Plattner, R. D. (2002) A genetic map of Gibberella zeae (Fusarium graminearum). Genetics,160, 1451-1460.
    Kachroo, A., He, Z. H., Patkar, R., Zhu, Q., Zhong, J. P., Li, D. B., et al. (2003) Induction of H2O2 in transgenic rice leads to cell death and enhanced resistance to both bacterial and fungal pathogens. Transgenic Res,12,577-586.
    Kale, S. P., Milde, L., Trapp, M. K., Frisvad, J. C., Keller, N. P. and Bok, J. W. (2008) Requirement of LaeA for secondary metabolism and sclerotial production in Aspergillus flavus. Fungal Genet Biol,45,1422-1429.
    Kang, Z. and Buchenauer, H. (2002) Studies on the infection process of Fusarium culmorum in wheat spikes:Degradation of host cell wall components and localization of trichothecene toxins in infected tissue. Eur J Plant Pathol,108,653-660.
    Kato, N., Brooks, W. and Calvo, A. M. (2003) The expression of sterigmatocystin and penicillin genes in Aspergillus nidulans is controlled by veA, a gene required for sexual development. Eukaryot Cell,2,1178-1186.
    Kim, H., Han, K., Kim, K.,Han, D., Jahng, K. and Chae, K. (2002) The veA gene activates sexual development in Aspergillus nidulans. Fungal Genet Biol,37,72-80.
    Kim, H. and Woloshuk, C. P. (2008) Role of AREA, a regulator of nitrogen metabolism, during colonization of maize kernels and fumonisin biosynthesis in Fusarium verticillioides. Fungal Genet Biol,45,947-953.
    Kim, J. E., Jin, J., Kim, H., Kim, J. C., Yun, S. H. and Lee, Y. W. (2006) G1P2, a putative transcription factor that regulates the aurofusarin biosynthetic gene cluster in Gibberella zeae. Appl Environ Microbiol,72,1645-1652.
    Kimura, M., Anzai, H. and Yamaguchi, I. (2001) Microbial toxins in plant-pathogen interactions: biosynthesis, resistance mechanisms, and significance.J Gen Appl Microbiol,47, 149-160.
    Kimura, M., Tokai, T, Takahashi-Ando, N., Ohsato, S. and Fujimura, M. (2007) Molecular and genetic studies of fusarium trichothecene biosynthesis:pathways, genes, and evolution. Biosci Biotechnol Biochem,71,2105-2123.
    Kojima, K., Takano, Y., Yoshimi, A., Tanaka, C., Kikuchi, T. and Okuno, T. (2004) Fungicide activity through activation of a fungal signalling pathway. Mol Microbiol,53,1785-1796.
    Krappmann, S., Bayram, O. and Braus, G. H. (2005) Deletion and allelic exchange of the Aspergillus fumigatus veA locus via a novel recyclable marker module. Eukaryot Cell,4, 1298-1307.
    Kuge, S., Toda, T., Iizuka, N. and Nomoto, A. (1998) Crml (Xpol) dependent nuclear export of the budding yeast transcription factor yAP-1 is sensitive to oxidative stress. Genes to Cells,3,521-532.
    Kumar, L., Breakspear, A., Kistler, C., Ma, L. J. and Xie, X. H. (2010) Systematic discovery of regulatory motifs in Fusarium graminearum by comparing four Fusarium genomes. Bmc Genomics,11.
    Lammers, T. and Lavi, S. (2007) Role of type 2C protein phosphatases in growth regulation and in cellular stress signaling. Crit Rev Biochem Mol,42,437-461.
    Lee, T., Han, Y. K., Kim, K. H., Yun, S. H. and Lee, Y. W. (2002a) Tr13 and Tri7 determine deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae. Appl Environ Microbiol,68,2148-2154.
    Li, S., Myung, K., Guse, D., Donkin, B., Proctor, R. H., Grayburn, W. S., et al. (2006) FvVEl regulates filamentous growth, the ratio of microconidia to macroconidia and cell wall formation in Fusarium verticillioides. Mol Microbiol,62,1418-1432.
