锰基电极材料的微纳化合成、表征与电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文发展了水热法在硼砂辅助下,不使用表活剂和模版一步合成了Mn3O4超细一维纳米线;利用水镁石晶体结构的生长习性,一步水热法合成了Mn(OH)2六角片,结合CVD法在乙炔气氛中,控制制备了一系列MnO@C核壳纳米片;在乙二醇-水-水合肼组成的三元混合溶剂热体系中,控制合成了一系列Mn(OH)2等级结构,结合高温固相法,控制制各了一系列Mn2O3多孔等级结构:室温水相一步合成Mn3O4八面体。本论文的主要内容归纳如下:
     1.采用一步水热法,不使用任何表活剂或模版,通过硼砂的辅助作用,在200℃反应15h,合成了直径大约为15nm长度为微米级的Mn3O4一维超细纳米线,通过时间对比实验研究了纳米线的生长过程,是由非晶纳米线晶化和由短变长的Ostwald熟化过程,在5K时,Mn3O4(?)纳米线的矫顽力为5600Oe。Mn3O4纳米线作为前驱与锂源混合通过高温固相反应,在750℃反应6h,制备了LiMn2O4致密多面体,在0.1倍率充放60次,比容量达到115mA h g-1保持率为98.3%.相关研究成果发表在CrystEngComm杂志上。
     2.采用水热法,利用水镁石矿结构的晶体生长习性,在180℃反应12h,一步合成了Mn(OH)2纳米片,将Mn(OH)2纳米片在乙炔气氛围下热处理,得到了尺寸约为150nm的MnO@C核壳纳米片,通过控制热处理时间和反应温度,碳层的厚度大约可控制在3.1到13.7nm的范围内。电化学性能测试结果显示,在550℃反应10h合成的MnO@C纳米片碳层厚度约为8.1nm,在200mA g-1电流密度下,放电比容量高达770mA h g-1和展示出良好的稳定性能,且比容量高于碳层厚度约为3.1,4.0,4.2,10.9和13.7nm的核壳纳米片。相关研究部分成果发表在J. Mater.Chem.(?)杂志上。
     3.采用乙二醇-水-水合肼组成的二元混合溶剂热体系中,在180℃反应12h,通过改变乙二醇与水的体积比,我们得到了系列Mn(OH)2等级结构,例如:纳米片组成的花状结构、纳米片组成的片状结构、部分纳米片脱离的片状结构和纳米片。值得指出的是,这些纳米片具有不同的厚度。通过在空气中600℃热处理12h前驱物Mn(OH)2,我们得到了Mn2O3多孔等级结构。电化学性能测试Mn2O3的系列样品发现,由纳米片堆积而成的多孔花状具有高的比容量和循环稳定性。在300mA g-1电流密度下,100次充放电后,比容量大约为521mA h g-1较薄的厚度和表面的多孔结构是有利于其电化学性能改善和提高。
     4.室温条件水相中,使用草酸铵辅助,利用四方晶系的生长习性,合成Mn3O4八面体,研究Mn3O4八面体的生长机制、磁性及电化学性能。
In this paper, hydrothermal method was developed to synthesis Mn3O4nanowires with the assistance of sodium borate and without any surfactants or templates; Using the inherent crystal tendency of brucite crystal, combined with the CVD method in acetylene atmosphere, synthesis of a series of MnO@C core-shell nanoplates; In ethylene glycol-water-hydrazine hydrate ternary mixed solvent system, control the synthesis of a series of Mn(OH)2hierarchical structures, combined with solid state method, obtained a series of Mn2O3hierarchical structures. Mn3O4octahedrons were synthesis in water phase at room temperature. The main contents are summarized as follows:
     1. With the assistance of sodium borate, the Mn3O4nanowires with diameter of-15nm and a length of up to several micrometres have been hydrothermally synthesized at200℃for15h without any surfactants or templates. It was investigated that during the formation process of Mn3O4nanowires the length of the nanowires increased while the diameter did not obviously change, it could be believed that the formation of Mn3O4nanowires followed the Ostwald ripening process. The coercivity of the Mn3O4nanowires is up to5600Oe at5K. As these Mn3O4nanowires were treated with LiOH by solid state reaction at750℃for6h, interconnected LiMn2O4polyhedrons were obtained. The achieved discharge capacity of the LiMn2O4polyhedrons was115mA h g-1and they retained98.3%of this capacity after60cycles at0.1C. The above results of research have been published in CrystEngComm.
     2. Using the inherent crystal tendency of brucite crystal, Mn(OH)2nanoplates with size of-150nm have been hydrothermally synthesized at180℃for12h. MnO@C core-shell nanoplates with a size of-150nm have been prepared via thermal treatment deposition of acetylene with the precursor of Mn(OH)2nanoplates. The thickness of the carbon shells varied from-3.1to13.7nm by controlling the treatment temperature and reaction duration time. The electrochemical performance of the MnO@C nanoplates, which were synthesized at550℃for10h with a carbon shell thickness of-8.1nm, display a high reversible capacity of-770mA h g-1at a current density of200mA g-1and good cyclability after prolonged testing, which is higher than that of MnO@C nanoplates with a carbon shell thickness of~3.1,4.0,4.2,10.9and13.7nm. The above results of research have been published in J. Mater. Chem.
     3. Mn(OH)2hierarchical structures were obtained in the ethylene glycol-water-hydrazine hydrate system with different ethylene glycol/water volume ratio. Such as, nanosheets stacking flower structure, nanoplates stacking plate structure, partial fallen stacking plate structure and nanplate. It should be point out that the nanosheet and nanoplates own different thickness.Mn2O3porous hierarchical structures have been fabricated from the Mn(OH)2precursor in air atmosphere at600℃for12h. When these Mn2O3samples used as anode materials for lithium-ion batteries, the Mn2O3porous stacking nanosheets displays a high and stable reversible capacity of~521mA h g-1at a current density of300mA g-1after100cycles. The compared experiments indicate that both thin thickness of nanosheets and porous structure of the Mn2O3are favorable for electrodes of lithium-ion batteries with improved specific capacity and rate performance.
     4. With the assistance of ammonium oxalate, the Mn3O4octahedrons have been synthesised at room temperature by using the inherent crystal tendency. It investigates the information mechanism, magnetism and electrochemical performances of Mn3O4octahedrons.
引文
[1]黄可龙,上兆翔,刘素琴编著,锂离子电池原理与关键技术.化学工业出版社2008.
    [2]吴宇平,戴晓兵,马军旗,程预江编著,锂离子电池-应用与实践.化学工业出版社2004.
    [3]M. Armand, J. M. Tarascon, Building better batteries. Nature 2008,451,652-657.
    [4]张立德,牟季美,纳米材料和纳米结构.科学出版社2001.
    [5]R. Liu, J. Duay, S. B. Lee, Heterogeneous nanostructured electrode materials for electrochemical energy storage. Chem. Commun.2011,47,1384-1404.
    [6]J. B. Goodenough, K. S. Park, The Li-Ion Rechargeable Battery:A Perspective. J. Am. Chem. Soc.2013,135,1167-1176.
