小鼠骨髓间充质干细胞亚群向心肌样细胞分化实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景自1976年,Friedenstein首次提供了较为直接的证据,证明骨髓中可能存在间质细胞的前体细胞。1984年,Owen首先将这种贴壁生长的骨髓单个核细胞定义为骨髓间充质干细胞(BMSC)。1987年,Friedenstein等又发现,在塑料培养皿中培养的贴壁骨髓单个核细胞在特定的条件下可分化为成骨细胞、成软骨细胞、脂肪细胞和成肌细胞,并且扩增20-30代后仍保持其多向分化潜能。而1981年Martin首次从小鼠的胚胎中分离出胚胎干细胞,干细胞移植技术快速发展。2003年,美国FDA率先批准自体骨髓干细胞移植治疗心肌梗死性疾病,随后世界各地均开展了干细胞治疗研究,而应用最为广泛及成熟的是骨髓间充质干细胞,目前我国已经开展了应用骨髓间充质干细胞治疗肝、胰、神经、血管、心脏等器官病变的研究并发表了大量的研究报告而利用骨髓间充质干细胞治疗自身免疫性疾病也已进入临床应用阶段。但不可否认的是:骨髓间充质干细胞虽有一定的治疗效果,但远没有达到人们的期望。尤其许多基础和临床试验相继表明干细胞移植能够修复损伤的心肌,促进血管新生,缩小心肌梗死面积,改善心功能。但不同研究机构对最终骨髓间充质干细胞能在多大程度上改善心功能存有争议。针对此现状,我们认为,可能是由于骨髓间充质干细胞是一群多克隆的细胞群体,不同的克隆亚群具有不同的功能或不同的定向分化方向。能否有效寻找到不同功能的亚群,成为迫在眉睫需要解决的问题。2002年,Daniele Torella等首先从小鼠心脏中分离出一种固有的心肌干细胞,从而打破了人们以往认为心肌细胞属于永生细胞,不可再生的概念。进一步研究发现通过其表面不同的分化抗原,可以分为六个亚群,且六个亚群细胞均可向心肌细胞定向分化。并认为心肌干细胞来源于骨髓干细胞池。在以上研究基础上,我们考虑利用已知的小鼠心肌干细胞的表面分化抗原对小鼠的骨髓间充质干细胞进行筛选,希望能够发现定向向心肌分化的骨髓间充质干细胞克隆亚群。本课题获得苏州大学优秀博士论文及江苏省普通高校研究生科研创新计划资助项目(CXLX12_0841)立项资助。
     第一部分小鼠骨髓间充质干细胞(BMSCs)的分离、培养
     目的从小鼠骨髓中分离出具有多向分化潜能的骨髓间充质干细胞(BoneMesenchymal Stem Cells,BMSCs)。为进一步细胞分选构建实验平台。
     方法小鼠全骨髓培养。磁珠及贴壁纯化传代。脂肪、骨及软骨分化实验检测细胞分化功能。流式鉴定细胞表面抗原表达。
     结果体外培养的原代小鼠骨髓间充质干细胞经7-10天达80%-90%融合。P3代时通过CD11b的磁珠阴选,继续培养至P7。流式鉴定:结果显示超过90%小鼠骨髓间充质干细胞性表达CD29(细胞整合素分子)、CD34(祖细胞表面的分化抗原)和CD44(粘附分子,介导细胞对透明质酸和骨桥蛋白的粘附);但不表达造血祖细胞表面标志CD11b、MRD-1、ABCG2、CD133。第7代BMSCs中G0/G1期的细胞为73.23%,G2期的细胞为0%,S期(G3)的细胞为0%,细胞处于静止期,符合干细胞特征。
     结论利用小鼠全骨髓培养。磁珠及贴壁纯化传代。可以有效培养出小鼠骨髓间充质干细胞用于干细胞亚群分选。
     第二部分小鼠心肌梗死模型的建立
     目的气管插管开胸直视下行小鼠冠状动脉前降支(LAD)结扎,建立小鼠心肌梗死的模型。
     方法20只C57BL/6雄性小鼠,体重16-20(17.8±2.2)g,随机分为实验组与对照组(假手术组),各10只。实验组气管插管开胸直视下行小鼠冠状动脉前降支(LAD)结扎。
     结果结扎后可见肢体导联(I或者aVL)上有Q波出现(〉1mv)。I导和aVL导联上R波的缺失。尤其是II导联可见S-T段明显抬高,超过0.2mv。4周后复查心脏彩超提示:与对照组(假手术组)比较,心梗4周后小鼠左室舒张末期内径(LVEDd)和左室收缩末期内径(LVEDs)明显增加(P<0.01),左室射血分数(LVEF)和左室短轴缩短指数(FS)明显降低(P<0.01,P<0.01),二维图像见心梗模型组左室腔扩大,左室前壁出现节段性运动减弱、消失。病理HE染色证实心梗建模成功。
     结论气管插管开胸直视下行小鼠冠状动脉前降支(LAD)结扎,可以成功建立小鼠心肌梗死模型。
     第三部分小鼠骨髓间充质干细胞亚群分选
     目的将培养完毕的小鼠骨髓间充质干细胞,根据流式结果,采用磁珠分选目的亚群细胞。
     方法将已培养好的第7代的小鼠骨髓间充质干细胞通过CD45+柱子,分选得到CD45+细胞群体及CD45-细胞群体。将CD45-细胞群体通过CD31+柱子,分选得到SCA-1+/CD45-/CD31-及SCA-1+/CD45-/CD31+两群细胞。再将CD45+细胞群体通过CD31+柱子,分选得到SCA-1+/CD45+/CD31+及SCA-1+/CD45+/CD31-两群细胞。
     结果最终得到SCA-1+/CD31-/CD45-细胞数量:7.8×106;SCA-1+/CD31+/CD45-细胞数量:3×106;SCA-1+/CD31+/CD45+细胞量:2×105;SCA-1+/CD31-/CD45+细胞量:5×105。磁珠分选的得率约为60%。细胞状态良好,继续培养三周后,各亚群细胞数量可达:2×107。
     结论磁珠分选对小鼠骨髓间充质干细胞损伤较小,细胞得率尚可,可以满足进一步的研究。
     第四部分小鼠骨髓间充质干细胞不同亚群向心肌定向分化、抗凋亡、归巢能力的比较
     目的检测对比小鼠骨髓间充质干细胞不同亚群向心肌定向分化、抗凋亡及归巢的能力。
     方法首先采用与心肌细胞直接共同培养及5-氮杂-2'-脱氧胞苷(5-氮杂-2'-脱氧胞苷)诱导的方法,检测对比小鼠骨髓间充质干细胞不同亚群体外向心肌定向分化的能力。其次将小鼠骨髓间充质干细胞不同亚群及未分选群放入低氧(5%)、无血清培养环境24小时采用流式检测各亚群及未分选群凋亡率。并采用transwell小室内铺入Matrigel胶检验各亚群及未分选群干细胞体外归巢能力。将小鼠骨髓间充质干细胞4个亚群及一个未分选群体分别注入心梗模型小鼠体内,于48小时、96小时及7天分别行心脏彩超及小动物活体成像比较各亚群细胞体内的差异。
     结果与心肌细胞共培养和在5-氮杂胞嘧啶核苷诱导下的各亚群小鼠骨髓间充质干细胞均表达出心肌细胞特异性的抗原。荧光定量PCR可知SCA-1+/CD45+/CD31+亚群与心肌细胞共培养表达出心肌细胞特异性抗原、早期心肌启动基因GATA-4、NKx2.5的相对量高于其它亚群。体外采用流式检测各亚群及未分选群干细胞抗凋亡能力可见SCA-1+/CD45+/CD31+抗凋亡能力最强。Transwell小室证实细胞迁移、侵袭能力最强的为SCA-1+/CD45+/CD31+。体内注射干细胞,心脏彩超提示干细胞注射48小时、96小时及7天时SCA-1+/CD45+/CD31+亚群心功能改善明显。小动物活体成像提示:干细胞注射48小时、96小时及7天时:SCA-1+/CD45+/CD31+的亚群平均荧光强度高于其它亚群。采用原位免疫组化检测各亚群干细胞注射96小时心梗心肌,可见局部心肌干细胞大量增加。各亚群细胞动员心肌干细胞的能力为:SCA-1+/CD45+/CD31+>SCA-1+/CD45-/CD31+>SCA-1+/CD45-/CD31->SCA-1+/CD45+/CD31-。
     结论SCA-1+/CD45+/CD31+亚群体外心肌定向分化、抗凋亡、归巢均优于其它亚群及未分选群。体内实验表明各亚群干细胞注射后首先按照血流动力学完成初次分布,再完成各自归巢。体内实验表明SCA-1+/CD45+/CD31+心功能改善、归巢、抗凋亡能力优于其它亚群及未分选群与体外实验相符。本试验证实小鼠骨髓间充质干细胞各亚群均可以动员心脏干细胞,推测骨髓间充质干细胞治疗心肌梗死,早期通过旁分泌动员机体自身的心肌干细胞修复。治疗晚期则主要通过干细胞的心肌转分化完成修复。并且各亚群细胞动员心肌干细胞的能力不同。
     第五部分小鼠骨髓间充质干细胞亚群基因芯片分析
     目的从分子水平探讨小鼠骨髓间充质干细胞4各亚群生物学表现。
     方法采用基因芯片技术完成Agilent小鼠全基因4*44K芯片表达谱基因检测。