    Liu, W., Leroux, P. and Fillinger, S. (2008) The HOG 1-like MAP kinase Sak1 of Botrytis cinerea is negatively regulated by the upstream histidine kinase Bosl and is not involved in dicarboximide-and phenylpyrrole-resistance. Fungal Genet Biol,45,1062-1074.
    Liu, W., Soulie, M. C., Perrino, C. and Fillinger, S. (2011) The osmosensing signal transduction pathway from Botrytis cinerea regulates cell wall integrity and MAP kinase pathways control melanin biosynthesis with influence of light. Fungal Genet Biol,48,377-387.
    Liu, X., Yin, Y. N., Wu, J. B., Jiang, J. H. and Ma, Z. H. (2010) Identification and characterization of carbendazim-resistant isolates of Gibberella zeae. Plant Dis,94,1137-1142.
    Livak, K. J. and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method. Methods,25,402-408.
    Lysoe, E., Pasquali, M., Breakspear, A. and Kistler, H. C. (2011) The transcription factor FgStuAp influences spore development, pathogenicity, and secondary metabolism in Fusarium graminearum. Mol Plant Microbe Interact,24,54-67.
    Maeda, T., Takekawa, M. and Saito, H. (1995) Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science,269,554-558.
    Maeda, T., Wurgler-Murphy, S. M. and Saito, H. (1994) A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature,369,242-245.
    Martin, J. E., Casqueiro, J., Kosalkova, K., Marcos, A. T. and Gutierrez, S. (1999) Penicillin and cephalosporin biosynthesis:Mechanism of carbon catabolite regulation of penicillin production. Anton Leeuw Int J G,75,21-31.
    Mattison, C. P., Spencer, S. S., Kresge, K. A., Lee, J. and Ota, I. M. (1999) Differential regulation of the cell wall integrity mitogen-activated protein kinase pathway in budding yeast by the protein tyrosine phosphatases Ptp2 and Ptp3. Mol Cell Biol,19,7651-7660.
    McCormick, S. P. and Alexander, N. J. (2002) Fusarium Tri8 encodes a trichothecene C-3 esterase. Appl Environ Microb,68,2959-2964.
    McCormick, S. P., Alexander, N. J., Trapp, S. E. and Hohn, T. M. (1999) Disruption of TRI101, the gene encoding trichothecene 3-O-acetyltransferase, from Fusarium sporotrichioides. Appl Environ Microbiol,65,5252-5256.
    McDonagh, A., Fedorova, N. D., Crabtree, J., Yu, Y., Kim, S., Chen, D., et al. (2008) Sub-telomere directed gene expression during initiation of invasive aspergillosis. Plos Pathog,4, e1000154.
    McMullen, M., Jones, R. and Gallenberg, D. (1997) Scab of wheat and barley:A re-emerging disease of devastating impact. Plant Dis,81,1340-1348.
    Mehrabi, R., Zwiers, L. H., de Waard, M. A. and Kema, G. H. (2006) MgHogl regulates dimorphism and pathogenicity in the fungal wheat pathogen Mycosphaerella graminicola. Mol Plant Microbe Interact,19,1262-1269.
    Merhej, J., Boutigny, A. L., Pinson-Gadais, L., Richard-Forget, F. and Barreau, C. (2010) Acidic pH as a determinant of TRI gene expression and trichothecene B biosynthesis in Fusarium graminearum. Food Addit Contam A,27,710-717.
    Merhej, J., Richard-Forget, F. and Barreau, C. (2011) The pH regulatory factor Padl regulates Tri gene expression and trichothecene production in Fusarium graminearum. Fungal Genet Biol,48,275-284.
    Mollapour, M. and Piper, P. W. (2006) Hoglp mitogen-activated protein kinase determines acetic acid resistance in Saccharomyces cerevisiae. FEMS Yeast Res,6,1274-1280.
    Moon, Y. and Pestka, J. J. (2003) Deoxynivalenol-induced mitogen-activated protein kinase phosphorylation and IL-6 expression in mice suppressed by fish oil. J Nutr Biochem,14, 717-726.
    Motoyama, T., Kadokura, K., Ohira, T., Ichiishi, A., Fujimura, M., Yamaguchi, I., et al. (2005) A two-component histidine kinase of the rice blast fungus is involved in osmotic stress response and fungicide action. Fungal Genet Biol,42,200-212.