    [7]J. M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 2001,414,359-367.
    [8]M. Yonemura, A. Yamada, H. Kobayashi, M. Tabuchi, T. Kamiyama, Y. Kawamoto, R. Kanno, Synthesis, structure, and phase relationship in lithium manganese oxide spinel. J. Mater. Chem.2004,14,1948-1958.
    [9]Y. M. Wu, Z. H. Wen, H. B. Feng, J. H. Li, Hollow Porous LiMn2O4 Microcubes as Rechargeable Lithium Battery Cathode with High Electrochemical Performance. Small 2012, 8,858-862.
    [10]X. L. Xiao, J. Lu, Y. D. Li, LiMn2O4 Microspheres:Synthesis, Characterization and Use As a Cathode in Lithium Ion Batteries. Nano Res.2010,3,733-737.
    [11]X. F. Zhou, F. Wang, Y. M. Zhu, Z. P. Liu, Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. J. Mater. Chem.2011,21,3353-3358.
    [12]X. L. Wu, L. Y. Jiang, F. F. Cao, Y. G. Guo, L. J. Wan, LiFePO4 Nanoparticles Embedded in a Nanoporous Carbon Matrix:Superior Cathode Material for Electrochemical Energy-Storage Devices. Adv. Mater.2009,21,2710-2714.
    [13]Y. Shi, S. L. Chou, J. Z. Wang, D. Wexler, H. J. Li, H. K. Liu, Y. P. Wu, Graphene wrapped LiFePO4/C composites as cathode materials for Li-ion batteries with enhanced rate capability. J. Mater. Chem.2012,22,16465-16470.
    [14]C. W. Sun, S. Rajasekhara, J. B. Goodenough, F. Zhou, Monodisperse Porous LiFePO4 Microspheres for a High Power Li-Ion Battery Cathode. J. Am. Chem. Soc.2011,133, 2132-2135.
    [15]M. V. Reddy, G. V. Subba Rao, B. V. R. Chowdari, Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries. Chem. Rev.2013. Doi.org/10.1021/cr3001884.
    [16]L. Cheng, X. L. Li, H. J. Liu, H. M. Xiong, P. W. Zhang, Y. Y. Xia, Carbon-coated Li4Ti5012 as a high rate electrode material for Li-ion intercalation. J. Electrochem. Soc.2007,154, A692-A697.
    [17]C. K. Chan, H. L. Peng, G. Liu, K. Mcllwrath, X. F. Zhang, R. A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnology 2008, 3,31-35.
    [18]H. Ma, F. Y. Cheng, J. Chen, J. Z. Zhao, C. S. Li, Z. L. Tao, J. Liang, Nest-like silicon nanospheres for high-capacity lithium storage. Adv. Mater.2007,19,4067-4070.
    [19]X. W. Lou, Y. Wang, C. L. Yuan, J. Y. Lee, L. A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater.2006,18,2325-2329.
    [20]C. Wang, Y. Zhou, M. Y. Ge, X. B. Xu, Z. L. Zhang, J. Z. Jiang, Large-Scale Synthesis of SnO2 Nanosheets with High Lithium Storage Capacity. J. Am. Chem. Soc.2010,132,46-47.
    [21]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000,407,496-499.
    [22]X. W. Lou, D. Deng, J. Y. Lee, J. Feng, L. A. Archer, Self-supported formatnion of needlelike CO3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater.2008,20,258-262.
    [23]F. Xu, W. Kang, X. Wang, R. Liu, C. Zhao, Q. Shen, A chemical composition evolution for the shape-controlled synthesis and energy storage applicability of Fe3O4-C nanostructures. CrystEngComm 2013.
    [24]L. L. Wang, H. X. Gong, C. H. Wang, D. K. Wang, K. B. Tang, Y. T. Qian, Facile synthesis of novel tunable highly porous CuO nanorods for high rate lithium battery anodes with realized long cycle life and high reversible capacity. Nanoscale 2012,4,6850-6855.
    [25]L. L. Wang, W. Cheng, H. X. Gong, C. H. Wang, D. Wang, K. B. Tang, Y. T. Qian, Facile synthesis of nanocrystalline-assembled bundle-like CuO nanostructure with high rate capacities and enhanced cycling stability as an anode material for lithium-ion batteries. J. Mater. Chem.2012,22,11297-11302.
    [26]W. X. Zhang, M. Li, Q. Wang, G. D. Chen, M. Kong, Z. H. Yang, S. Mann, Hierarchical Self-assembly of Microscale Cog-like Superstructures for Enhanced Performance in Lithium-Ion Batteries. Adv. Funct. Mater.2011,21,3516-3523.
    [27]H. Wu, M. Xu, H. Y. Wu, J. J. Xu, Y. L. Wang, Z. Peng, G. F. Zheng, Aligned NiO nanoflake arrays grown on copper as high capacity lithium-ion battery anodes. J. Mater. Chem.2012,22,19821-19825.
    [28]Z. Xing, Z. C. Ju, J. Yang, H. Y. Xu, Y. T. Qian, One-step hydrothermal synthesis of ZnFe2O4 nano-octahedrons as a high capacity anode material for Li-ion batteries. Nano Res. 2012,5,477-485.
    [29]X. W. Guo, X. Lu, X. P. Fang, Y. Mao, Z. X. Wang, L. Q. Chen, X. X. Xu, H. Yang, Y. N. Liu, Lithium storage in hollow spherical ZnFe2O4 as anode materials for lithium ion batteries. Electrochem. Commun.2010,12,847-850.
    [30]N. Du, Y. F. Xu, H. Zhang, J. X. Yu, C. X. Zhai, D. R. Yang, Porous ZnCo2O4 Nanowires Synthesis via Sacrificial Templates:High-Performance Anode Materials of Li-Ion Batteries. Inorg. Chem.2011,50,3320-3324.
    [31]H. Trevino, W. M. H. Sachtler, On the nature of catalyst promotion by manganese in CO hydrogenation to oxygenates over rhmn/nay. Catal. Lett.1994,27,251-258.
    [32]P. Li, C. Y. Nan, Z. Wei, J. Lu, Q. Peng, Y. D. Li, Mn3O4 Nanocrystals:Facile Synthesis, Controlled Assembly, and Application. Chem. Mater.2010,22,4232-4236.
    [33]. S. Kim, K. Kim, W. Cho, W. H. Shin, R. Kanno, J. W. Choi, A Truncated Manganese Spinel Cathode for Excellent Power and Lifetime in Lithium-Ion Batteries. Nano Lett.2012, 12,6358-6365.
    [34]F. Jiao, P. G. Bruce, Mesoporous crystalline beta-MnO2-a reversible positive electrode for rechargeable lithium batteries. Adv. Mater.2007,19,657-660.
    [35]Y. Ren, A. R. Armstrong, F. Jiao, P. G. Bruce, Influence of Size on the Rate of Mesoporous Electrodes for Lithium Batteries. J. Am. Chem. Soc.2010,132,996-1004.