     结果在任何两组间存在4倍变化(取对数后的倍数变化值为2),则认为该基因存在差异表达。共有5619个转录本差异表达。对5619个转录本进行GO及Pathway分析后进行聚类分析,可见: SCA-1+/CD45+/CD31+与SCA-1+/CD45+/CD31-、SCA-1+/CD45-/CD31+、SCA-1+/CD45-/CD31-在心血管发育基因上有172个差异表达4倍的基因。SCA-1+/CD45+/CD31+与SCA-1+/CD45+/CD31-、SCA-1+/CD45-/CD31+、SCA-1+/CD45-/CD31-在有关迁移基因上有152个差异表达4倍的基因。SCA-1+/CD45+/CD31-与SCA-1+/CD45+/CD31+、 SCA-1+/CD45-/CD31+、SCA-1+/CD45-/CD31-在有关凋亡基因上有277个差异表达4倍的基因。对涉及的迁移的基因进一步将表达量最高的及最低的基因进行聚类可见:Madcam1、Spag9、Rap2a、I116、Ednrb基因,SCA-1+/CD45+/CD31+较其它组表达明显降低。Ednrb、Dcx、Rasgrf1、Srgap1基因,SCA-1+/CD45+/CD31+较其它组表达明显增高。对涉及的有关心血管发育的基因进一步将表达量最高的及最低的基因进行聚类可见:Rapgef1、Dsc2、Nrcam、Pr17d1、Itga4、Pcsk5、Scma3c、My13、Myo18b、Chi31l基因,SCA-1+/CD45+/CD31+较其它组表达明显升高。Nrcam、Co111a1、Prrx1基因,SCA-1+/CD45+/CD31+较其它组表达明显降低。对涉及的有关凋亡的基因进一步将表达量最高的及最低的基因进行聚类可见:Park2、Prkcb、Frzb、Dmpk基因,SCA-1+/CD45+/CD31+较其它组表达明显降低。Lcn2、Egr3、Pik3r3、Mdrn4、Cul7、Fcerlg、Map3kg基因,SCA-1+/CD45+/CD31+较其它组表达明显增高。
     将SCA-1+/CD45+/CD31+与其它组的迁移基因的聚类分析及Network结果共同比较可见Dcx及MADCAM1为两者的交集说明其功能及表达量与其它亚群不同应为有关迁移的关键基因。将SCA-1+/CD45+/CD31+与其它组的心血管发育基因的聚类分析及Network结果共同比较可见两者无交集,考虑上述差异基因均为4倍表达,固以Network结果为主可见:SETD2、NCL、EPOR、Rock2为感兴趣基因。将SCA-1+/CD45+/CD31+与其它组的有关于凋亡基因的聚类分析及Network结果共同比较可见两者无交集,考虑上述差异基因均为4倍表达,固以Network结果为主可见:NFkB1、RB1、E2F1为感兴趣基因。
     结论进一步明确小鼠骨髓间充质干细胞为一多克隆的群体。通过基因芯片结果可知在表达调节循环系统发育基因上主要是由于SETD2、NCL、EPOR、Rock2的作用导致SCA-1+/CD45+/CD31+亚群细胞与其它三组细胞存在有明显差异。在表达调节细胞迁移基因上主要是由于Dcx及MADCAM1作用导致SCA-1+/CD45+/CD31+亚群细胞与其它三组细胞存在有差异。在表达调节细胞凋亡基因上主要是由于NFkB1、RB1、E2F1的存在导致SCA-1+/CD45+/CD31+细胞与其它三组细胞在抗凋亡上存在有明显差异。
Background Since1976, Friedenstein for the first time provides more direct evidence toprove that the precursor cells in bone marrow stromal cells.1984, Owen first defined theadherent growth of bone marrow mononuclear cells for bone marrow mesenchymal stemcells (BMSC).1987, Friedenstein et al also found that, under certain conditions, theadherent bone marrow mononuclear cells cultured in plastic Petri dishes differentiate intoosteoblasts、chondrocytes、adipocytes and myoblasts,and amplified20-30generations stillmaintain differentiation potential。1981Martin first isolated embryonic stem cells frommouse embryos, stem cell transplantation is the rapid development. In2003, Food andDrug Administration (FDA) first approved the autologous bone marrow stem celltransplantation for treatment of myocardial infarction disease. All over the world havecarried out the study of stem cell therapy. At present, bone marrow mesenchymal stemcells are used the most widely. China has carried out studies of bone marrow mesenchymalstem cells to treat liver, pancreas, nerves, heart and other organ lesions. And published alots of researches and bone marrow mesenchymal stem cells to treat autoimmune diseaseshave been clinical stage. But undeniable bone marrow mesenchymal stem cells have somedegree of treatment effect, but far short of expectations. In particular, many basic andclinical trials showed that stem cell transplantation can repair the damage myocardial,promote angiogenesis, reduce the myocardial infarct size and improve heart function. But,there is a dispute to what extent bone marrow mesenchymal stem cells improve heartfunction on different research institutions. It may be due to bone marrow mesenchymalstem cells are a group of polyclonal populations of cells, different clonal have differentfunctions or different differentiation direction.Find the different functions subsets is a urgent mission. In2002, Daniele Torella, first isolate an inherent cardiac stem cells frommouse heart, thus break a concept of the myocardial cells are immortalized cells. Furtherstudies showed that its surface differentiation antigens, can be divided into six subsets andsix subsets cells can differentiation into myocardial cells directly. And cardiac stem cellsderived from bone marrow stem cell pool. On the basis of these studies, we consider usinghave been known differentiation antigen of mouse cardiac stem cells, sorting mouse bonemarrow mesenchymal stem cells and found directed to the cardiac differentiation of bonemarrow mesenchymal stem cells clone subsets.
