植物应答环境信号的两个相关基因功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与动物不同,植物不能通过移动以规避环境变化带来的风险。然而,植物已进化出相应的应答机制,以应对外界环境的变化,即根据环境信号调控生长发育以实现对逆境环境的适应。因此,解析植物生长发育与环境信号响应的分子机制一直是植物分子生态学的重要研究领域之一
     植物对外界环境信号的应答是通过细胞内外的系列蛋白介导完成的。其中,位于细胞膜上的受体蛋白激酶能感受细胞外的信号并启动精准的应答过程;锚蛋白(接头蛋白)在细胞内介导蛋白与蛋白的特异互作,通过锚定重复基序作“接头”把蛋白招募在一起,从而使植物能特异地对外界环境作出适宜的应答,并通过调控其生长发育实现对环境的适应。
     本文以受体蛋白激酶FERONIA(FER)和锚蛋白ANK6的功能研究为切入点,力图揭示它们在植物响应外界生态环境中的作用以及其与植物生长发育的关系,以促进对植物适应环境的分子机制的认识。主要研究结果如下:
     一、受体蛋白激酶FER在逆境激素信号转导中的作用
     1、首次发现FER-GEF1/4/10-ROP11信号通路为ABA信号途径关键蛋白ABI2的正调节因子
     ABA是植物响应逆境的关键激素分子。ABA受体蛋白(PYR/PYL/RCAR)作为负调节因子抑制PP2CA家族蛋白ABI2的磷酸酶活性已见报道。本研究首次鉴定出ABI2的正调节因子,即FER-GEF1/4/10-ROP11信号通路直接激活ABI2的磷酸酶活性,负调节植物对ABA的响应。该通路与ABA受体蛋白家族对PP2CA的负调节通路一起构成了PP2CA活性调节的“阴-阳”两面。研究还发现ABI2直接与FER互作,作为一种反馈抑制方式抑制FER活性。在此基础上,建立了一个以FER为中心的ABA响应调节网络。该网络对植物气孔开关调控机制的理解、逆境生长表型的解析都将起重要促进作用。
     2、首次发现FER是乙烯底物合成关键酶SAM1/2的负调节因子
     乙烯是植物逆境响应中的另一关键激素分子。SAM1/2是乙烯合成底物S-腺苷甲硫氨酸(SAM)的关键合成酶。本研究发现FER和SAM1、SAM2在细胞膜上相互作用,负调节SAM的合成,进而降低乙烯的合成,从而影响植物的逆境响应和生长发育。
     3、提出以FER为节点的植物响应环境信号的激素交叉会话模型
     根据环境条件的变化,FER通过影响ABA、乙烯、生长素等多种激素响应,实现激素交叉会话,调控多条细胞信号转导通路,使植物对盐、冷、热、渗透、病原菌等非生物胁迫和生物胁迫环境信号作出响应,并通过调控生长发育以适应环境。
     4、初步揭示了两个泛素连接酶对FER信号通路的调节作用
     发现两个同源性非常高的ARM-E3连接酶家族成员(FEP1、FEP2)与FER互作,并初步证明FEP1/2可能是FER的下游正响应成员负调节保卫细胞对ABA的响应。该研究结果对FER介导的环境信号响应机制的理解有促进作用。
     5、初步揭示了FER调控种子大小的分子机制。
     发现FER在球形胚时期的种皮细胞中高度极性表达,通过GEF1负调节种皮细胞伸长速度从而调控种子大小。
     二、锚蛋白ANK6在植物双受精过程中的作用
     锚蛋白是介导蛋白与蛋白互作的“接头蛋白”,可能在RLK等介导的环境信号响应中起作用。ANK6是一个表达量受ABA和盐胁迫抑制的锚蛋白。在探索ANK6逆境响应功能的过程中,发现无法获得ank6纯合子,其杂合体的果荚中出现和fer果荚中类似的空位现象,并且其死亡胚珠的外观和fer类似。经研究证明ANK6在线粒体中通过与转录起始因子SIG5互作控制植物的双受精过程。初步解析了ANK6通过RPS9在植物生殖发育、ABA及盐胁迫响应中的作用。遗憾的是有关ANK6作为接头蛋白在植物环境响应响应中的作用进展不大,还需作更艰辛地探讨。
Unlike animals, plants can not "walk away" from the harmful environment. However, they have evolved elaborate mechanisms to deal with the changes of outside environments. That is to say, plants can acquire their adaptation to stress environments by controlling growth and development on the basis of environmental signals. Therefore, it's one of the hottest research realms in plant molecular ecology to dissect molecular mechanisms between growth and development of plants and their responses to environmental signals.
     Plants fulfill their responses to environmental signals through a series of intra-and extra-cellular proteins. Among them, the plasma membrane-located receptor-like protein kinases (RLKs) are able to sense extra-cellular signals, and switch on corresponding elaborate responses. Ankyrin repeat proteins (adaptor proteins) mediate protein-protein interactions in cells by recruiting proteins through ankyrin repeat motif "adaptor", thus enable plants to response specifically to the outer environmental changes, and acquire adaptation to environments by means of controlling growth development.
     We chose the FERONIA (FER) receptor kinase and ANK6ankyrin repeat protein as the starting point, to analyze their functions in plant ecological environmental responses and relations to plant growth development. These will promote us to understand the molecular mechanisms that plants adapt to environments. The main conclusions are as follows:
     First, functions of receptor like kinase FER in the stress hormones signal transduction
     1. FER-GEF1/4/10-ROP11-ABI2pathway was identified as positive regulation signal of a core factor of ABA responses, ABI2for the first time.
     ABA is an important stress hormone. There are reporters that the ABA receptor proteins can inhibit the PP2CA (ABI2) activity. We identified a pathway which is composed of FER-GEF1/4/10-ROP11positively regulating ABI2activity and inhibit the ABA response. Both this pathway and the PP2CA negatively regulate pathway formed the "Ying-Yang" faces of the PP2CA activity regulators. On the other hand, ABI2physically interacts with the FER kinase, suggesting a feedback inhibition of FER by dephosphorylation, and so characterized an ABA response circuit by using FER as a node. This signal circuit will help us better understanding mechanisms of the guard cell open/closure and stress response control.