    [36]L. H. Li, C. Y. Nan, J. Lu, Q. Peng, Y. D. Li, alpha-MnO2 nanotubes:high surface area and enhanced lithium battery properties. Chem. Commun.2012,48,6945-6947.
    [37]F. Y. Cheng, J. Z. Zhao, W. Song, C. S. Li, H. Ma, J. Chen, P. W. Shen, Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg. Chem.2006,45,2038-2044.
    [38]Y. C. Qiu, G. L. Xu, K. Y. Yan, H. Sun, J. W. Xiao, S. H. Yang, S. G. Sun, L. M. Jin, H. Deng, Morphology-conserved transformation:synthesis of hierarchical mesoporous nanostructures of Mn2O3 and the nanostructural effects on Li-ion insertion/deinsertion properties. J. Mater. Chem.2011,21,6346-6353.
    [39]X. P. Fang, X. Lu, X. W. Guo, Y. Mao, Y. S. Hu, J. Z. Wang, Z. X. Wang, F. Wu, H. K. Liu, L. Q. Chen, Electrode reactions of manganese oxides for secondary lithium batteries. Electrochem. Commun.2010,12,1520-1523.
    [40]L. Chang, L. Q. Mai, X. Xu, Q. Y. An, Y. L. Zhao, D. D. Wang, X. Feng, Pore-controlled synthesis of Mn2O3 microspheres for ultralong-life lithium storage electrode. Rsc Adv.2013, 3,1947-1952.
    [41]J. Gao, M. A. Lowe, H. D. Abruna, Spongelike Nanosized Mn3O4 as a High-Capacity Anode Material for Rechargeable Lithium Batteries. Chem. Mater.2011,23,3223-3227.
    [42]M. A. Lowe, J. Gao, H. D. Abruna, In operando X-ray studies of the conversion reaction in Mn3O4 lithium battery anodes. J. Mater. Chem. A 2013,1,2094-2103.
    [43]H. L. Wang, L. F. Cui, Y. A. Yang, H. S. Casalongue, J. T. Robinson, Y. Y. Liang, Y. Cui, H. J. Dai, Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries. J. Am. Chem. Soc.2010,132,13978-13980.
    [44]L. Li, Z. P. Guo, A. J. Du, H. K. Liu, Rapid microwave-assisted synthesis of Mn3O4-graphene nanocomposite and its lithium storage properties. J. Mater. Chem.2012,22, 3600-3605.
    [45]S. R. Li, Y. Sun, S. Y. Ge, Y. Qiao, Y. M. Chen, I. Liebervvirth, Y. Yu, C. H. Chen, A facile route to synthesize nano-MnO/C composites and their application in lithium ion batteries. Chem. Eng. J.2012,192,226-231.
    [46]L. Su, Y. Zhong, J. Wei, Z. Zhou, Preparation and Electrochemical Li Storage Performance of MnO@C Nanorods Consisting of Ultra Small MnO Nanosrystals. RSC Adv.2013.
    [47]W.-M. Chen, L. Qie, Y. Shen, Y.-M. Sun, L.-X. Yuan, X.-L. Hu, W.-X. Zhang, Y.-H. Huang, Superior lithium storage performance in nanoscaled MnO promoted by N-doped carbon webs. Nano Energy.2013. Doi.org/10.1016/j.nanoen.2012.11.010.
    [48]K. J. Zhang, P. X. Han, L. Gu, L. X. Zhang, Z. H. Liu, Q. S. Kong, C. J. Zhang, S. M. Dong, Z. Y. Zhang, J. H. Yao, H. X. Xu, G. L. Cui, L. Q. Chen, Synthesis of Nitrogen-Doped MnO/Graphene Nanosheets Hybrid Material for Lithium Ion Batteries. Acs Appl. Mater. Interfaces 2012,4,658-664.
    [1]G. D. Moggridge, T. Rayment, R. M. Lambert, An in situ XRD investigation of singly and doubly promoted manganese oxide methane coupling catalysts. J. Catal.1992,134,242-252.
    [2]Z. R. Tian, W. Tong, J. Y. Wang, N. G. Duan, V. V. Krishnan, S. L. Suib, Manganese oxide mesoporous structures:Mixed-valent semiconducting catalysts. Science 1997,276,926-930.
    [3]P. Q. Zhang, Y. G. Zhan, B. X. Cai, C. C. Hao, J. Wang, C. X. Liu, Z. J. Meng, Z. L. Yin, Q. Y. Chen, Shape-Controlled Synthesis of Mn3O4 Nanocrystals and Their Catalysis of the Degradation of Methylene Blue. Nano Res.2010,3,235-243.
    [4]J. H. Zhang, J. Du, H. L. Wang, J. L. Wang, Z. K. Qu, L. Jia, A novel mild route to hausmannite Mn3O4 nanocubes at room temperature and its catalytic performance. Mater. Lett.2011,65,2565-2567.
    [5]D. Yan, S. Cheng, R. F. Zhuo, J. T. Chen, J. J. Feng, H. T. Feng, H. J. Li, Z. G. Wu, J. Wang, P. X. Yan, Nanoparticles and 3D sponge-like porous networks of manganese oxides and their microwave absorption properties. Nanotechnology 2009,20,105706-105715.
    [6]L. C. Zhang, Q. Zhou, Z. H. Liu, X. D. Hou, Y. B. Li, Y. Lv, Novel Mn3O4 Micro-octahedra: Promising Cataluminescence Sensing Material for Acetone. Chem. Mater.2009,21, 5066-5071.
    [7]Y. Dai, K. Wang, J. Y. Xie, From spinel Mn3O4 to layered nanoarchitectures using electrochemical cycling and the distinctive pseudocapacitive behavior. App. Phys. Lett.2007, 90,104102-104104.
    [8]C. C. Hu, Y. T. Wu, K. H. Chang, Low-temperature hydrothermal synthesis of Mn3O4 and MnOOH single crystals:Determinant influence of oxidants. Chem. Mater.2008,20, 2890-2894.
    [9]H. Jiang, T. Zhao, C. Y. Yan, J. Ma, C. Z. Li, Hydrothermal synthesis of novel Mn3O4 nano-octahedrons with enhanced supercapacitors performances. Nanoscale 2010,2, 2195-2198.
    [10]J. Z. Yin, F. Gao, Y. F. Wu, J. J. Wang, Q. Y. Lu, Synthesis of Mn3O4 octahedrons and other manganese-based nanostructures through a simple and green route. CrystEngComm 2010,12, 3401-3403.
    [11]M. Fang, X. L. Tan, M. Liu, S. H. Kang, X. Y. Hu, L. D. Zhang, Low-temperature synthesis of Mn3O4 hollow-tetrakaidecahedrons and their application in electrochemical capacitors. CrystEngComm 2011,13,4915-4920.
    [12]H. L. Wang, L. F. Cui, Y. A. Yang, H. S. Casalongue, J. T. Robinson, Y. Y. Liang, Y. Cui, H. J. Dai, Mn3O4-Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries. J. Am. Chem. Soc.2010,132,13978-13980.