    Motoyama, T., Ochiai, N., Morita, M., lida, Y., Usami, R. and Kudo, T. (2008) Involvement of putative response regulator genes of the rice blast fungus Magnaporthe oryzae in osmotic stress response, fungicide action, and pathogenicity. Curr Genet,54,185-195.
    Mukherjee, P. K. and Kenerley, C. M. (2010) Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a VELVET protein, Vel1. Appl Environ Microbiol,76, 2345-2352.
    Myung, K., Li, S., Butchko, R. A., Busman, M., Proctor, R. H., Abbas, H. K., et al. (2009) FvVE1 regulates biosynthesis of the mycotoxins fumonisins and fusarins in Fusarium verticillioides. JAgric Food Chem,57,5089-5094.
    Ni, M. and Yu, J. H. (2007) A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans. Plos One,2, e970.
    Niessen, M. L. and Vogel, R. F. (1998) Group specific PCR-detection of potential trichothecene-producing Fusarium-species in pure cultures and cereal samples. Syst Appl Microbiol,21,618-631.
    Ninfa, A. J. and Magasanik, B. (1986) Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia-Coli. P Natl Acad Sci USA,83,5909-5913.
    Nixon, B. T., Ronson, C. W. and Ausubel, F. M. (1986) Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proc Natl Acad Sci U S A,83,7850-7854.
    Noguchi, R., Banno, S., Ichikawa, R., Fukumori, F., Ichiishi, A., Kimura, M., et al. (2007) Identification of OS-2 MAP kinase-dependent genes induced in response to osmotic stress, antifungal agent fludioxonil, and heat shock in Neurospora crassa. Fungal Genet Biol,44, 208-218.
    O'Donnell, K., Ward, T. J., Geiser, D. M., Kistler, H. C. and Aoki, T. (2004) Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet Biol,41,600-623.
    Ochiai, N., Tokai, T., Nishiuchi, T., Takahashi-Ando, N., Fujimura, M. and Kimura, M. (2007a) Involvement of the osmosensor histidine kinase and osmotic stress-activated protein kinases in the regulation of secondary metabolism in Fusarium graminearum. Biochem Biophys Res Commun,363,639-644.
    Ochiai, N., Tokai, T., Takahashi-Ando, N., Fujimura, M. and Kimura, M. (2007b) Genetically engineered Fusarium as a tool to evaluate the effects of environmental factors on initiation of trichothecene biosynthesis. FEMS Microbiol Lett,275,53-61.
    Panadero, J., Pallotti, C., Rodriguez-Vargas, S., Randez-Gil, F. and Prieto, J. A. (2006) A downshift in temperature activates the high osmolarity glycerol (HOG) pathway, which determines freeze tolerance in Saccharomyces cerevisiae. J Biol Chem,281,4638-4645.
    Park, J., Jang, S., Kim, S., Kong, S., Choi, J., Ahn, K., et al. (2008) FTFD:an informatics pipeline supporting phylogenomic analysis of fungal transcription factors. Bioinformatics,24, 1024-1025.
    Parkinson, J. S. (1993) Signal transduction schemes of bacteria. Cell,73,857-871.
    Parkinson, J. S. and Kofoid, E. C. (1992) Communication modules in bacterial signaling proteins. Annu Rev Genet,26,71-112.
    Parry, D. W., Jenkinson, P. and Mcleod, L. (1995) Fusarium Ear Blight (Scab) in Small-Grain Cereals-a Review. Plant Pathol,44,207-238.
    Peplow, A. W., Tag, A. G., Garifullina, G. F. and Beremand, M. N. (2003) Identification of new genes positively regulated by TrilO and a regulatory network for trichothecene mycotoxin production. Appl Environ Microbiol,69,2731-2736.
    Perrin, R. M, Fedorova, N. D., Bok, J. W., Cramer, R. A., Wortman, J. R., Kim, H. S., et al. (2007) Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA. Plos Pathog,3, e50.
    Pestka, J. J. and Smolinski, A. T. (2005) Deoxynivalenol:Toxicology and potential effects on humans. J Toxicol Env Heal B,8,39-69.
    Pestka, J. J., Zhou, H. R., Moon, Y. and Chung, Y. J. (2004) Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes:unraveling a paradox. Toxicol Lett,153,61-73.