     2. FER was identified as negatively regulator of the ethylene substrate synthetase SAM1and SAM2for the first time
     Ethylene is another stress response hormone. The S-adenosyl-L-methi- onine (SAM) synthetase (SAM1and SAM2) can synthesize SAM, the precursor of ethylene. We found that FER interacts with SAM1/2on the plasma membrane and negatively regulate SAM synthesis, thereby inhibits ethylene synthesis and stimulates plants stress and development response at last.
     3. A model was proposed that FER functions as a key node of multiple hormone cross-talks for plant to response stress environmental signalings.
     According to the environmental signals, FER can regulate many signaling pathways by affecting ABA, ethylene or auxin response, thus get plants to response to abiotic stresses (salt, hot, cold and osmotic stress) or biotic stress, and finally adapt to outer environment by controlling plant growth and development.
     4. Function of two E3ligases in FER network was analyzed preliminarily.
     We found that two E3ligase which have high homology can interact with FER and function as positive response factors of FER ABA control pathway. These data will help us understanding the FER network.
     5. Molecular mechanism of FER in seed size control was analyzed
     FER displayed high expression and polarity in integuments, and can negatively regulate the seed size through GEF1to inhibit the integument cells elongation.
     Second, functional analysis of ANK6during fertilization
     Ankyrin repeat protein is an "adaptor protein"and can mediate the protein-protein interaction and may have function in the environmental responses in the RLKs mediated pathways. We found that ANK6expression is inhibited by ABA and salt stress. We want to explore the function of ANK6during the environmental response. But the lack of homozygous mutant from a T-DNA insertional line indicated that loss-of-function of ANK6results in embryonic lethality which is very similar to the fer fertilization phenotype. ANK6was localized to the mitochondria where it interacts with SIG5, a transcription initiation factor previously found to be essential for fertility. Moreover, ANK6can interact with a small ribosome subunit protein RPS9in mitochondrial. Loss-of-function of RPS9results in male, female gametophytes development, ABA and salt stress response defect. Unfortunately, as the embryonic lethality limitations, we only analyzed the function of ANK6in fertilization but did not analyze its function in environmental responses. More efforts are required in environmental response study in future.
引文
[1]Ben-Shlomo I, Yu Hsu S, Rauch R, Kowalski HW, Hsueh AJ. Signaling receptome: a genomic and evolutionary perspective of plasma membrane receptors involved in signal transduction. Science STKE.2003,187:RE9.
    [2]Koishi R, Xu H, Ren D, Navarro B, Spiller BW, et al. A superfamily of voltage-gated sodium channels in bacteria. J. Biol. Chem.2004,279:9532-9538.
    [3]Hoch JA. Two-component and phosphorelay signal transduction. Curr. Opin. Microbiol.2000,3:165-170.
    [4]Stock AM, Robinson VL and Goudreau PN. Two-component signal transduction. Annu. Rev. Biochem.2000,69:183-215.
    [5]Shiu SH, Bleecker AB. Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. PNAS.2001,98: 10763-10768.
    [6]Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, et al. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell. 2004,16:1220-1234.
    [7]He XJ, Zhang ZG, Yan DQ, Zhang JS, Chen SY. A salt-responsive receptor-like kinase gene regulated by the ethylene signaling pathway encodes a plasma membrane serine/threonine kinase. Theor. Appl. Genet.2004,109:377-383.
    [8]De Lorenzo L, Merchan F, Laporte P, Thompson R, Clarke J, et al. A novel plant LRR receptor kinase regulates the response of Medicago truncatula roots to salt stress. Plant Cell.2009,21:668-680.
    [9]Ouyang SQ, Liu YF, Liu P, Lei G, et al. Receptor-like kinase OsSIKl improves drought and salt stress tolerance in rice (Oryza sativa) plants.2010,62:316 329.
    [10]Gudesblat, GE, Russinova E. Plants grow on brassinosteroids. Curr. Opin. Plant Biol.2011,14:530-537.
    [11]Vriet C, Russinova E, Reuzeau C. Boosting crop yields with plant steroids. Plant Cell 2012,24:842-857.
    [12]Xing HT, Guo P, Xia XL, Yin WL. PdERECTA, a leucine-rich repeat receptor-like kinase of poplar, confers enhanced water use efficiency in Arabidopsis. Planta.2011,234:229-241.
    [13]Tanaka H, Osakabe Y, Katsura S, Mizuno S, Maruyama K, et al. Abiotic stress-inducible receptor-like kinases negatively control ABA signaling in Arabidopsis. Plant J.2012,70:599-613.
    [14]Lau OS, Deng XW. Plant hormone signaling lightens up:integrators of light and hormones. Curr Opin Plant Biol.2010,13:571-577.
    [15]Jiao Y, Lau OS, Deng XW. Light regulated transcriptional networks in Higher plants. Nat. Rev. Genet.2007,8:217-230.
    [16]van Zenten M, Snoek LB, van Eck-stouten E, Proveniers MC, Torii KU, et al.. ERECTA controls low light intensity-induced differential petiole growth independent of phytochrome B and cryptochrome 2 action in Arabidopsis thaliana. Plant Signal Behav.2010,5:284-286.
    [17]Oh E, Zhu JY, Wang ZY. Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nature Cell Biol.2012,14: 802-809.
    [18]Yang T, Chaudhuri S, Yang L, Du L, Poovaiah BW. A calcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plants. J. Biol. Chem.2010,285:7119-7126.
    [19]Kutschera U, Wang ZY. Brassinosteroid action in flowering plants:a Darwinian perspective. J. Exp. Bot.2012,63:3511-3522.