    [13]J. Gao, M. A. Lowe, H. D. Abruna, Spongelike Nanosized Mn3O4 as a High-Capacity Anode Material for Rechargeable Lithium Batteries. Chem. Mater.2011,23,3223-3227.
    [14]S. T. Myung, S. Komaba, N. Kumagai, Hydrothermal synthesis and electrochemical behavior of orthorhombic LiMnO2. Electrochim. Acta 2002,47,3287-3295.
    [15]P. Li, C. Y. Nan, Z. Wei, J. Lu, Q. Peng, Y. D. Li, Mn3O4 Nanocrystals:Facile Synthesis, Controlled Assembly, and Application. Chem. Mater.2010,22,4232-4236.
    [16]F. Y. Cheng, J. A. Shen, B. Peng, Y. D. Pan, Z. L. Tao, J. Chen, Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat. Chem.2011,3,79-84.
    [17]W. S. Seo, H. H. Jo, K. Lee, B. Kim, S. J. Oh, J. T. Park, Size-dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles. Angew. Chem. Int. Ed.2004,43,1115-1117.
    [18]S. J. Lei, K. B. Tang, Z. Fang, H. G. Zheng, Ultrasonic-assisted synthesis of colloidal Mn3O4 nanoparticles at normal temperature and pressure. Cryst. Growth Des.2006,6,1757-1760.
    [19]F. Jiao, A. Harrison, P. G. Bruce, Ordered three-dimensional arrays of monodispersed Mn3O4 nanoparticles with a core-shell structure and spin-glass behavior. Angew. Chem. Int. Ed.2007, 46,3946-3950.
    [20]G. Salazar-Alvarez, J. Sort, S. Surinach, M. D. Baro, J. Nogues, Synthesis and size-dependent exchange bias in inverted core-shell MnO vertical bar Mn3O4 nanoparticles. J. Am. Chem. Soc.2007,129,9102-9108.
    [21]N. Wang, L. Guo, L. He, X. Cao, C. P. Chen, R. M. Wang, S. H. Yang, Facile synthesis of monodisperse Mn3O4 tetragonal nanoparticles and their large-scale assembly into highly regular walls by a simple solution route. Small 2007,3,606-610.
    [22]Y. Zhao, C. G. Li, F. F. Li, Z. Shi, S. H. Feng, One-step synthesis of highly water-dispersible Mn3O4 nanocrystals. Dalton Trans.2011,40,583-588.
    [23]Z. W. Chen, J. K. L. Lai, C. H. Shek, Nucleation site and mechanism leading to growth of bulk-quantity Mn3O4 nanorods. Appl. Phys. Lett.2005,86,181911-181913.
    [24]A. Vazquez-Olmos, R. Redon, A. L. Fernandez-Osorio, J. M. Saniger, Room-temperature synthesis of Mn3O4 nanorods. Appl. Phys.A:Mater. Sci. Process.2005,81,1131-1134.
    [25]J. Du, Y. Q. Gao, L. L. Chai, G. F. Zou, Y. Li, Y. T. Qian, Hausmannite Mn3O4 nanorods: synthesis, characterization and magnetic properties. Nanotechnology 2006,17,4923-4928.
    [26]D. S. Wang, T. Xie, Q. Peng, S. Y. Zhang, J. Chen, Y. D. Li, Direct thermal decomposition of metal nitrates in octadecylamine to metal oxide nanocrystals. Chem. Eur. J.2008,14, 2507-2513.
    [27]N. N. Zhao, W. Nie, X. B. Liu, S. Z. Tian, Y. Zhang, X. L. Ji, Shape-and size-controlled synthesis and dependent magnetic properties of nearly monodisperse Mn3O4 nanocrystals. Small 2008,4,77-81.
    [28]T. Yu, J. Moon, J. Park, Y. I. Park, H. Bin Na, B. H. Kim, I. C. Song, W. K. Moon, T. Hyeon, Various-Shaped Uniform Mn3O4 Nanocrystals Synthesized at Low Temperature in Air Atmosphere. Chem. Mater.2009,21,2272-2279.
    [29]Y. Li, H. Y. Tan, X. Y. Yang, B. Goris, J. Verbeeck, S. Bals, P. Colson, R. Cloots, G. Van Tendeloo, B. L. Su, Well Shaped Mn3O4 Nano-octahedra with Anomalous Magnetic Behavior and Enhanced Photodecomposition Properties. Small 2011,7,475-483.
    [30]X. M. Sun, J. F. Liu, Y. D. Li, Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres. Chem. Eur. J.2006,12,2039-2047.
    [31]W. Z. Wang, C. K. Xu, G. H. Wang, Y. K. Liu, C. L. Zheng, Preparation of smooth single-crystal Mn3O4 nanowires. Adv. Mater.2002,14,837-840.
    [32]W. Z. Wang, L. Ao, Synthesis and optical properties of Mn3O4 nanowires by decomposing MnCO3 nanoparticles in flux. Cryst. Growth Des.2008,8,358-362.
    [33]Y. W. Tan, L. R. Meng, Q. Peng, Y. D. Li, One-dimensional single-crystalline Mn3O4 nanostructures with tunable length and magnetic properties of Mn3O4 nanowires. Chem. Commun.2011,47,1172-1174.
    [34]D. J. Burleson, R. L. Penn, Two-step growth of goethite from ferrihydrite. Langmuir 2006, 22,402-409.
    [35]H. Wiogo, M. Lim, P. Munroe, R. Amal, Understanding the Formation of Iron Oxide Nanoparticles with Acicular Structure from Iron(III) Chloride and Hydrazine Monohydrate. Cryst. Growth Des.2011,11,1689-1696.
    [36]Z. H. Wang, J. W. Liu, X. Y. Chen, J. X. Wan, Y. T. Qian, A simple hydrothermal route to large-scale synthesis of uniform silver nanowires. Chem. Eur. J.2004,11,160-163.
    [37]Y. C. Zhu, T. Mei, Y. Wang, Y. T. Qian, Formation and morphology control of nanoparticles via solution routes in an autoclave. J. Mater. Chem.2011,21,11457-11463.
    [38]K. Dwight, N. Menyuk, Magnetic properties of Mn3O4 and the canted spin problem. Phys. Rev.1960,119,1470-1479.
    [39]C. W. Na, D. S. Han, D. S. Kim, J. Park, Y. T. Jeon, G. Lee, M. H. Jung, Ferromagnetism of MnO and Mn3O4 nanowires. Appl. Phys. Lett.2005,87,142504-142506.
    [40]T. M. Whitney, J. S. Jiang, P. C. Searson, C. L. Chien, Fabrication and magnetic-properties of arrays of metallic nanowires. Science 1993,261,1316-1319.
    [41]J. Wang, Q. W. Chen, C. Zeng, B. Y. Hou, Magnetic-field-induced growth of single-crystalline Fe3O4 nanowires. Adv. Mater.2004,16,137-140.