     Part I Murine bone marrow mesenchymal stem cells were isolated andcultured
     Objective Bone marrow mesenchymal stem cells (Bone Mesenchymal Stem CellsBMSCs) isolated from mouse bone marrow. Experimental platform is builted for furthercell sorting.
     Methods whole bone marrow culture. The beads and adherent purify and passage.Fat bone and Cartilage differentiation experimental testing cell differentiation function.Identification of cell surface antigen expression by flow cytometry.
     Results In vitro culture of primary mouse bone marrow mesenchymal stem cellsafter (7-10) days80%-90%confluence.3rd passage bone marrow mesenchymal stem cellsnegative selected by CD11b beads and continued to culture to7passage. Identification offlow cytometry: the results showed that over90%of mouse bone marrow mesenchymalstem cells express CD29(cell integrin molecules), CD34(progenitor cell surfacedifferentiation antigen) and CD44(adhesion molecule); but did not express thehematopoietic progenitor cell surface marker CD11b、MRD-1、ABCG2.7th passageBMSCs in G0/G1phase cells was73.23%, G2phase cells was0%, S phase cells (G3) was0%, the cells in a quiescent, comply with the stem cell characteristics.
     Conclusion mouse whole bone marrow culture. The beads and adherent purify andpassage can effectively culture mouse bone marrow mesenchymal stem cells for stem cell subsets sorting.
     Part II The establishment of mouse myocardial infarction model
     Objective Tracheal intubation thoracotomy direct vision complete mouse coronaryanterior descending artery (LAD) ligation, and the establishment model of mousemyocardial infarction.
     Methods C57BL/6male mice,20, weight:16-20(17.8±2.2) g were randomlydivided into experimental group and control group (sham-operation group). Experimentalgroup,10, tracheal intubation, thoracotomy direct vision mouse coronary anteriordescending artery (LAD) ligation.
     Results After ligation, the limb leads (I or aVL), Q-wave (>1mv). chest leadelectrocardiogram sum R wave is less than10mv. In lead I and aVL R wave absence. LeadII ST segment elevation of more than0.2mv. After4weeks, review of echocardiography:compare with the control group (sham-operation group), Experimental group, mice leftventricular end diastolic diameter (LVEDd) and left ventricular end systolic diameter(LVEDs) increased significantly (P<0.01), left ventricular ejection fraction (LVEF) and leftventricular fractional shortening index (FS) significantly reduced in myocardial infarctionmodel group (P <0.01, P <0.01). Two-dimensional: left ventricular cavity to expand, theleft ventricular anterior wall segments movement weakened, disappear.
     Conclusion Tracheal intubation thoracotomy direct vision complete mouse coronaryanterior descending artery (LAD) ligation, model of mouse myocardial infarction can besuccessfully established.
     Part III Mouse bone marrow mesenchymal stem cell subsets sorting
     Objective According to test results of flow cytometry seventh passages the mousebone marrow mesenchymal stem cells by magnetic bead sorting purpose of subsets cells.
     Methods To7th passages mouse bone marrow mesenchymal stem cells though CD45+columns, sorting to get the CD45+cell population and CD45-cell population.CD45-cell though CD31+columns, sorting the SCA-1+/CD45-/CD31-and the SCA-1+/CD45-/CD31+two groups cells. And then the CD45+cell though CD31+columns, sortingthe SCA-1+/CD45+/CD31+and the SCA-1+/CD45+/CD31-, two groups cells.