    [20]Kim TW, Wang ZY. Brassinosteroid signal transduction from receptor kinases to transcription factors. Ann. Rev. Plant Biol.2010,61:681-704.
    [21]Wang ZY and Choi G. From Receptors to Responses. Current Opinion in Plant Biology.2010,13:485-488.
    [22]Xu SL, Rahman A, Baskin TI, Kieber JJ. Two Leucine-Rich Repeat Receptor Kinases Mediate Signaling, Linking Cell Wall Biosynthesis and ACC Synthase in Arabidopsis. Plant Cell.2008,20:3056-3079.
    [23]Hua D, Wang C, He J, Liao H, Duan Y, et al. A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis. Plant Cell.2012,24:2546-2561.
    [24]Guo H, Li L, Ye H, Yu X, Algreen A, Yin Y. Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. PNAS.2009, 106:7648-7653.
    [25]Duan Q, Kita D, Li C, Cheung AY, Wu HM. FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair development. PNAS.2010,107: 17821-17826.
    [26]Deslauriers SD, Larsen PB. FERONIA Is a Key Modulator of Brassinosteroid and Ethylene Responsiveness in Arabidopsis Hypocotyls. Mol. Plant.2010,3: 626-640.
    [27]Gomez-Gomez L, Boller T. FLS2:A LRR receptor-like kinase involved in recognition of the flagellin elicitor in Arabidopsis. Mol. Cell.2000,5:1003 1011.
    [28]Gomez-Gomez L, Bauer Z, Boller T. Both the extracellular leucine-rich repeat domain and the kinase activity of fLS2 are required for flagellin binding and signaling in Arabidopsis. Plant Cell.2001,13:1156-1163.
    [29]Song WY, Wang GL, Chen LL, Kim HS, Pi LY, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science.1995,270: 1804-1806.
    [30]Kessler SA, Shimosato-Asano H, Keinath NF, Wuest SE, Ingram G, et al. Conserved molecular components for pollen tube reception and fungal invasion. Science.2010,330:968-971.
    [31]He Z, Wang ZY, Li J, Zhu Q, Lamb C, et al. Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1. Science.2000,288:2360 2363.
    [32]Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J. BRI1 is a critical component of a plasma membrane receptor for plant steroids. Nature.2001,410:380-382.
    [33]Tang W, Kim TW, Oses-Prieto JA, Sun Y, Deng Z, et al. BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science.2008,321: 557-560.
    [34]He JX, Gendron JM, Yang Y, Li J, Wang ZY. The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. PNAS.2002,99:10185 10990.
    [35]He JX, Gendron JM, Sun Y, Gampala SS, Gendron N, et al. BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science.2005,307:1634-1638.
    [36]Bai MY, Zhang LY, Gampala SS, Zhu SW, Song WY, et al. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. PNAS.2007,104: 13939-13844.
    [37]Gampala SS, Kim TW, He JX, Tang W, Deng Z, et al. An essential role for 14-3-3 proteins in brassinosteroid signal transduction in Arabidopsis. Dev. Cell. 2007,13:177-189.
    [38]Tang W, Yuan M, Wang R, Yang Y, Wang C, et al. PP2A activates brassinosteroid-responsive gene expression and plant growth by dephosphorylating BZR1. Nature Cell Biol.2011,13:124-131.
    [39]De Smet I, Voss U, Jurgens G, and Beeckman T. Receptor-like kinases shape the plant. Nat. Cell Biol.2009,11:1166-1173.
    [40]Tucker MR, Laux T. Connecting the paths in plant stem cell regulation. Trends Cell Biol.2007,17:403-410.
    [41]Brand U, Fletcher JC, Hobe M, Meyerowitz EM and Simon R. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science.2000,289:617-619.
    [42]Clark SE, Running MP, Meyerowitz EM. CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development.1993,119:397-418.
    [43]Jeong S, Trotochaud AE, Clark SE. The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell.1999,11:1925-1934.
    [44]Betsuyaku S, Takahashi F, Kinoshita A, Miwa H, Shinozaki K, et al. Mitogen-activated protein kinase regulated by the CLAVATA receptors contributes to shoot apical meristem homeostasis. Plant Cell Physiol.2011, 52:14-19.
    [45]Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science.1991, 283:1911-1914.
    [46]Kondo T, Sawa S, Kinoshita A, Mizuno S, Kakimoto T, Fukuda H, et al. A plant peptide encoded by CLV3 identified by in situ MALDI-TOF MS analysis.Science.2006,313:845-848.
    [47]Ogawa M, Shinohara H, Sakagami Y, Matsubayashi Y. Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science.2008,319:294.
    [48]Trotochaud AE, Hao T, Wu G, Yang Z, Clark SE. The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein. Plant Cell.1999,11:393-406.
    [49]Clark SE, Running MP, Meyerowitz EM. CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development.1995,121:2057-2067.
    [50]Schoof H, Lenhard M, Haecker A, Mayer KF, Jurgens G, Laux T. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell.2000,100:635-644.
    [51]Schopfer CR, Nasrallah ME, Nasrallah JB. The male determinant of self-incompatibility in Brassica. Science.1999,286:1697-1700.
    [52]Takayama S, Shiba H, Iwano M, Shimosato H, Che FS, et al. The pollen determinant of self-incompatibility in Brassica campestris. PNAS.2000, 97:1920-1925.
    [53]Giranton JL, Duma C, Cock M, Gaude T. The integral membrane S-locus receptor kinase of Brassica has serine/threonine kinase activity in a membranous environment and spontaneously forms oligomers in planta. PNAS. 2000,97:3759-3764.
    [54]Takasaki T, Hatakeyama K, Suzuki G, Watanabe M, Isogal A, et al. The S receptor kinase determines self-incompatibility in Brassica stigma. Nature. 2000,403:913-916.
    [55]Silva NF, Stone SL, Christe LN, Sulaman W, Nazarain KA, et al. Expression of the S receptor kinase in self-compatible Brassica napus cv. Westar leads to the allele-specific rejection of self-incompatible Brassica napus pollen. Mol. Gen. Genet.2001,265:552-559.