    [42]D. S. Wang, X. L. Ma, Y. G. Wang, L. Wang, Z. Y. Wang, W. Zheng, X. M. He, J. Li, Q. Peng, Y. D. Li, Shape Control of CoO and LiCo02 Nanocrystals. Nano Res.2010,3,1-7.
    [43]F. D. Han, Y. J. Bai, R. Liu, B. Yao, Y. X. Qi, N. Lun, J. X. Zhang, Template-Free Synthesis of Interconnected Hollow Carbon Nanospheres for High-Performance Anode Material in Lithium-Ion Batteries. Adv. Energy Mater.2011,1,798-801.
    [44]X. L. Xiao, L. Wang, D. S. Wang, X. M. He, Q. Peng, Y. D. Li, Hydrothermal Synthesis of Orthorhombic LiMnO2 Nano-Particles and LiMnCO2 Nanorods and Comparison of their Electrochemical Performances. Nano Res.2009,2,923-930.
    [1]M. Ghosh, K. Biswas, A. Sundaresan, C. N. R. Rao, MnO and NiO nanoparticles:synthesis and magnetic properties. J. Mater. Chem.2006,16,106-111.
    [2]X. Wang, Y. D. Li, Selected-control hydrothermal synthesis of alpha- and beta-MnO2 single crystal nanowires. J. Am. Chem. Soc.2002,124,2880-2881.J.
    [3]Cao, Q. H. Mao, L. Shi, Y. T. Qian, Fabrication of gamma-Mn02/alpha-Mn02 hollow core/shell structures and their application to water treatment. J. Mater. Chem.2011,21, 16210-16215.
    [4]B. Z. Tian, X. Y. Liu, H. F. Yang, S. H. Xie, C. Z. Yu, B. Tu, D. Y. Zhao, General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica. Adv. Mater.2003,15,1370-1374.
    [5]T. Ahmad, K. V. Ramanujachary, S. E. Lofland, A. K. Ganguli, Nanorods of manganese oxalate:a single source precursor to different manganese oxide nanoparticles (MnO, Mn2O3, Mn3O4). J. Mater. Chem.2004,14,3406-3410.
    [6]D. Yan, S. Cheng, R. F. Zhuo, J. T. Chen, J. J. Feng, H. T. Feng, H. J. Li, Z. G. Wu, J. Wang, P. X. Yan, Nanoparticles and 3D sponge-like porous networks of manganese oxides and their microwave absorption properties. Nanotechnology 2009,20,105706-105715.
    [7]H. Jiang, T. Zhao, C. Y. Yan, J. Ma, C. Z. Li, Hydrothermal synthesis of novel Mn3O4 nano-octahedrons with enhanced supercapacitors performances. Nanoscale 2010,2, 2195-2198.
    [8]K. Ramesh, L. W. Chen, F. X. Chen, Y. Liu, Z. Wang, Y. F. Han, Re-investigating the CO oxidation mechanism over unsupported MnO, Mn2O3 and MnO2 catalysts. Catal. Today 2008, 131,477-482.
    [9]P. Q. Zhang, Y. G. Zhan, B. X. Cai, C. C. Hao, J. Wang, C. X. Liu, Z. J. Meng, Z. L. Yin, Q. Y. Chen, Shape-Controlled Synthesis of Mn3O4 Nanocrystals and Their Catalysis of the Degradation of Methylene Blue. Nano Res.2010,3,235-243.
    [10]S. Shanmugam, A. Gedanken, MnO octahedral nanocrystals and MnO@C core-shell composites:Synthesis, characterization, and electrocatalytic properties. J. Phys. Chem. B 2006,110,24486-24491.
    [11]J. Du, Y. Q. Gao, L. L. Chai, G. F. Zou, Y. Li, Y. T. Qian, Hausmannite Mn3O4 nanorods: synthesis, characterization and magnetic properties. Nanotechnology 2006,17,4923-4928.
    [12]Y. W. Tan, L. R. Meng, Q. Peng, Y. D. Li, One-dimensional single-crystalline Mn3O4 nanostructures with tunable length and magnetic properties of Mn3O4 nanowires. Chem. Commun.2011,47,1172-1174.
    [13]X. Zhang, Z. Xing, Y. Yu, Q. W. Li, K. B. Tang, T. Huang, Y. C. Zhu, Y. T. Qian, D. Chen, Synthesis of Mn3O4 nanowires and their transformation to LiMn2O4 polyhedrons, application of LiMn2O4 as a cathode in a lithium-ion battery. CrystEngComm 2012,14,1485-1489.
    [14]L. C. Zhang, Q. Zhou, Z. H. Liu, X. D. Hou, Y. B. Li, Y. Lv, Novel Mn3O4Micro-octahedra: Promising Cataluminescence Sensing Material for Acetone. Chem. Mater.2009,21, 5066-5071.
    [15]J. Z. Yin, F. Gao, Y. F. Wu, J. J. Wang, Q. Y. Lu, Synthesis of Mn3O4 octahedrons and other manganese-based nanostructures through a simple and green route. CrystEngComm 2010,12, 3401-3403.
    [16]F. Y. Cheng, J. Z. Zhao, W. Song, C. S. Li, H. Ma, J. Chen, P. W. Shen, Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg. Chem.2006,45,2038-2044.
    [17]W. Xiao, J. S. Chen, X. W. Lou, Synthesis of octahedral Mn3O4 crystals and their derived Mn3O4-MnO2 heterostructures via oriented growth. CrystEngComm 2011,13,5685-5687.
    [18]Y. C. Qiu, G. L. Xu, K. Y. Yan, H. Sun, J. W. Xiao, S. H. Yang, S. G. Sun, L. M. Jin, H. Deng, Morphology-conserved transformation:synthesis of hierarchical mesoporous nanostructures of Mn2O3 and the nanostructural effects on Li-ion insertion/deinsertion properties. J. Mater. Chem.2011,21,6346-6353.
    [19]F. Y. Cheng, J. A. Shen, B. Peng, Y. D. Pan, Z. L. Tao, J. Chen, Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat. Chem.2011,3,79-84.
    [20]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000,407,496-499.
    [21]X. W. Lou, D. Deng, J. Y. Lee, J. Feng, L. A. Archer, Self-supported formatnion of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater.2008,20,258-262.
    [22]M. Armand, J. M. Tarascon, Building better batteries. Nature 2008,451,652-657.
    [23]X. Q. Yu, Y. He, J. P. Sun, K. Tang, H. Li, L. Q. Chen, X. J. Huang, Nanocrystalline MnO thin film anode for lithium ion batteries with low overpotential. Electrochem. Commun.2009, 11,791-794.
    [24]K. F. Zhong, B. Zhang, S. H. Luo, W. Wen, H. Li, X. J. Huang, L. Q. Chen, Investigation on porous MnO microsphere anode for lithium ion batteries. J. Power Sources 2011,196, 6802-6808.
    [25]X. W. Li, D. Li, L. Qiao, X. H. Wang, X. L. Sun, P. Wang, D. Y. He, Interconnected porous MnO nanoflakes for high-performance lithium ion battery anodes. J. Mater. Chem.2012,22, 9189-9194.