     Results The final the SCA-1+/CD31-/CD45-cell count:7.8×106; the SCA-1+/CD31+/CD45-cell count:3×106; SCA-1+/CD31+/CD45+cell count:2×105; SCA-1+/CD31-/CD45+cell count:5×105. Magnetic bead sorting was approximately60%. Cells ingood condition, and culture three weeks, the number of various subsets cells up to:2×107.
     Conclusion Magnetic bead can sorting mouse bone marrow mesenchymal stemcells. cell yield is acceptabl and minor damage. Meet the further research.
     Part IV Murine bone marrow mesenchymal stem cells different subsets directeddifferentiation into cardiomyocytes, anti-apoptotic, homing capacity
     Objective Explore murine bone marrow mesenchymal stem cells subsets thecardiac differentiation, anti-apoptosis and homing ability.
     Methods First of all murine bone marrow mesenchymal stem cells subsets directlyco-cultured with the myocardial cells and5-aza-2'-deoxycytidine (5-aza-2'-deoxycytidine)induction method contrast to outgoing myocardial directional differentiationcapacity.Next, the mouse bone marrow mesenchymal stem cell subsets and unsorted groupinto hypoxia (5%), serum-free culture environment24hours using flow cytometry subsetsand unsorted group apoptosis rate.And transwell chamber Shop into the Matrigel testsubsets and unsorted group of stem cells homing ability.Murine bone marrowmesenchymal stem cells four sub-groups and a unsorting group were injected into themyocardial infarction model in mice at48hours,96hours and seven days ofechocardiography and small animal in vivo imaging various subsets of cells differences inthe body.
     Results And co-cultured myocardial cells and in5-aza-cytidine induction subsetsin mouse bone marrow mesenchymal stem cells express the cardiac myocyte-specific antigen.PCR shows that SCA-1+/CD45+/CD31+subsets with myocardial cells co-culturedto express the cardiac myocyte-specific antigen gene and early myocardial promoterGATA-4,, NKx2.5are higher than the other subsets.In vitro using flow cytometry subsetsand unsorted group of stem cell anti-apoptotic ability show of SCA-1+/CD45+/CD31+anti-apoptotic capacity is the strongest. Transwell chamber confirmedSCA-1+/CD45+/CD31+the strongest cell homing ability.Echocardiography suggestionstem cells were injected48hours,96hours and7days of the SCA-1+/CD45+/CD31+subsets of cardiac function improved significantly.Vivo imaging of small animals Tip:stem cells were injected48hours,96hours and7days: the SCA-1+/CD45+/CD31+subsets in mean fluorescence intensity higher than the other subsets.In situ immunohistochemical detection of various subsets of stem cells were injected96hours MImyocardium, visible local cardiac stem cells.Subsets of cells to mobilize the capacity ofcardiac stem cells:SCA-1+/CD45+/CD31+> SCA-1+/CD45-/CD31+>SCA-1+/CD45-/CD31-> SCA-1+/CD45+/CD31-.
     Conclusion Directed differentiation of myocardium the SCA-1+/CD45+/CD31+sub-populations, anti-apoptosis, homing are better than the other subsets andnon-sorting group. The in vivo experiments show that after stem cell subsets are injectedaccordance with the hemodynamic completed in the first initial distribution, and thencomplete their homing. In vivo experiments show that the SCA-1+/CD45+/CD31+improvement of cardiac function, homing, anti-apoptotic ability is better than the othersubsets and unsorted groups and match the in vitro experiments. This test confirmed thatthe mouse bone marrow mesenchymal stem cell subsets can mobilize in cardiac stem cells.Speculated that bone marrow mesenchymal stem cells to treat myocardial infarction, earlymobilization of the body's own cardiac stem cells through paracrine. Treatment ofadvanced primarily through the stem cell transdifferentiation to complete the repair. Andvarious subsets of cells mobilization of cardiac stem cells have different ability.
     PartVI Murine bone marrow mesenchymal stem cell subsets microarray analysis
     Objection Explore the biological performance of4subsets of mouse bone marrowmesenchymal stem from the molecular level.
     Methods Using gene chip technology complete the Agilent mouse whole genome4*44k a transcriptome-chip.
     Result There are four-fold change (Logarithmic is2fold change), that the genesdifferentially expressed between any two groups. A total of5619transcripts differentiallyexpressed. After GO and Pathway analysis of5619transcription complete a clusteranalysis.There are172genes expression four times on cardiovascular developmentalbetween SCA-1+/CD45+/CD31+and SCA-1+/CD45+/CD31-、SCA-1+/CD45-/CD31+,SCA+/CD45-/CD31-. There are152genes expression four times oncell migration between SCA-1+/CD45+/CD31+and SCA-1+/CD45+/CD31-、SCA-1+/CD45-/CD31+,SCA+/CD45-/CD31-. There are277genes expression four times oncell apoptotic between SCA-1+/CD45+/CD31-and SCA-1+/CD45+/CD31+、SCA-1+/CD45-/CD31+,SCA+/CD45-/CD31-. Further involved in the migration Genes toexpress the highest and lowest gene cluster visible: SCA-1+/CD45+/CD31+compared withother groups were significantly reduced on Madcam1, Spag9, Rap2a, I116, Ednrb gene.The ednrb, Dcx, Rasgrf1, Srgap1genes, the SCA-1+/CD45+/CD31+compared with othergroups was significantly increased. Nrcam, Co111a1, Prrx1genes were significantlyreduced the SCA-1+/CD45+/CD31+compared with other groups. Further involved incardiovascular development genes highest and lowest gene cluster can be seen:SCA-1+/CD45+/CD31+was significantly increased compared with other groups express onRapgef1, Dsc2Nrcam, Pr17d1Itga4, Pcsk5Scma3c, My13, Myo18b, Chi31lgenes.Nrcam, Co111a1, Prrx1genes the SCA-1+/CD45+/CD31+compared with othergroups was significantly reduced. Further involved apoptosis-related gene expression of inthe highest and lowest gene cluster can be seen: Lcn2、Egr3、Pik3r3、Mdrn4、Cul7、Fcerlg、Map3kg genes, the SCA-1+/CD45+/CD31-significantly higher than the other groupexpression. Park2、Prkcb、Frzb、Dmpk genes, the SCA-1+/CD45-/CD31-compared withother groups were significantly reduced. Together in cluster analysis and Network resultson the SCA-1+/CD45+/CD31+migration of other groups of genes visible the Dcx, andMADCAM1both the intersection description of its function and expression of the migration and other subsets.They are key genes. Togetherin cluster analysis and Networkresults on the SCA-1+/CD45+/CD31+migration of other groups of genes visible the Dcx,and MADCAM1both the intersection description of its function and expression of themigration and other subsets.They are key genes.Togetherin cluster analysis and Networkresults on the SCA-1+/CD45+/CD31+cardiovascular development gene other groups ofgenes visible: SETD2, NCL, EPOR, Rock2of genes is key genes. SCA-1+/CD45+/CD31-andother groups, cluster analysis of apoptotic genes and Network results to compare visiblethe two no intersection, considering the above-mentioned differences in gene expressionwas4-fold, solid-based Network results visible: NFkB1, RB1, E2F1is key genes.