    [56]Stone SL, Anderson EM, Mullen RT, Goring DR. ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. Plant Cell.2003,15:885-898.
    [57]Stone SL, Arnoldo M, Goring DR. A breakdown of Brassica self-incompatibility in ARC1 antisense transgenic plants. Science.1999,286:1729-1731.
    [58]Bower MS, Matias DD, Fernandes-Carvalho E, Mazzurco M, Gu T, et al. Two members of the thioredoxin-h family interact with the kinase domain of a Brassica S locus receptor kinase. Plant Cell.1996,8:1641-1650.
    [59]Torii KU, Mitsukawa N, Oosumi T, Matsuura Y, Yokoyama R, et al. The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell.1996,8:735-746.
    [60]Shpak ED, Berthiaume CT, Hill EJ, Torii KU. Synergistic interaction of three ERECTA-family receptor-like kinases controls Arabidopsis organ growth and flower development by promoting cell proliferation. Development.2004, 131:1491-1501.
    [61]Tisne S, Reymond M, Vile D, Fabre J, Dauzat M, et al. Combined genetic and modeling approaches reveal that epidermal cell area and number in leaves are controlled by leaf and plant developmental processes in Arabidopsis. Plant Phy. 2008,148:1117-11127.
    [62]Hord CL, Sun YJ, Pillitteri LJ, Torril KU, Wang H, et al. Regulation of Arabidopsis early anther development by the mitogen-activated protein kinases, MPK3 and MPK6, and the ERECTA and related receptor-like kinases. Molecular Plant.2008,1:645-658.
    [63]Douglas SJ, Chuck G, Dengler RE, Pelecanda L, Riggs CD. KNAT1 and ERECTA regulate inflorescence architecture in Arabidopsis. Plant Cell.2002, 14:547-558.
    [64]Busch W and Benfey PN. Information processing without brains-The power of intercellular regulators in plants. Development.2010,137:1215-1226.
    [65]Van Norman JM, Breakfield NW, Benfey PN. Intercellular communication during plant development. Plant Cell.2011,23:855-864.
    [66]Murphy E, Smith S, De Smet I. Small signaling peptides in Arabidopsis development:how cells communicate over a short distance. Plant cell.2012, 24:3198-217.
    [67]Wagner TA, Kohorn BD. Wall-associated kinases are expressed throughout plant development and are required for cell expansion. Plant Cell.2001,13:303-318.
    [68]Decreux A, Messiaen J. Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation. Plant Cell Physiol.2005,46:268-278.
    [69]Brutus A, Sicilia F, Macine A, Cervone F, De Lorenzo G. A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. PNAS.2010,107:9452-9457
    [70]She J, Han ZF, Kim TW, Wang JJ, Cheng W, et al. Structural insight into brassinosteroid perception by BRI1. Nature.2011,474:472-476.
    [71]Hothorn M, Belkhadir Y, Dreux M, Dabi T, Noe JP, et al. Structural basis of steroid hormone perception by the receptor kinase BRI1. Nature.2011,474:467-471.
    [72]Wang X, Goshe MB, Soderblom EJ, Phinney BS, Kuchar JA. Identification and functional analysis of in vivo phosphorylation sites of the Arabidopsis BRASSINOSTEROID INSENSITIVE1 receptor kinase. Plant Cell.2005, 17:1685-1703.
    [73]Wang X, Li X, Meisenhelder J, Hunter T, Yoshida S, et al. Autoregulation and homodimerization are involved in the activation of the plant steroid receptor BRI1. Dev Cell.2005,8:855-865.
    [74]Wang X, Kota U, He K, Blackburn K, Li J, Goshe MB, et al. Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. Dev Cell.2008,15:220-235.
    [75]Liu T, Liu Z, Song C, Hu Y, Han Z, et al. Chitin-induced dimerization activates a plant immune receptor. Science.2012,336:1160-1164.
    [76]Willmann R, Nurnberger T. How plant lysin motif receptors get activated:lessons learned from structural biology. Sci. Siganl.2012,5:pe28.
    [77]Gust AA, Willmann R, Desaki Y, Grabherr HM, Nurnberger T. Plant LysM proteins:modules mediating symbiosis and immunity. Trends Plant Sci.2012, 17:495-502.
    [78]Jaillais Y, Hothorn M, Belkhadir Y, Dabi T, Nimchuk ZL, et al. Tyrosine phosphorylation controls brassinosteroid receptor activation by triggering membrane release of its kinase inhibitor. Genes & Dev.2011,25:232-237.
    [79]Zheng Z, Yang Z. The Rop GTPase:an emerging signalling switch in plants. Plant Mol. Biol.2000,44:1-9.
    [80]Li H, Lin Y, Heath RM, Zhu MX, Yang Z. Control of pollen tube tip growth by a Rop GTPase-dependent pathway that leads to tip-localized calcium influx. Plant Cell.1999,11:1731-1742.
    [81]Wu HM, Hazak O, Cheung AY, Yalovsky S. RAC/ROP GTPases and auxin signaling. Plant Cell.2011,23:1208-1218.
    [82]Fu Y, Wu G, Yang Z. Rop GTPase-dependent dynamics of tip-localized Factin controls tip growth in pollen tubes. J. Cell Biol.2001,152:1019-1032.
    [83]Fu Y, Gu Y, Zheng Z, Wasteneys G, Yang Z. Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell.2005,120:687-700.
    [84]Fu Y, Li H, Yang Z. The ROP2 GTPase controls the formation of cortical fine F-actin and the early phase of directional cell expansion during Arabidopsis organogenesis. Plant Cell.2002,14:777-794.
    [85]Xu T, Wen M, Nagawa S, Fu Y, Chen JG, et al. Cell surface- and RHO GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell.2010,143:99-110.
    [86]Gu Y, Fu Y, Dowd P, Li S, Vernoud V, Gilroy S, Yang Z. A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. J Cell Biol.2005,169:127-138.