    [26]Z. Y. Wang, D. Y. Luan, S. Madhavi, Y. Hu, X. W. Lou, Assembling carbon-coated alpha-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy Environ. Sci.2012,5,5252-5256.
    [27]S. L. Xiong, J. S. Chen, X. W. Lou, H. C. Zeng, Mesoporous Co3O4 and CoO@C Topotactically Transformed from Chrysanthemum-like Co(C03)o.5(OH)·0.11H2O and Their Lithium-Storage Properties. Adv. Funct. Mater.2012,22,861-871.
    [28]X. W. Lou, C. M. Li, L. A. Archer, Designed Synthesis of Coaxial SnO2@carbon Hollow Nanospheres for Highly Reversible Lithium Storage. Adv. Mater.2009,21,2536-2539.
    [29]Y. M. Liu, X. Y. Zhao, F. Li, D. G. Xia, Facile synthesis of MnO/C anode materials for lithium-ion batteries. Electrochim. Acta 2011,56,6448-6452.
    [30]B. Sun, Z. X. Chen, H. S. Kim, H. Ahn, G. X. Wang, MnO/C core-shell nanorods as high capacity anode materials for lithium-ion batteries. J. Power Sources 2011,196,3346-3349.
    [31]Y. L. Ding, C. Y. Wu, H. M. Yu, J. Xie, G. S. Cao, T. J. Zhu, X. B. Zhao, Y. W. Zeng, Coaxial MnO/C nanotubes as anodes for lithium-ion batteries. Electrochim. Acta 2011,56, 5844-5848.
    [32]J. Liu, Q. M. Pan, MnO/C Nanocomposites as High Capacity Anode Materials for Li-Ion Batteries. Electrochem. Solid-State Lett.2010,13, A139-A142.
    [33]C. T. Hsieh, C. Y. Lin, J. Y. Lin, High reversibility of Li intercalation and de-intercalation in MnO-attached graphene anodes for Li-ion batteries. Electrochim. Acta 2011,56,8861-8867.
    [34]J. C. Yu, A. W. Xu, L. Z. Zhang, R. Q. Song, L. Wu, Synthesis and characterization of porous magnesium hydroxide and oxide nanoplates. J. Phys. Chem. B 2004,108,64-70.
    [35]Y. L. Hou, H. Kondoh, M. Shimojo, T. Kogure, T. Ohta, High-yield preparation of uniform cobalt hydroxide and oxide nanoplatelets and their characterization. J. Phys. Chem. B 2005, 109,19094-19098.
    [36]Z. P. Liu, R. Z. Ma, M. Osada, K. Takada, T. Sasaki, Selective and controlled synthesis of alpha-and beta-cobalt hydroxides in highly developed hexagonal platelets. J. Am. Chem. Soc. 2005,127,13869-13874.
    [37]Y. G. Li, B. Tan, Y. Y. Wu, Ammonia-evaporation-induced synthetic method for metal (Cu, Zn, Cd, Ni) hydroxide/oxide nanostructures. Chem. Mater.2008,20,567-576.
    [38]J. Feng, H. C. Zeng, Reduction and reconstruction of Co3O4 nanocubes upon carbon deposition. J. Phys. Chem. B 2005,109,17113-17119.
    [39]S. M. Zhang, H. C. Zeng, Self-Assembled Hollow Spheres of beta-Ni(OH)2 and Their Derived Nanomaterials. Chem. Mater.2009,21,871-883.
    [40]H. C. Liu, S. K. Yen, Characterization of electrolytic Co3O4 thin films as anodes for lithium-ion batteries. J. Power Sources 2007,166,478-484.
    [41]L. Tian, H. L. Zou, J. X. Fu, X. F. Yang, Y. Wang, H. L. Guo, X. H. Fu, C. L. Liang, M. M. Wu, P. K. Shen, Q. M. Gao, Topotactic Conversion Route to Mesoporous Quasi-Single-Crystalline Co3O4 Nanobelts with Optimizable Electrochemical Performance. Adv. Funct. Mater.2010,20,617-623.
    [42]X. W. Lou, D. Deng, J. Y. Lee, L. A. Archer, Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties. J. Mater. Chem.2008, 18,4397-4401.
    [43]H. L. Zhang, S. H. Liu, F. Li, S. Bai, C. Liu, J. Tan, H. M. Cheng, Electrochemical performance of pyrolytic carbon-coated natural graphite spheres. Carbon 2006,44, 2212-2218.
    [44]G. L. Xu, Y. F. Xu, H. Sun, F. Fu, X. M. Zheng, L. Huang, J. T. Li, S. H. Yang, S. G. Sun, Facile synthesis of porous MnO/C nanotubes as a high capacity anode material for lithium ion batteries. Chem. Commun.2012,48,8502-8504.
    [45]Y. Sun, X. Hu, W. Luo, F. Xia, Y. Huang, Reconstruction of Conformal Nanoscale MnO on Graphene as a High-Capacity and Long-Life Anode Material for Lithium Ion Batteries. Adv. Funct. Mater.2012, Doi:10.1002/adfm.201202623.
    [1]Z. R. Tian, W. Tong, J. Y. Wang, N. G. Duan, V. V. Krishnan, S. L. Suib, Manganese oxide mesoporous structures:Mixed-valent semiconducting catalysts. Science 1997,276,926-930.
    [2]Y. F. Han, L. Chen, K. Ramesh, Z. Zhong, F. Chen, J. Chin, H. Mook, Coral-like nanostructured alpha-Mn2O3 nanaocrystals for catalytic combustion of methane-Part Ⅰ. Preparation and characterization. Catal. Today 2008,131,35-41.
    [3]J. N. Park, J. K. Shon, M. Jin, S. H. Hwang, G. O. Park, J. H. Boo, T. H. Han, J. M. Kim, Highly Ordered Mesoporous alpha-Mn2O3 for Catalytic Decomposition of H2O2 at Low Temperatures. Chem. Lett.2010,39,493-495.
    [4]B. T. Ji, X. L. Jiao, N. Sui, Y. Z. Duan, D. R. Chen, Long single-crystalline alpha-Mn2O3 nanowires:facile synthesis and catalytic properties. CrystEngComm 2010,12,3229-3234.
    [5]L. Liu, H. Liang, H. X. Yang, J. J. Wei, Y. Z. Yang, The size-controlled synthesis of uniform Mn2O3 octahedra assembled from nanoparticles and their catalytic properties. Nanotechnology 2011,22,015603-015610.
    [6]D. Yan, S. Cheng, R. F. Zhuo, J. T. Chen, J. J. Feng, H. T. Feng, H. J. Li, Z. G. Wu, J. Wang, P. X. Yan, Nanoparticles and 3D sponge-like porous networks of manganese oxides and their microwave absorption properties. Nanotechnology 2009,20,105706-105715.
    [7]J. Cao, Y. C. Zhu, K. Y. Bao, L. Shi, S. Z. Liu, Y. T. Qian, Microscale Mn2Q3 Hollow Structures:Sphere, Cube, Ellipsoid, Dumbbell, and Their Phenol Adsorption Properties. J. Phys. Chem. C 2009,113,17755-17760.