     Concluse: Further clear murine bone marrow mesenchymal stem cells as a polyclonalgroups. Regulation genes of developmental of the circulatory system SETD2、NCL、EPOR、Rock2lead to the SCA-1+/CD45+/CD31+cells compare to the other three groups ofcells has significant difference.Regulation genes of cell migration Dcx and MADCAM1lead to the SCA-1+/CD45+/CD31+cells compare to the other three groups of cells hassignificant difference.Regulation genes of cell apoptosis NFkB1、RB1、E2F1lead to theSCA-1+/CD45+/CD31+cells compare to the other three groups of cells has significantdifference.
引文
[1] E. Fuchs, J.A. Segre, Stem cells: a new lease on life, Cell100(2000)143–155.
    [2] M.F. Pittenger, A.M. Mackay, S.C. Beck, et al. Multilineage potential of adultmesenchymal stem cells, Science284(1999)143–147.
    [3] I. Sekiya, B.L. Larson, J.R. Smith,et al. Prockop, Expansion of human adult stem cellsfrom bone marrow stroma: conditions that maximize the yields of early progenitorsand evaluate their quality, Stem Cells20(2002)530–541.
    [4] S.-C. Hung, N.-J. Chen, S.-L. Hsieh, et al, Isolation and characterization of size-sievedstem cells from human bone marrow, Stem Cells20(2002)249–258.
    [5] C. Kopen, DJ. Prockop, DG. Phinney, Marrow stromal cells migrates throughoutforebrain and cerebellum, and they differentiate into astrocytes after injection intoneonatal mouse brains, Proc. Natl. Acad. Sci. U. S. A.96(1999)10711–10716.
    [6] Philippe Tropel, Danie`le Noel, Nadine Platet,et al. Isolation and characterisation ofmesenchymal stem cells from adult mouse bone marrow. Experimental Cell Research295(2004)395–406
    [7] Bianco. P., Robey. PG., Simmons. P.J, Mesenchymal stem cells: revisiting history,concepts, and assays. Cell Stem Cell,2008.2,313–319.
    [8] Rebelatto, C.K., Aguiar, A.M., Moretao, M.P.,et al Dissimilar differentiation ofmesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue.Exp. Biol. Med.2008.233,901–913.
    [9] Mizuno, H., Adipose-derived stemcells for tissue repair and regeneration: ten years ofresearch and a literature review. J. Nippon Med. Sch.2009.76,56–66.
    [10] Zuk, P.A., Zhu, M., Ashjian, P., et al., Human adipose tissue is a source of multipotentstem cells. Mol. Biol. Cell.2002.13,4279–4295.
    [11] D. Woodbury, K. Reynolds, I.B. Black, Adult bone marrow stromal stem cells expressgermline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis, J.Neurosci. Res.96(2002)908–917.
    [12] Pittenger MF, Mackay AM, Beck SC, et al, Multilineage potential of adult humanmesenchymal stem cells. Science1999;284(5411):143–147.
    [13] Amado LC, Saliaris AP, Schuleri KH, et al. Cardiac repair with intramyocardialinjection of allogeneic mesenchymal stem cells after myocardialinfarction[J].PNAS,2005,102(32):11474-11479.
    [14] Gojo, S., Gojo, N., Takeda, Y.,et al, In vivo cardiovasculogenesis by direct injection ofisolated adult mesenchymal stem cells. Exp. Cell Res.2003.288,51–59.
    [15]Barbash,IM.,Chouraqui,P.,Baron,J.etal.,Systemic delivery of bonemarrow-derivedmesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, andbody distribution. Circulation.2003.108,863–868.
    [16] Kinnaird, T., Stabile, E., Burnett, M.S.,et al. Marrow-derived stromal cells expressgenes encoding a broad spectrumof arteriogenic cytokines and promote in vitro and invivo arteriogenesis through paracrine mechanisms. Circ. Res.2004.94,678–685.
    [17] Caplan, A.I., Dennis, J.E., Mesenchymal stem cells as trophic mediators. J. Cell.Biochem.2006.98,1076–1084.
    [18] Du, Y.Y., Zhou, S.H., Zhou, T., et al, Immuno-inflammatory regulation effect ofmesenchymal stem cell transplantation in a rat model of myocardial infarction.Cytotherapy.2008.10,469–478.
    [19] Guo, J., Lin, G.S., Bao, C.Y., et al. Anti-inflammation role for mesenchymal stemcellstransplantation inmyocardial infarction. Inflammation.2007.30,97–104.
    [20] Paul, D., Samuel, S.M., Maulik, N., Mesenchymal stem cell: present challenges andprospective cellular cardiomyoplasty approaches for myocardial regeneration.Antioxid. Redox Signal.2009.11,1841–1855.
    [21] Nakanishi, C., Yamagishi, M., Yamahara, K.,et al. Activation of cardiac progenitorcells through paracrine effects of mesenchymal stem cells. Biochem. Biophys. Res.Commun.2008.374,11–16.