    Ponts, N., Pinson-Gadais, L., Barreau, C., Richard-Forget, F. and Ouellet, T. (2007) Exogenous H2O2 and catalase treatments interfere with Tri genes expression in liquid cultures of Fusarium graminearum. FEBS Lett,581,443-447.
    Posas, F., WurglerMurphy, S. M., Maeda, T., Witten, E. A., Thai, T. C. and Saito, H. (1996) Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" osmosensor. Cell,86,865-875.
    Proctor, R. H., Hohn, T. M. and Mccormick, S. P. (1995a) Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol Plant Microbe In,8, 593-601.
    Proctor, R. H., Hohn, T. M., Mccormick, S. P. and Desjardins, A. E. (1995b) Tri6 encodes an unusual zinc-finger protein involved in regulation of trichothecene biosynthesis in Fusarium sporotrichioides. Appl Environ Microb,61,1923-1930.
    Prusky, D. and Yakoby, N. (2003) Pathogenic fungi:leading or led by ambient pH. Molecular Plant Pathology,4,509-516.
    Reiser, V, Salah, S. M. and Ammerer, G. (2000) Polarized localization of yeast Pbs2 depends on osmostress, the membrane protein Shol and Cdc42. Nat Cell Biol,2,620-627.
    Reverberi, M., Zjalic, A., Fabbri, A. A. and Fanelli, C. (2006) Oxidant/antioxidant balance in Aspergillus parasiticus affects aflatoxin biosynthesis. Mycotoxin Res,22,39-47.
    Reyes-Dominguez, Y., Bok, J. W., Berger, H., Shwab, E. K., Basheer, A., Gallmetzer, A., et al. (2010) Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans. Mol Microbiol,76,1376-1386.
    Rispail, N., Soanes, D. M.,, Ant, C., Czajkowski, R., Grunler, A., Huguet, R., et al. (2009) Comparative genomics of MAP kinase and calcium-calcineurin signalling components in plant and human pathogenic fungi. Fungal Genet Biol,46,287-298.
    Rocha, O., Ansari, K. and Doohan, F. M. (2005) Effects of trichothecene mycotoxins on eukaryotic cells:a review. Food Addit Contam,22,369-378.
    Rogers, J. P., Beuscher, A. E. t., Flajolet, M., McAvoy, T., Nairn, A. C., Olson, A. J., et al. (2006) Discovery of protein phosphatase 2C inhibitors by virtual screening. J Med Chem,49, 1658-1667.
    Romualdi, C., Bortoluzzi, S., D'Alessi, F. and Danieli, G. A. (2003) IDEG6:a web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiol Genomics,12,159-162.
    Roncero, C. and Dura'n, A. (1985) Effect of calcofluor white and Congo red on fungal cell wall morphogenesis:In vivo activation of chitin polymerization. JBacteriol,163,1180-1185.
    Ronne, H. (1995) Glucose Repression in Fungi. Trends Genet,11,12-17.
    Ruijter, G. J. G. and Visser, J. (1997) Carbon repression in Aspergilli. Ferns Microbiol Lett,151, 103-114.
    Sarikaya Bayram, O., Bayram, O., Valerius, O., Park, H. S., Irniger, S., Gerke, J., et al. (2010) LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. Plos Genet,6, e1001226.
    Schmitt, E. K., Kempken, R. and Kuck, U. (2001) Functional analysis of promoter sequences of cephalosporin C biosynthesis genes from Acremonium chiysogenum:specific DNA-protein interactions and characterization of the transcription factor PACC. Mol Genet Genomics,265,508-518.
    Schumacher, M. M., Enderlin, C. S. and Selitrennikoff, C. P. (1997) The Osmotic-1 locus of Neurospora crassa encodes a putative histidine kinase similar to osmosensors of bacteria and yeast. Curr Microbiol,34,340-347.
    Segmuller, N., Ellendorf, U., Tudzynski, B. and Tudzynski, P. (2007) BcSAK1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea. Eukaryot Cell,6,211-221.
    Seong, K. Y., Pasquali, M., Zhou, X., Song, J., Hilburn, K., McCormick, S., et al. (2009) Global gene regulation by Fusarium transcription factors Tri6 and Tri10 reveals adaptations for toxin biosynthesis. Mol Microbiol,72,354-367.