    [87]Zheng ZL, Nafisi M, Tam A, Li H, Crowell DN, et al. Plasma membrane-associated ROP 10 small GTPase is a specific negative regulator of abscisic acid responses in Arabidopsis. Plant Cell.2002,14:2787-2797.
    [88]Berken A, Thomas C, Wittinghofer A. A new family of RhoGEFs activates the Rop molecular switch in plants. Nature.2005,436:1176-1180.
    [89]Gu Y, Li S, Lord EM, Yang Z. Members of a novel class of Arabidopsis Rho guanine nucleotide exchange factors control Rho GTPase-dependent polar growth. Plant Cell.2006,18:366-381.
    [90]Yang Z, Fu Y. ROP/RAC GTPase signaling. Curr. Opin. Plant Biol.2007,10:490-494.
    [91]Trotochaud AE, Hao T, Wu G, Yang Z, Clark SE. The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein. Plant Cell.1999,11:393-405.
    [92]Kaothien P, Ok SH, Shuai B, Wengier D, Cotter R, et al. Kinase partner protein interacts with the LePRK1 and LePRK2 receptor kinases and plays a role in polarized pollen tube growth. Plant J.2005,42:492-503.
    [93]Zhang Y, McCormick S. A distinct mechanism regulating a pollen-specific guanine nucleotide exchange factor for the small GTPase Rop in Arabidopsis thaliana. PNAS.2007,104:18830-18835.
    [94]Smalle J, Vierstra RD. The ubiquitin 26S proteasome proteolytic pathway. Annu. Rev. Plant Biol.2004,55:555-590.
    [95]Vierstra RD. The ubiquitin/26S proteasome system at the nexus of plant development. Nat. Rev. Mol. Cell Biol.2009,10:385-397.
    [96]Hatakeyama S, Yada M, Matsumoto M, Ishida N, Nakayama KI. U box proteins as a new family of ubiquitin-protein ligases. Journal of Biological Chemistry. 2001,276:33111-33120.
    [97]Mudgil Y, Shiu SH, Stone SL, Salt JN, Goring DR. A large complement of the predicted Arabidopsis ARM repeat proteins are members of the U-box E3 ubiquitin ligase family. Plant Physiol.2004,134:59-66.
    [98]Samuel MA, Salt JN, Shiu SH, Goring DR. Multifunctional arm repeat domains in plants. Int Rev Cytol.2006,253:1-26.
    [99]Gu T, Mazzurco M, Sulaman W, Matias DD, Goring DR. Binding of an arm repeat protein to the kinase domain of the S-locus receptor kinase. PNAS.1998, 95:382-387.
    [100]Stone SL, Arnoldo M, Goring DR. A breakdown of Brassica self-incompatibilit y in ARC 1 antisense transgenic plants. Science.1999,286:1729-1731.
    [101]Kim M, Cho HS, Kim DM, Lee JH, Pai HS. CHRK1, a chitinaserelated receptor-like kinase, interacts with NtPUB4, an armadillo repeat protein, in tobacco. Biochim Biophys Acta.2003,1651:50-59.
    [102]Mbengue M, Camut S, de Carvalho-Niebel F, Deslandes L, Froidure S, et al.. The Medicago truncatula E3 ubiquitin ligase PUB1 interacts with the LYK3 symbiotic receptor and negatively regulates infection and nodulation. Plant Cell.2010,22:3474-3488.
    [103]Lu D, Lin W, Gao X, Wu S, Cheng C, et al. Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity. Science.2011, 332:1439-1442.
    [104]Samuel MA, Mudgil Y, Salt JN, Delmas F, Ramachandran S, et al. Interactions between the S-domain receptor kinases and AtPUB-ARM E3 ubiquitin ligases suggest a conserved signaling pathway in Arabidopsis. Plant Physiology.2008,147:2084-2095.
    [105]Kerk D, Bulgrien J, Smith DW, Barsam B, Veretnik S, et al. The complement of protein phosphatase catalytic subunits encoded in the genome of Arabidopsis. Plant Physiol.2002,129:908-925.
    [106]Cheng A, Kaldis P, Solomon MJ. Dephosphorylation of cyclin-dependent kinases by type 2C protein phosphatases. Genes Dev.1999,13:2946-2957.
    [107]Warmka J, Hanneman J, Lee J, Amin D, Ota I. Ptc1, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogenactivated protein kinase Hogl. Mol. Cell. Biol.2001,21:51-60.
    [108]Nguyen, AN, Shiozaki K. Heat-shock-induced activation of stress MAP kinase is regulated by threonine-and tyrosine-specific phosphatases.Genes Dev.1999, 13:1653-1663.
    [109]Gosti F, Beaudoin N, Serizet C, Webb AA, Vartanian N, Giraudat J. ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell.1999,11:1897-1909.
    [110]Allen GJ, Kuchitsu K, Chu SP, Murata Y, Schroeder JI. Arabidopsis abil-1 and abi2-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells. Plant Cell.1999,11:1785-1798.
    [111]Park SY, Fung P, Nishiumura N, Jensen DR, Fujii H, et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science.2009,324:1068-1071.
    [112]Ma Y, Szostkiewicz I, Korte A, Moes D,Yang Y, et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science.2009,324: 1064-1068.
    [113]Stone JM, Collinge MA, Smith RD, Horn MA, Walker JC. Interaction of a protein phosphatase with an Arabidopsis serine-threonine receptor kinase. Science.1994,266:793-795.
    [114]Braun, DM, Stone JM, Walker JC. Interaction of the maize and Arabidopsis kinase interaction domains with a subset of receptor-like protein kinases: implications for transmembrane signaling in plants. Plant J.1997,12:83-95.
    [115]Trotochaud AE, Hao T, Wu G, Yang Z, Clark SE. The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein. Plant Cell.1999,11:393-405.