    [8]M. S. Hassan, T. Amna, D. R. Pandeya, A. M. Hamza, Y. Y. Bing, H. C. Kim, M. S. Khil, Controlled synthesis of Mn2O3 nanowires by hydrothermal method and their bactericidal and cytotoxic impact:a promising future material. Appl. Microbio. Biotechnol.2012,95, 213-222.
    [9]F. Jiao, A. Harrison, A. H. Hill, P. G. Bruce, Mesoporous Mn2O3 and Mn3O4 with crystalline walls. Adv. Mater.2007,19,4063-4066.
    [10]X. P. Fang, X. Lu, X. W. Guo, Y. Mao, Y. S. Hu, J. Z. Wang, Z. X. Wang, F. Wu, H. K. Liu, L. Q. Chen, Electrode reactions of manganese oxides for secondary lithium batteries. Electrochem. Commun.2010,12,1520-1523.
    [11]S. Nayak, S. Malik, S. Indris, J. Reedijk, A. K. Powell, Pyrolysis of a Three-Dimensional Mn-Ⅱ/Mn-Ⅲ Network To Give a Multifunctional Porous Manganese Oxide Material. Chem. Eur.J.2010,16,1158-1162.
    [12]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407,496-499.
    [13]F. Y. Cheng, J. A. Shen, B. Peng, Y. D. Pan, Z. L. Tao, J. Chen, Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts. Nat. Chem.2011, 3,79-84.
    [14]X. Zhang, Z. Xing, Y. Yu, Q. W. Li, K. B. Tang, T. Huang, Y. C. Zhu, Y. T. Qian, D. Chen, Synthesis of Mn3O4 nanowires and their transformation to LiMn2O4 polyhedrons, application of LiMn2O4 as a cathode in a lithium-ion battery. CrystEngComm 2012,14,1485-1489.
    [15]X. Zhang, Z. Xing, L. L. Wang, Y. C. Zhu, Q. W. Li, J. W. Liang, Y. Yu, T. Huang, K. B. Tang, Y. T. Qian, X. Y. Shen, Synthesis of MnO@C core-shell nanoplates with controllable shell thickness and their electrochemical performance for lithium-ion batteries. J, Mater. Chem.2012,22,17864-17869.
    [16]M. Armand, J. M. Tarascon, Building better batteries. Nature 2008,451,652-657.
    [17]X. W. Lou, Y. Wang, C. L. Yuan, J. Y. Lee, L. A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater.2006,18,2325-2329.
    [18]X. W. Lou, L. A. Archer, A general route to nonspherical anatase TiO2 hollow colloids and magnetic multifunctional particles. Adv. Mater.2008,20,1853-1858.
    [19]X. W. Lou, D. Deng, J. Y. Lee, J. Feng, L. A. Archer, Self-supported formatnion of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater.2008,20,258-262.
    [20]X. L. Xiao, J. Lu, Y. D. Li, LiMn2O4 Microspheres:Synthesis, Characterization and Use As a Cathode in Lithium Ion Batteries. Nano Res.2010,3,733-737.
    [21]J. S. Chen, T. Zhu, X. H. Yang, H. G. Yang, X. W. Lou, Top-Down Fabrication of alpha-Fe2O3 Single-Crystal Nanodiscs and Microparticles with Tunable Porosity for Largely Improved Lithium Storage Properties. J. Am. Chem. Soc:2010,132,13162-13164.
    [22]D. S. Wang, X. L. Ma, Y. G. Wang, L. Wang, Z. Y. Wang, W. Zheng, X. M. He, J. Li, Q. Peng, Y. D. Li, Shape Control of CoO and LiCoO2 Nanocrystals. Nano Res.2010, 3,1-7.
    [23]L. Zhou, D. Y. Zhao, X. W. Lou, Double-Shelled CoMn2O4 Hollow Microcubes as High-Capacity Anodes for Lithium-Ion Batteries. Adv. Mater.2012,24,745-748.
    [24]S. J. Ding, D. Y. Zhang, H. B. Wu, Z. C. Zhang, X. W. Lou, Synthesis of micro-sized Sn02@carbon hollow spheres with enhanced lithium storage properties. Nanoscale 2012,4, 3651-3654.
    [25]X. L. Xiao, X. F. Liu, L. Wang, H. Zhao, Z. B. Hu, X. M. He, Y. D. Li, LiCoO2 nanoplates with exposed (001) planes and high rate capability for lithium-ion batteries. Nano Res.2012, 5,395-401.
    [26]Y. Ren, A. R. Armstrong, F. Jiao, P. G. Bruce, Influence of Size on the Rate of Mesoporous Electrodes for Lithium Batteries. J. Am. Chem. Soc.2010,132,996-1004.
    [27]E. S. Toberer, T. D. Schladt, R. Seshadri, Macroporous manganese oxides with regenerative mesopores.J. Am. Chem. Soc.2006,128,1462-1463.
    [28]C. C. Yu, L. X. Zhang, J. L. Shi, J. J. Zhao, J. H. Gao, D. S. Yan, A simple template-free strategy to synthesize nanoporous manganese and nickel oxides with narrow pore size distribution, and their electrochemical properties. Adv. Funct. Mater.2008,18,1544-1554.
    [29]Y. Cai, S. A. Liu, X. M. Yin, Q. Y. Hao, M. Zhang, T. H. Wang, Facile preparation of porous one-dimensional Mn2O3 nanostructures and their application as anode materials for lithium-ion batteries. Phys. E 2010,43,70-75.
    [30]L. Chang, L. Mai, X. Xu, Q. An, Y. Zhao, D. Wang, X. Feng, Pore-controlled synthesis of Mn2O3 microspheres for ultralong-life lithium storage electrode. RSC Adv.2013,3, 1947-1952.
    [31]Y. F. Deng, Z. N. Li, Z. C. Shi, H. Xu, F. Peng, G. H. Chen, Porous Mn2O3 microsphere as a superior anode material for lithium ion batteries. RSC Adv.2012,2,4645-4647.
    [32]Y. C. Qiu, G. L. Xu, K. Y. Yan, H. Sun, J. W. Xiao, S. H. Yang, S. G. Sun, L. M. Jin, H. Deng, Morphology-conserved transformation:synthesis of hierarchical mesoporous nanostructures of Mn2O3 and the nanostructural effects on Li-ion insertion/deinsertion properties. J. Mater. Chem.2011,21,6346-6353.
    [33]P. G. Bruce, B. Scrosati, J. M. Tarascon, Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed.2008,47,2930-2946.
    [34]W. X. Zhang, M. Li, Q. Wang, G. D. Chen, M. Kong, Z. H. Yang, S. Mann, Hierarchical Self-assembly of Microscale Cog-like Superstructures for Enhanced Performance in Lithium-Ion Batteries. Adv. Funct. Mater.2011,21,3516-3523.