    Shifrin, V. I. and Anderson, P. (1999) Trichothecene mycotoxins trigger a ribotoxic stress response that activates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase and induces apoptosis. J Biol Chem,274,13985-13992.
    Shim, W. B., Sagaram, U. S., Choi, Y. E., So, J., Wilkinson, H. H. and Lee, Y. W. (2006) FSR1 is essential for virulence and female fertility in Fusarium verticillioides and F. graminearum. Mol Plant Microbe Interact,19,725-733.
    Shwab, E. K., Bok, J. W., Tribus, M., Galehr, J., Graessle, S. and Keller, N. P. (2007) Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot Cell,6, 1656-1664.
    Son, H., Seo, Y. S., Min, K., Park, A. R., Lee, J., Jin, J. M., et al. (2011) A phenome-based functional analysis of transcription factors in the cereal head blight fungus, Fusarium graminearum. Plos Pathog,7, e1002310.
    Sprote, P. and Brakhage, A. A. (2007) The light-dependent regulator velvet A of Aspergillus nidulans acts as a repressor of the penicillin biosynthesis. Arch Microbiol,188,69-79.
    Strauss, J. and Reyes-Dominguez, Y. (2011) Regulation of secondary metabolism by chromatin structure and epigenetic codes. Fungal Genet Biol,48,62-69.
    Suarez, T. and Penalva, M. A. (1996) Characterization of a Penicillium chrysogenum gene encoding a PacC transcription factor and its binding sites in the divergent pcbAB-pcbC promoter of the penicillin biosynthetic cluster. Mol Microbiol,20,529-540.
    Sun, C., Zhao, X. M., Tang, W. and Chen, L. (2010) FGsub:Fusarium graminearum protein subcellular localizations predicted from primary structures. BMC Syst Biol,4 Suppl 2, S12.
    Tag, A. G., Garifullina, G. F., Peplow, A. W., Ake, C., Jr., Phillips, T. D., Hohn, T. M., et al. (2001) A novel regulatory gene, Tri10, controls trichothecene toxin production and gene expression. Appl Environ Microbiol,67,5294-5302.
    Thorsen, M., Di, Y., Tangemo, C., Morillas, M., Ahmadpour, D., Van der Does, C., et al. (2006) The MAPK Hoglp modulates Fpslp-dependent arsenite uptake and tolerance in yeast. Mol Biol Cell,17,4400-4410.
    Trail, F. (2009) For blighted waves of grain:Fusarium graminearum in the postgenomics era. Plant Physiol,149,103-110.
    Trail, F., Xu, J. R., San Miguel, P., Halgren, R. G. and Kistler, H. C. (2003) Analysis of expressed sequence tags from Gibberella zeae (anamorph Fusarium graminearum). Fungal Genet Biol,38,187-197.
    Urban, M., Mott, E., Farley, T. and Hammond-Kosack, K. (2003) The Fusarium graminearum MAP1 gene is essential for pathogenicity and development of perithecia. Molecular Plant Pathology,4,347-359.
    Viaud, M., Fillinger, S., Liu, W., Polepalli, J. S., Le Pecheur, P., Kunduru, A. R., et al. (2006) A class Ⅲ histidine kinase acts as a novel virulence factor in Botrytis cinerea. Mol Plant Microbe Interact,19,1042-1050.
    Wang, C., Zhang, S., Hou, R., Zhao, Z., Zheng, Q., Xu, Q., et al. (2011) Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum. Flos Pathog,7, e1002460.
    Warmka, J., Hanneman, J., Lee, J., Amin, D. and Ota, I. (2001) Ptcl, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogen-activated protein kinase Hogl. Mol Cell Biol,21,51-60.
    Weber, R. W. S., Wakley, G. E., Thines, E. and Talbot, N. J. (2001) The vacuole as central element of the lytic system and sink for lipid droplets in maturing appressoria of Magnaporthe grisea. Protoplasma,216,101-112.
    Wiemann, P., Brown, D. W., Kleigrewe, K., Bok, J. W., Keller, N. P., Humpf, H. U., et al. (2010) FfVell and FfLael, components of a velvet-like complex in Fusarium fujikuroi, affect differentiation, secondary metabolism and virulence. Mol Microbiol,77,972-994.