    [116]Stone JM, Trotochaud AE, Walker JC, Clark SE. Control of meristem development by CLAVATA1 receptor kinase and kinase-associated protein phosphatase interactions. Plant Physiol.1998,117:1217-1225.
    [117]Li J, Smith GP, Walker JC. Kinase interaction domain of kinase-associated protein phosphatase, a phosphoprotein-binding domain. PNAS.1999,96: 7821-7826.
    [118]Wu G, Wang X, Li X, Kamiya Y, Otegui MS, et al. Methylation of a phosphatase specifies dephosphorylation and degradation of activated brassinosteroid receptors. Sci. Siganling.2011,4:ra29.
    [119]Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. Abscisic acid: Emergence of a core signaling network. Annu Rev Plant Biol.2010,61:651-679.
    [120]Xu J, Li HD, Chen LQ, Wang Y, Liu LL, et al. A protein kinase, interacting with two calcineurin Blike proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell.2006,125:1347-1360.
    [121]Li L, Kim BG, Cheong YH, Pandey GK, Luan S. A Ca2+ signaling pathway regulates a K- channel for low-K+ response in Arabidopsis. PNAS.2006, 103:12625-12630.
    [122]Lee SC, Lan W, Buchanan BB, Luan S. A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. PNAS.2009,106:21419-21424.
    [123]Blaire JS, Joseph JK. The role of receptor-like kinases in regulating cell wall function.2010,153:479-484.
    [124]Geldner N, Robatzek S. Plant receptors go endosomal:a moving view on signal transduction. Plant Physiol.2008,147:1565-1574.
    [125]Shah K, Russinova E, Gadella TW Jr, Willemse J, De Vries SC. The Arabidopsis kinase-associated protein phosphatase controls internalization of the somatic embryogenesis receptor kinase 1. Genes Dev.2002,16:1707-1720.
    [126]Gifford ML, Robertson FC, Soares DC, Ingram GC. Arabidopsis CRINKLY4 function, internalization, and turnover are dependent on the extracellular crinkly repeat domain. Plant Cell.2005,17:1154-1166.
    [127]Ivanov R, Gaude T. Endocytosis and endosomal regulation of the S-receptor kinase during the self-incompatibility response in Brassica oleracea. Plant Cell.2009,21:2107-2117.
    [128]Geldner N, Hyman DL, Wang X, Schumacher K, Chory J. Endosomal signaling of plant steroid receptor kinase BRI1. Genes Dev.2007,21:1598-1602.
    [129]Chen F, Gao MJ, Miao YS, Yuan YX, Wang MY, et al. Plasma membrane localization and potential endocytosis of constitutively expressed XA21 proteins in transgenic rice. Mol Plant.2010,3:917-926.
    [130]Robatzek S, Chinchilla D, Boller T. Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev.2006,20:537-542.
    [131]Ali GS, Prasad KV, Day I, Reddy AS. Ligand-dependent reduction in the membrane mobility of FLAGELLIN SENSITIVE2, an Arabidopsis receptor-like kinase. Plant Cell Physiol.2007,48:1601-1611.
    [132]Oh MH, Wang XF, Closure SD, Huber SC. Deactivation of the Arabidopsis BRASSINOSTEROID INSENSITIVE 1 (BRI1) receptor kinase by autophosphorylation within the glycine-rich loop. PNAS.2012,109:327-332.
    [133]Hematy K, Hofte H. Novel receptor kinases involved in growth regulation. Curr Opin Plant Biol.2008,11:321-328.
    [134]Schallus T, Jaeckh C, Feher K, Palma AS, Liu Y, et al. Malectin, a novel carbohydrate-binding protein of the endoplasmic reticulum and a candidate player in the early steps of protein N-glycosylation. Mol Biol Cell.2008,19: 3404-3414.
    [135]Galli C, Bernasconi R, Solda T, Calanca V, Molinari M. Malectin participates in a backup glycoprotein quality control pathway in the mammalian ER. PLoS ONE.2011,6:e16304.
    [136]Escobar-Restrepo JM, Huck N, Kessler S, Gagliardini V, Gheyselinck J, et al. The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception. Science.2007,317:656-660.
    [137]Xiang T, Zong N, Zou Y, Wu Y, Zhang J, et al. Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Curr Biol.2008, 18:74-80.
    [138]Hematy K, Sado PE, Van Tuinen A, Rochange S, Desnos T, et al. A receptor-like kinase mediates the response of Arabidopsis cells to inhibition of cellulose synthesis. Curr Biol.2007,17:922-931.
    [139]Benschop JJ, Mohammed S, OFlaherty M, Heck AJ, Slijper M, et al. Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol Cell Proteomics.2007,6:1198-1214.
    [140]Nuhse TS, Bottrill AR, Jones AM, Peck SC. Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J.2007,51:931-940.
    [141]Nuhse TS, Stensballe A, Jensen ON, Peck SC. Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell.2004,16:2394-2405.
    [142]Engelsberger WR, Schulze WX. Nitrate and ammonium lead to distinct global dynamic phosphorylation patterns when resupplied to nitrogen-starved Arabidopsis seedlings. Plant J.2012,69:978-995.
    [143]Whiteman SA, Serazetdinova L, Jones AM, Sanders D, Rathjen J, et al. Identification of novel proteins and phosphorylation sites in a tonoplast enriched membrane fraction of Arabidopsis thaliana. Proteomics.2008,8: 3536-3547.
    [144]Lindner H, Muller LM, Boisson-Dernier A, Grossniklaus U. CrRLK1L receptor-like kinases:not just another brick in the wall. Curr. Opin.Plant Biol. 2012,15:659-669.
    [145]Huck N, Moore JM, Federer M, Grossniklaus U. The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception. Development.2003,130:2149-2159.
    [146]Rotman N, Rozier F, Baovida L, Dumas C, Berger F, et al. Female control of male gamete delivery during fertilization in Arabidopsis thaliana. Curr Opin. 2003,13:432-436.
    [147]Cheung AY, Wu HM. Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu Rev Plant Biol.2008,59:547-572.