    [22] Friedenstein AJ, Petrakova KV, Kurolesova AI, et al. Heterotopic of bone marrow.Analysis of precursor cells for osteogenic and hematopoietic tissues [J].Transplantation,1968,6(2):230-247.
    [23] Majumdar MK, Thiede MA, Mosca JD, et al. Phenotypic and functional comparisonof cultures of marrowderived mesenchymal stem cells (MSCs) and stromal cells [J]. JCell Physiol,1998,176(1):57-66.
    [24] Zohar R, Sodek J, McCulloch CA. Characterization of stromal progenitor cellsenriched by flow cytometry [J]. Blood,1997,90(9):3471-3481.
    [25] Ratajczak MZ, Kuczynski WI, Sokol DL, et al. Expression and physiologicsignificance of Kit ligand and stem cell tyrosine kinase1receptor ligand in normalhuman CD34+, cKit+marrow cells [J]. Blood,1995,86(6):2161-2167.
    [26] D.G. Phinney, G. Kopen, R.L. Isaacson, D.J. Prockop, Plastic adherent stromal cellsfrom the bone marrow of commonly used strains of inbred mice: variations in yield,growth, and differentiation, J. Cell. Biochem.72(1999)570–585.
    [27] A.J. Friedenstein, U.J. Gorskaja, N.N. Kulagina, Fibroblast precursors in normal andirradiated mouse hematopoietic organs, Exp. Hematol.4(1976)267–274.
    [28] C.X. Xu, J.H. Hendry, N.G. Testa, T.D. Allen, Stromal colonies from mouse marrow:characterization of cell types, optimization of plating efficiency and its effect onradiosensitivity, J. Cell Sci.61(1983)453–466.
    [29] C. Kopen, D.J. Prockop, D.G. Phinney, Marrow stromal cells migrates throughoutforebrain and cerebellum, and they differentiate into astrocytes after injection intoneonatal mouse brains, Proc. Natl. Acad. Sci. U. S. A.96(1999)10711–10716.
    [30] Si, Y.-L., et al., MSCs: Biological characteristics, clinical applications and theiroutstanding concerns. Ageing Res. Rev.(2010).
    [31] Alexandra Peister, Jason A. Mellad, Benjamin L. Larson,et al. Adult stem cells frombone marrow (MSCs) isolated from different strains of inbred mice vary in surfaceepitopes, rates of proliferation, and differentiation potential. Blood.2004;103:1662-1668.
    [32] Lindolfo da Silva Meirelles, Pedro Cesar Chagastelles, Nance Beyer Nardi.Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal ofCell Science119,2204-2213.
    [1] Scherrer-Crosbie M, Steudel W, Ullrich R, et al. Echocardiographic determination ofrisk area size in a murine model of myocardial ischemia. Am J Physiol1999;277:H986–92.
    [2] Scherrer-Crosbie M, Steudel W, Hunziker PR, et al. Determination of right ventricularstructure and function in normoxic and hypoxic mice: a transesophagealechocardiographic study. Circulation1998;98:1015–21.
    [3] Manning WJ, Wei JY, Katz SE, et al. Echocardiographically detected myocardialinfarction in the mouse. LabAnim Sci1993;43:583–5.
    [4] Manning WJ, Wei JY, Katz SE, et al. In vivo assessment of LV mass in mice usinghigh-frequency cardiac ultrasound: necropsy validation. Am J Physiol1994;266:H1672–5.
    [5] Hoit BD, Khoury SF, Kranias EG, et al. In vivo echocardiographic detection ofenhanced left ventricular function in genetargeted mice with phospholambandeficiency. Circ Res1995;77:632–7.
    [6] Gardin JM, Siri F, Kitsis RN, et al. Intravascular ultrasound catheter evaluation of theleft ventricle in mice: a feasibility study. Echocardiography1996;13:609–12.
    [7] Siri FM, Jelicks LA, Leinwand LA, et al. Gated magnetic resonance imaging of normaland hypertrophied murine hearts. Am J Physiol1997;272:H2394–402.
    [8] Gardin JM, Siri FM, Kitsis RN, et al. Echocardiographic assessment of left ventricularmass and systolic function in mice. Circ Res1995;76:907–14.
    [9] Manuel Salto-Tellez, Sing Yung Limb, Reida Menshawe El Oakley. et al. Myocardialinfarction in the C57BL/6J mouse A quantifiable and highly reproducibleexperimental model. Cardiovascular Pathology13(2004)91–97
    [10] McFate SW: Epidemiology of congestive heart failure. Am J Cardiol1985;55(supplA):3-8.
    [11] Gay RG, TA Gnstafson, S Goldman, E Morkin: Effects of L-thyroxine in rats withchronic heart failure after MI. Am J Physiol2007;253: H341-6.
    [12] Johns TPN, Olson BJ: Experimental myocardial infarction,1: a method of coronaryocclusion in small animals. Ann Surg1954;140:675-82.
    [13] Pfeffer MA, Pfeffer JM, Fishbein MC, Fletcher PJ, Spadaro J, Kloner RA, BraunwaldE: Myocardial infarct size and ventricular function in rats. Circ Res1979;44:503-12
    [14] Fishbein MC, Maclean D, Maroko PR: Experimental myocardial infarction in the rat.Am J Pathol1978;90:57-70.
    [15] Fletcher PJ, Pfeffer JM, Pfeffer MA, Braunwald E: LV diastolic pressure-volumerelations in rats with healed myocardial infarction: effects on systolic function. CircRes1981;49:618-26
    [16] Kajstura J, Liu Y,Baldini A. et a1, Coronary artery constriction in rats: Necrotic andapoptot ic myocyte death. Am J Cardiol,1998,82(5A):30K-41K.
    [17]Bardales RH, Hailcy LS, Xie SS, et a1.In situ apoptosis assay for the detection ofearly acut e myocardial infarction. Am J Pathol,1996,149(3):821-829.
    [18] Litwin SE, Katz SE, Morgan JP, et a1. Serial echocardilgraphic assessment of leftventricular genometry and function after large myocardial infarction in the rat.Circulation,1994,89(3):345-354.