    Williams, R. B., Henrikson, J. C., Hoover, A. R., Lee, A. E. and Cichewicz, R. H. (2008) Epigenetic remodeling of the fungal secondary metabolome. Org Biomol Chem,6, 1895-1897.
    Wong, P., Walter, M., Lee, W., Mannhaupt, G., Munsterkotter, M., Mewes, H. W., et al. (2011) FGDB:revisiting the genome annotation of the plant pathogen Fusarium graminearum. Nucleic Acids Res,39, D637-639.
    Wurgler-Murphy, S. M., Maeda, T., Witten, E. A. and Saito, H. (1997) Regulation of the Saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases. Mol Cell Biol,17,1289-1297.
    Yager, L. N. (1992) Early developmental events during asexual and sexual sporulation in Aspergillus nidulans. Biotechnology,23,19-41.
    Yan, L., Yang, Q., Jiang, J., Michailides, T. J. and Ma, Z. (2011) Involvement of a putative response regulator Brrg-1 in the regulation of sporulation, sensitivity to fungicides, and osmotic stress in Botrytis cinerea. Appl Microbiol Biotechnol,90,215-226.
    Yan, L., Yang, Q., Sundin, G. W., Li, H. and Ma, Z. (2010) The mitogen-activated protein kinase kinase BOSS is involved in regulating vegetative differentiation and virulence in Botrytis cinerea. Fungal Genet Biol,47,753-760.
    Yoshimi, A., Kojima, K., Takano, Y. and Tanaka, C. (2005) Group Ⅲ histidine kinase is a positive regulator of Hogl-type mitogen-activated protein kinase in filamentous fungi. Eukaryot Cell,4,1820-1828.
    Young, C., Mapes, J., Hanneman, J., Al-Zarban, S. and Ota, I. (2002) Role of Ptc2 type 2C Ser/Thr phosphatase in yeast high-osmolarity glycerol pathway inactivation. Eukaryot Cell,1,1032-1040.
    Zarrinpar, A., Bhattacharyya, R. P., Nattler, M. P. and Lim, W. A. (2004) Sho1 and Pbs2 act as coscaffolds linking components in the yeast high osmolarity MAP kinase pathway. Mol Cell,14,825-832.
    Zhang, H., Liu, K., Zhang, X., Song, W., Zhao, Q., Dong, Y., et al. (2010) A two-component histidine kinase, MoSLN1, is required for cell wall integrity and pathogenicity of the rice blast fungus, Magnaporthe oryzae. Curr Genet,56,517-528.
    Zhang, J. B., Li, H. P., Dang, F. J., Qu, B., Xu, Y. B., Zhao, C. S., et al. (2007) Determination of the trichothecene mycotoxin chemotypes and associated geographical distribution and phylogenetic species of the Fusarium graminearum clade from China. Mycol Res,111, 967-975.
    Zhang, Y. J., Yu, J. J., Zhang, Y. N., Zhang, X., Cheng, C. J., Wang, J. X., et al. (2009) Effect of carbendazim resistance on trichothecene production and aggressiveness of Fusarium graminearum. Mol Plant Microbe Interact,22,1143-1150.
    Zhao, C., Waalwijk, C., de Wit, P. J., van der Lee, T. and Tang, D. (2011) EBR1, a novel Zn(2)Cys(6) transcription factor, affects virulence and apical dominance of the hyphal tip in Fusarium graminearum. Mol Plant Microbe Interact,24,1407-1418.
    Zhao, X. M., Zhang, X. W., Tang, W. H. and Chen, L. (2009) FPPI:Fusarium graminearum protein-protein interaction database. J Proteome Res,8,4714-4721.
    Zhou, H. R., Islam, Z. and Pestka, J. J. (2005) Induction of competing apoptotic and survival signaling pathways in the macrophage by the ribotoxic trichothecene deoxynivalenol. Toxicol Sci,87,113-122.
    樊平声(2010)小麦赤霉病和DON毒素研究进展.江苏农业科学,5,182-184.
    周明国,叶钟音,刘经芬(1994)杀菌剂抗药性研究进展.南京农业在学学报,17,33-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700