    [148]Hematy K, Cherk C, Somerville S. Host-pathogen warfare at the plant cell wall. Curr Opin Plant Biol.2009,12:406-413.
    [149]Galletti R, Denoux C, Bambetta S, Dewdney J, Ausubel FM, De Lorenzo G, Ferrari S. The AtrbohD-mediated oxidative burst elicited by oligogalacturonides in Arabidopsis is dispensable for the activation of defense responses effective against Botrytis cinerea. Plant Physiol.2008,148:1695-1706.
    [150]Consonni C, Humphry ME, Hartmann HA, Livaja M, Durner J, et al. Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nat. Genet.2006,38:716-720.
    [151]Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, et al.. The barley Mlo gene:a novel control element of plant pathogen resistance. Cell.1997,88: 695-705.
    [152]Miyazaki S, Murata T, Sakurai-Ozato N, Kubo M, Demura T, et al. ANXUR1 and 2, sister genes to FERONIA/SIRENE, are male factors to coordinated fertilization. Curr Opin.2009,19:1327-1331.
    [153]Boisson-Dernier A, Roy S, Kritsas K, Grobei MA, Jaciubek M, et al. Disruption of the pollen expressed FERONIA homologs ANXUR1 and ANXUR2 triggers pollen tube discharge. Development.2009,136:3279-3288.
    [154]Cheung AY, Wu HM. THESEUS 1, FERONIA and relatives:a family of cell wall-sensing receptor kinases? Curr Opin Plant Biol.2011,14:632-641.
    [155]Boisson-Dernier A, Kessler SA, Grossniklaus U. The walls have ears:the role of plant CrRLK1Ls in sensing and transducing extracellular signals. J Exp Bot. 2011,62:1581-1591.
    [156]Torres MA. ROS in biotic interactions. Physiol Plant.2010,138:414-429.
    [157]Jaspers P, Kangasjarvi J. Reactive oxygen species in abiotic stress signaling. Physiol Plant.2010,138:405-413.
    [158]Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, et al. ROS signaling:the new wave? Trends Plant Sci.2011,16:300-307.
    [159]Chae L, Sudat S, Dudoit S, Zhu T, Luan S. Diverse transcriptional programs associated with environmental stress and hormones in the Arabidopsis receptor-like kinase gene family. Mol. Plant.2009,2:84-107.
    [160]Heringa J. Detection of internal repeats:How common are they? Curr. Opin. Struct. Biol.1998,8:338-345.
    [161]Marcotte EM, Pellegrini M, Yeates TO, Eisenberg D. A census of protein repeats. J. Mol. Biol.1999,293:151-160.
    [162]Mosavi LK, Cammett TJ, Desrosiers DC, Peng ZY. The ankyrin repeat as molecular architecture for protein recognition. Protein Sci.2004,13:1435 1448.
    [163]Michel F, Soler-Lopez M, Petosa C, Cramer P, Siebenlist U, Muller CW. Crystal structure of the ankyrin repeat domain of Bcl-3:A unique member of the I_B protein family. EMBO J.2001,20:6180-6190.
    [164]Yu H, Kohl A, Binz HK, Pluckthun A, Grutter MG, et al. Molecular dynamics study of the stabilities of consensus designed ankyrin repeat proteins. Proteins. 2006,65:285-296.
    [165]Mosavi LK, Minor Jr, DL, Peng ZY. Consensus-derived structural determinants of the ankyrin repeat motif. PNAS.2002,99:16029-16034.
    [166]Albert S, Despres B, Guilleminot J, Bechtold N, Pelletier G, et al. The EMB506 gene encodes a novel ankyrin repeat containing protein that is essential for the normal development of Arabidopsis embryos. Plant J.1999,17:169-179.
    [167]Garcion C, Guilleminot J, Kroj T, Parcy F, Giraudat J, Devic M. AKRP and EMB506 are two ankyrin repeat proteins essential for plastid differentiation and plant development in Arabidopsis. Plant J.2006,48:895-906.
    [168]Shen G, Kuppu S, Venkataramani S, Wang J, Yan J, Qiu X, Zhang H. ANKYRIN REPEAT-CONTAINING PROTEIN 2A is an essential molecular chaperone for peroxisomal membrane-bound ASCORBATE PEROXIDASE3 in Arabidopsis. Plant Cell.2010,22:811-831.
    [169]Sakamoto H, Matsuda O, Iba K. ITN1, a novel gene encoding an ankyrin-protein that affects the ABA-mediated production of reactive oxygen species and is involved in salt-stress tolerance in Arabidopsis thaliana. Plant J.2008, 56:411-422.
    [170]Jiaqiang S, Hongling J, Yingxiu X, et al. The CCCH-Type zinc finger proteins AtSZFl and AtSZF2 regulate salt stress responses in Arabidopsis. Plant Cell Physiol.2007,48:1148-1158.
    [171]Kumagai H, Hakoyama T, Umehara Y, Sato S, Kaneko T, et al. A novel ankyrin-repeat membrane protein, IGN1, is required for persistence of nitrogen-fixing symbiosis in root nodules of Lotus japonicus. Plant Physiol. 2007,143:1293-1305.
    [172]Yan J, Wang J, Zhang H. An ankyrin repeat-containing protein plays a role in both disease resistance and antioxidation metabolism. Plant J.2002,29:193-202.
    [173]Lu H, Rate DN, Song JT, Greenberg JT. ACD6, a novel ankyrin protein, is a regulator and an effector of salicylic acid signaling in the Arabidopsis defense response. Plant Cell.2003,15:2408-2420.
    [174]Dong X, Li X, Zhang Y, et al. Regulation of systemic acquired resistance by NPR1 and its partners. Novartis Found Symp.2001,236:165-173.
    [175]Pratelli R, Lacombe B, Torregrosa L, et al. A grapevine gene encoding a guard cell K+ channel displays developmental regulation in the grapevine berry. Plant Physiol.2002,128:564-577.