    [19] Steven Goldman, Thomas E. Raya, Rat Infarct Model of Myocardial Infarction andHeart Failure Journal of Cardiac Failure Vol.1No.21995.
    [1] Sensen, C. W., Heimann, K., Melkonian, M. et al.The production of clonal and axeniccultures of microalgae using fluorescence-activated cell sorting. Eur. J. Physiol.,2009.28,93-97.
    [2] Nooomura, A. M., Coder, D. M.. Improved phycocatalysis of carotene production byflow cytometry and cell sorting. Biocatalysis,2008.1,333-338.
    [3] An, G.-H., Bielicb, J., Auerbacb, R., et al. Isolation and characterization ofcarotenoid hyperproducing mutants of yeast by flow cytometry and cellsorting. Bio/Technology,2010.9,70-73.
    [4] Finch, R. P., Shunet, I. H., Cocking, E. C.et al. Production of heterokaryons by thefusion of mesophyll protoplasts of Porteresia coactatu and cell suspension-derivedprotoplasts of Oryzue sativa: a new approach to somatic hybridization in rice. J. PlantPhysiol,2010.136,592-598.
    [5] Katsuragi, T., Kawabata, N., Sakai, T. Selection of hybrids from protoplast fusion ofyeasts by double fluorescence labelling and automatic cell sorting. Lett. Appl.Microbial.,2004.19,92-94.
    [6] Belt,P.J. L., Deere, D., Shen, J.A. et al. flow cytometric method for rapid selection ofnovel industrial yeast hybrids. Appl. Environ. Microbial.,2011.64,1669-1672.
    [7] Davey, H. M., Kell, D. B.et al. Fluorescent brighteners: novel stains for the flowcytometric analysis of microorganisms. Cytometry,2012.28,311-315.
    [8] Jindal RM, McShane P, Gray DW, ET al. Isolation and purification of pancreatic isletsby fluorescence activated islet sorter. Transplant Proc2009,26:653-657.
    [9] Siegel D L. Selecting antibodies to cell surface antigens using magnetic sortingtechniques. Methods Mol Biol,2002,178:219-226.
    [10] LBBBE AS, ALEXI OU C, BERGEMANN C. Clinical applications of magnetic drugtargeting [J] J Surg Res,2001,95(2):200-206.
    [11] MARKW, ROBER K, N I CHOLASA, et al. Hepat ocellular carcinoma regi onaltherapy with a magnetic targeted carrier bound t o doxorubicin in a dualMR i magingconventional angiography suite-Initial experience with four patients [J] Radiology,2004,230(1):287-293.
    [12] KALUZ AK, VILE RG. Magnetic cells for cancer therapy: adopting magnets forcell-based cancer therapies [J]. Gene Ther,2008,15:1511-1512.
    [13] AVITAL I, INDERBIZI ND, AOKI T, et al. Isolation, characterization, andtransplantation of bone marrow-derived hepatocyte stem cells [J]. Biochem BiophysRes Commun,2001,288(1):156-164.
    [14] CONDIOTTI R, ZAKAI YB, BARAKV. Ex vivo expansion of CD56+cytotoxiccells from human umbilical cord blood [J]. Exp Hematol,2001,29(1):104-113.
    [15] Katarzyna Jezierska-Wo niak1, Dorota Mystkowska1, Anna Tutas1, et al. Stem cellsas therapy for cardiac disease-a review. FOLIA HISTOCHEMICA ETCYTOBIOLOGICA.2011.49-1-.13–25
    [16] Sveva Bollini, Nicola Smart, Paul R. Riley. Resident cardiac progenitor cells: At theheart of regeneration. Journal of Molecular and Cellular Cardiology (2011)50296–303.
    [1] Mani T. Valarmathi, Richard L. Goodwin, John W. Fuseler,et al. A3-D cardiac muscleconstruct for exploring adult marrow stem cell based myocardial regeneration.Biomaterials.2010Apr;31(12):3185-200.
    [2] Rose RA, Jiang H, Wang X,et al. Bone marrow-derived mesenchymal stromal cellsexpress cardiac-specific markers, retain the stromal phenotype, and do not becomefunctional cardiomyocytes in vitro.2008Nov;26(11):2884-92.
    [3] Zhang FB, Yang HT. Plasticity of bone marrow mesenchymal stem cells differentiatinginto cardiomyocytes and the potential of cardiac therapeutics, Sheng Li Ke Xue JinZhan,2006Jul;37(3):199-204.
    [4] Philippe Tropel, Daniele Noel, Nadine Platet,et al, Isolation and characterisation ofmesenchymal stem cells from adult mouse bone marrow, Experimental Cell Research295(2004)395–406.
    [5] Israel M. Barbash, Pierre chouraqui, Jack Baron. Systemic Delivery of BoneMarrow–Derived Mesenchymal Stem Cells to the Infarcted Myocardium, Circulation,2003;108:863-868.
    [6] Ahmed Abdel-Latif,Roberto Bolli,Imad M. Tleyjeh, Adult Bone Marrow–DerivedCells for Cardiac Repair-A Systematic Review and Meta-analysis, Arch Intern Med.2007;167(10):989-997
    [7] Michael A. Laflamme, Charles E. Murry, Heart regeneration, Nature2011;473:326-335.
    [8] Pittenger MF, Mackay AM, Beck SC et al. Multilineage potential of adult humanmesenchymal stem cells. Science1999;284:143–147.
    [9] Bianco P, Gehron Robey P. Marrow stromal stem cells. J Clin Invest2000;105:1663–1668.
    [10] Friedenstein AJ et al. Heterotopic of bone marrow. Analysis of pre-cursor cells forosteogenic and hematopoietic tissues. Transplantation1968;6:230–247.
    [11] Tokcaer-Keskin Z, Akar AR, Ayaloglu-Butun F et al. Timing of induction ofcardiomyocyte differentiation for in vitro cultured mes-enchymal stem cells: Aperspective for emergencies. Can J Physiol Pharmacol2009;87:143–150.
    [12] Jori FP, Napolitano MA, Melone MA et al. Molecular pathways involved in neural invitro differentiation of marrow stromal stem cells. J Cell Biochem2005;94:645–655.