    [35]S. L. Xiong, C. Z. Yuan, M. F. Zhang, B. J. Xi, Y. T. Qian, Controllable Synthesis of Mesoporous CO3O4 Nanostructures with Tunable Morphology for Application in Supercapacitors. Chem. Eur. J.2009,15,5320-5326.
    [36]M. Fang, X. L. Tan, M. Liu, S. H. Kang, X. Y. Hu, L. D. Zhang, Low-temperature synthesis of Mn3O4 hollow-tetrakaidecahedrons and their application in electrochemical capacitors. CrystEngComm 2011,13,4915-4920.
    [37]J.Jamnik,J.Maier,Nanocrystallnity effects in lithium battery materials - Aspects of nano-jonics.Part Ⅳ.Phys.Chem.Chem.Phys.2003,5,5215-522.
    [1]P. Q. Zhang, Y. G. Zhan, B. X. Cai, C. C. Hao, J. Wang, C. X. Liu, Z. J. Meng, Z. L. Yin, Q. Y. Chen, Shape-Controlled Synthesis of Mn3O4 Nanocrystals and Their Catalysis of the Degradation of Methylene Blue. Nano Res.2010,3,235-243.
    [2]M. D. Gimenez-Lopez, A. La Torre, M. W. Fay, P. D. Brown, A. N. Khlobystov, Assembly and Magnetic Bistability of Mn3O4 Nanoparticles Encapsulated in Hollow Carbon Nanofibers. Angew. Chem. Int. Ed.2013,52,2051-2054.
    [3]J. W. Lee, A. S. Hall, J. D. Kim, T. E. Mallouk, A Facile and Template-Free Hydrothermal Synthesis of Mn3O4 Nanorods on Graphene Sheets for Supercapacitor Electrodes with Long Cycle Stability. Chem. Mater.2012,24,1158-1164.
    [4]Ghodbane, J. L. Pascal, B. Fraisse, F. Favier, Structural in Situ Study of the Thermal Behavior of Manganese Dioxide Materials:Toward Selected Electrode Materials for Supercapacitors. Acs Appl. Mater. Interfaces 2010,2,3493-3505.
    [5]C. B. Wang, L. W. Yin, D. Xiang, Y. X. Qi, Uniform Carbon Layer Coated Mn3O4 Nanorod Anodes with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries. Acs Appl. Mater. Interfaces 2012,4,1636-1642.
    [6]J. Gao, M. A. Lowe, H. D. Abruna, Spongelike Nanosized Mn3O4 as a High-Capacity Anode Material for Rechargeable Lithium Batteries. Chem. Mater.2011,23,3223-3227.
    [7]X. M. Sun, J. F. Liu, Y. D. Li, Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres. Chem. Eur. J.2006,12,2039-2047.
    [8]W. X. Zhang, C. Wang, X. M. Zhang, Y. Xie, Y. T. Qian, Low temperature synthesis of nanocrystalline Mn3O4 by a solvothermal method. Solid State Ionics 1999,117,331-335.
    [9]B. J. Yang, H. M. Hu, C. Li, X. G. Yang, Q. W. Li, Y. T. Qian, One-step route to single-crystal gamma-Mn3O4 nanorods in alcohol-water system. Chem. Lett.2004,33, 804-805.
    [10]J. W. Seo, Y. W. Jun, S. J. Ko, J. Cheon, In situ one-pot synthesis of 1-dimensional transition metal oxide nanocrystals. J. Phys. Chem. B 2005,109,5389-5391.
    [11]L. C. Zhang, Q. Zhou, Z. H. Liu, X. D. Hou, Y. B. Li, Y. Lv, Novel Mn3O4 Micro-octahedra: Promising Cataluminescence Sensing Material for Acetone. Chem. Mater.2009,21, 5066-5071.
    [12]H. W. Huang, Q. Yu, X. S. Peng, Z. Z. Ye, Single-unit-cell thick Mn3O4 nanosheets. Chem. Commun.2011,47,12831-12833.
    [13]H. Jiang, T. Zhao, C. Y. Yan, J. Ma, C. Z. Li, Hydrothermal synthesis of novel Mn3O4 nano-octahedrons with enhanced supercapacitors performances. Nanoscale 2010,2, 2195-2198.
    [14]X. Zhang, Z. Xing, Y. Yu, Q. W. Li, K. B. Tang, T. Huang, Y. C. Zhu, Y. T. Qian, D. Chen, Synthesis of Mn3O4 nanowires and their transformation to LiMn2O4 polyhedrons, application of LiMn2O4 as a cathode in a lithium-ion battery. CrystEngComm 2012,14,1485-1489.
    [15]W. Z. Wang, L. Ao, Synthesis and optical properties of Mn3O4 nanowires by decomposing MnCO3 nanoparticles in flux. Cryst. Growth Des.2008,8,358-362.
    [16]S. J. Lei, K. B. Tang, Z. Fang, H. G. Zheng, Ultrasonic-assisted synthesis of colloidal Mn3O4 nanoparticles at normal temperature and pressure. Cryst. Growth Des.2006,6,1757-1760.
    [17]J. Z. Wang, N. Du, H. Wu, H. Zhang, J. X. Yu, D. R. Yang, Order-aligned Mn3O4 nanostructures as super high-rate electrodes for rechargeable lithium-ion batteries. J. Power Sources 2013,222,32-37.
    [18]Y. Li, H. Y. Tan, X. Y. Yang, B. Goris, J. Verbeeck, S. Bals, P. Colson, R. Cloots, G. Van Tendeloo, B. L. Su, Well Shaped Mn3O4 Nano-octahedra with Anomalous Magnetic Behavior and Enhanced Photodecomposition Properties. Small 2011,7,475-483.
    [19]J. Z. Yin, F. Gao, Y. F. Wu, J. J. Wang, Q. Y. Lu, Synthesis of Mn3O4 octahedrons and other manganese-based nanostructures through a simple and green route. CrystEngComm 2010,12, 3401-3403.
    [20]杜进,有机物辅助液相合成无机功能纳米材料.博士论文 2006,62.
    [21]Z. C. Bai, B. Sun, N. Fan, Z. C. Ju, M. H. Li, L. Q. Xu, Y. T. Qian, Branched Mesoporous Mn3O4 Nanorods:Facile Synthesis and Catalysis in the Degradation of Methylene Blue. Chem. Eur. J.2012,18,5319-5324.
    [22]K. Dwight, N. Menyuk, Magnetic properties of Mn3O4 and the canted spin problem. Phys. Rev.1960,119,1470-1479.
    [23]N. N. Zhao, W. Nie, X. B. Liu, S. Z. Tian, Y. Zhang, X. L. Ji, Shape- and size-controlled synthesis and dependent magnetic properties of nearly monodisperse Mn3O4 nanocrystals. Small 2008,4,77-81.
    [24]X. W. Lou, D. Deng, J. Y. Lee, J. Feng, L. A. Archer, Self-Supported Formation of Needlelike Co3O4 Nanotubes and Their Application as Lithium-Ion Battery Electrodes. Adv. Mater.2008,20,258-262.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700