    [176]Pilot G, Pratelli R, Gaymard F, Meyer Y, Sentenac H. Five-Group distribution of the shaker-like K+ channel family in high plants. J Mol Evol.2003,56:418-434.
    [177]Lee SC, Lan WZ, Kim BG, Li L, Cheong YH, et al. A protein phosphorylation/dephosphorylation network regulates a plant potassium channel. PNAS.2007,104:15959-15964.
    [178]Li L, Kim B, Cheong Y, Pandey G, Luan S. A calcium signaling pathway regulates a potassium channel for low-potassium response in Arabidopsis. PNAS.2006,103:12625-12630.
    [179]Li HY, Chye ML. Arabidopsis acyl-CoA-binding protein ACBP2 interacts with an ethyleneresponsive element-binding protein, AtEBP, via its ankyrin repeats. Plant Mol Biol.2004,54:233-243.
    [180]Raghavendra AS, Gonugunta VK, Christmann A, Grill E. ABA perception and signalling. Trends Plant Sci.2010,15:395-401.
    [181]Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. Abscisic acid: Emergence of a core signaling network. Annu Rev Plant Biol.2010,61:651-679.
    [182]Hubbard KE, Nishimura N, Hitomi K, Getzoff ED, Schroeder JI. Early abscisic acid signal transduction mechanisms:Newly discovered components and newly emerging questions. Genes Dev.2010,24:1695-1708.
    [183]Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, et al. NADPH oxidase AtrbohD and AtrbohF genes function in ROS dependent ABA signaling in Arabidopsis. EMBO J.2003,22:2623-2633.
    [184]Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song CP. Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol.2001,126:1438-1448.
    [185]Cho DS, Shin DJ, Jeon B, Kwak JM. ROS-mediated ABA signaling. J Plant Biol.2009,52:102-113.
    [186]Burg SP. Ethylene in plant growth. PNAS.1973,70:591-597.
    [187]Goeschl JD, Kays SJ. Concentration dependencies of some effects of ethylene on etiolated pea, peanut, bean and cotton seedlings. Plant Physiol.1975,55: 670-677.
    [188]Stepanova AN, Alonso JM. Ethylene signaling and response:where different regulatory modules meet. Curr Opin Plant Biol.2009,12:548-555.
    [189]Skottke KR, Yoon GM, Kieber JJ, Delong A. Protein phosphatase 2A controls ethylene biosynthesis by differentially regulating the turnover of ACC synthase isoforms. PLos Genet.2011,4:e1001370.
    [190]Wang KL, Li H, Ecker JR. Ethylene biosynthesis and signaling networks. The Plant Cell.2002, S131-S151.
    [191]Chae HS, Kieber JJ. The role of ACS turnover in regulating ethylene biosynthesis. Trends Plant Sci.2005,10:291-296.
    [192]Woeste KE, Ye C, Kieber JJ. Two Arabidopsis mutants that overproduce ethylene are affected in the post-transcriptional regulation of ACC synthase. Plant Physiol.1999,119:521-530.
    [193]Skottke KR, Yoon GM, Kieber JJ, DeLong A. Protein phosphatase 2A controls ethylene biosynthesis by differentially regulating the turnover of ACC synthase isoforms. PLoS Genet.2011,7:e1001370.
    [194]Yu F, Qian L, Nibau C, Duan Q, Kita D, Levasseur K, Li X, et al. FERONIA receptor kinase pathway suppresses abscisic acid signaling in Arabidopsis by activating ABI2 phosphatase. PNAS.2012,109:14693-14698.
    [195]Paredez AR, Somerville CR, Ehrhardt DW. Visualization of cellulose synthase demonstrates functional association with microtubules. Science.2006,312: 1491-1495.
    [196]Bringmann M, Landrein B, Schudoma C, Hamant O, Hauser MT, et al.. Cracking the elusive alignment hypothesis:the microtubule-cellulose synthase nexus unraveled. Trends Plant Sci.2012,17:666-674.
    [197]吴利民,田连福,李东屏。(2005)。植物锚蛋白研究进展。生物技术通报,6:7-11。
    [198]吴利民,(2006)。拟南芥和水稻锚蛋白(ANKP)基因家族初步研究。湖南师范大学硕士毕业论文。导师:栾升,李东屏。
    [199]Dombroski AJ, Walter WA, Record MT, Jr., Siegele DA, Gross CA, Polypeptides containing highly conserved regions of transcription initiation factor σ70 exhibit specificity of binding to promoter DNA. Cell.1992,70:501-512.
    [200]Dombroski AJ, Walter WA, Gross CA. Amino-terminal amino acids modulate σ-factor DNA-binding activity. Genes Dev.1993,7:2446-2455.
    [201]Vassylyev DG, Sekine S, Laptenko O, Lee J, Vassylyeva MN, et al. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution. Nature.2002,417:712-719.
    [202]Yao JL, Roy-Chowdhury S, Allison LA. AtSig5 is an essential nucleus-encoded Arabidopsis σ-like factor. Plant Physiol.2003,132:739-747.
    [203]Maxim VS, Susan G. Interaction of Escherichia coli RNA Polymerase with the Ribosomal Protein S1 and the Sm-like ATPase Hfq. Biochemistry.2003,42: 8022-8034.
    [204]Maxim VS, Susan G, Sankar A. Ribosomal protein S1 promotes transcriptional cycling. RNA.2006,12:1505-1513.
    [205]Knut B, Ndreapsi CH, Peter N, Rolandsc H, Hubertb A, Michaehle C. Copurification of ribosomal protein S2 and DNA-dependent RNA polymerase from heat-shocked cells of Bacillus subtilis. J. Basic Microbiol.1997,37:3-9.
    [206]Zhi BW, Justin C, Gerald SS. Human mitochondrial ribosomal protein MRPL12 interacts directly with mitochondrial RNA polymerase to modulate mitochondrial gene expression. J.B.C.2007,282:12610-12618.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700