    [13] Beyer Nardi N, da Silva Meirelles L. Mesenchymal stem cells: Isola-tion, in vitroexpansion and characterization. Handb Exp Pharmacol2006:249–282.
    [14] Pfeffer, M. A.&Braunwald, E.Ventricular remodeling after myocardial infarction.Circulation,2009,81,1161-1172.
    [15] Ferrari, G. et al. Muscle regeneration by bone marrow-derived myogenic progenitors.Science2008,279,1528-1530.
    [16] Jackson, K. A., Mi, T.&Goodell, M. A. Hematopoietic potential of stem cells isolatedfrom murine skeletal muscle. Proc. Natl Acad. Sci.1999, USA96,14482-14486.
    [17] Eglitis, M. A.&Mezey, E. Hematopoietic cells differentiate into both microglia andmacroglia in the brains of adult mice. Proc. Natl Acad. Sci.2007, USA94,4080-4085.
    [18] Theise, N. D. et al. Liver from bone marrow in humans. Hepatology,2000,32,11-16.
    [19] Brazelton, T.A., Rossi, F.M.V., Keshet, G.I.&Blau, H. M. From marrow to brain:expression of neuronal phenotypes in adult mice. Science2001,290,1775-1779.
    [20] Mezey, E., Chandross, K.J., Harta, G., Maki, R.A.&McKercher, S. R. Turning bloodinto brain: cells bearing neuronal antigens generated in vivo from bone marrow.Science,2000,290,1779-1782.
    [21] Vogel, G. Stem cells: new excitements, persistent questions. Science2000,290,1672-1674.
    [22] Hadjantonakis, A.K., Gerstenstein, M., Ikawa, M.,et al, A. Generating greenfluorescent mice by germline transmission of green fluorescent ES cells. Mech. Dev.1998,76,79-90.
    [23] Orlic, D., Fischer, R., Nishikawa, S-I.et al. Purification and characterization ofheterogeneous pluripotent hematopoietic stem cell populations expressing high levelsof c-kit receptor. Blood,2003,82,762-770.
    [24] OrlicD,Kajstura.J,Chimenti.S,et al.Bone marrow cells regenerate infarctedmyocardium. Nature,2004,410:701-705.
    [25] Wojciech Wojakowski, Micha Tendera, Magda Kucia, et al, Mobilization of BoneMarrow-Derived Oct-4/SSEA-4Very Small Embryonic-Like Stem Cells in PatientsWith Acute Myocardial Infarction, JACC,2009,53,1-9.
    [26] Daniele Torella, Ciro Indolfi, David F, et al, Cardiac stem cell-based myocardialregenration: Towards a translational approach Cardiovascular&HematologicalAgents in Medicinal Chemistry,2008,6:53-59
    [27] Bollini S, Smart N, Riley PR. Resident cardiac progenitor cells: at the heart ofregeneration. J Mol Cell Cardiol.2011Feb;50(2):296-303.
    [28] Jezierska-Wo niak K, Mystkowska D, Tutas A, Jurkowski MK. Stem cells as therapyfor cardiac disease-a review. Folia Histochem Cytobiol.2011;49(1):13-25.
    [29] Urbanek K, Rota M, Cascapera S, et al, Cardiac stem cell possesses the growthfactor-receptor system that following activation the regenerative the infarctedmyocardium improving ventricular function and long term survival. Circ Res.2005;97:663–673.
    [30] Chimenti C, Kajstura J, Torella D, et al, Senescence and death of primitive cells andmyocytes lead to premature cardiac aging and heart failure. Circ Res.2003;93:604–613.
    [31] Khwaja A, Lehmann K, Marte BM, Downward [J]. Phosphoinositide3-kinaseinduces scattering and tubulogenesis in epithelial cells through a novel pathway. JBiol Chem.1998;273:18793–18801.
    [32] Brown S, Heinisch I, Ross E, et al, Apoptosis disable CD31mediated cell detachmentfrom phagocytes promoting binding and engulfment [J]. Nature,2002,418(6894):200-203.
    [33] Hirai M, onok K, Morimoto T, et al, FOG-2competes with GATA-4for transcriptonalcoactivator P300and represses hyertrophie respenses in cardiac myecytes.[J]. J BiolChem,2004,279(36)37640-37650.
    [34] Tessa Peterkina, Abigail Gibsonb, Matthew Loosec, et al, The roles of GATA-4,-5and-6in vertebrate heart development, Seminars in Cell&Developmental Biology16(2005)83–94
    [35] Sepulveda JL, Vlahopoulos S, Iyer D, et al, Combinatorial expression of GATA4,Nkx2.5and serum response factor directs early cardiac gene activity. J Biol Chem2002;277:25775–82.
    [36] Nishida W, Nakamura M, Mori S, et al, A triad of serum response factor and theGATA and NK families governs the transcription of smooth and cardiac musclegenes. J Biol Chem2002;277:7308–17.
    [37] Shinji Makino1, Keiichi Fukuda1, Shunichirou Miyoshi,et al, Cardiomyocytes can begenerated from marrow stromal cells in vitro, J Clin Invest.1999;103(5):697–705.
    [38] Christine Mummery, Dorien Ward-van Oostwaard, Pieter Doevendans,et al,Differentiation of Human Embryonic Stem Cells to Cardiomyocytes: Role ofCoculture With Visceral Endoderm-Like Cells,2003,107:2733-2740
    [39] Das S, Engelman RM,Maulik N,et al. Angiotensin preconditioning of the heart:evidence for redox signaling. Cell Biochem Biophys2006;44:103–10.
    [40]Suzuki YJ, Nagase H, Day RM, et al. GATA-4regulation of myocardial survival in thepreconditioned heart. J Mol Cell Cardiol2004;37:1195–203.
    [41] Gurke L, Marx A, Sutter PM,, et al. Ischemic preconditioning improves post-ischemicskeletal muscle function. Am Surg1996;62:391–4
    [42] Xu M, Wang Y, Ayub A, et al. Mitochondrial K(ATP) channel activation reducesanoxic injury by restoring mitochondrial membrane potential. Am J Physiol HeartCirc Physiol2001;281:H1295–1303.
    [43] Takashi E, Ashraf M. Pathologic assessment of myocardial cell necrosis and apoptosisafter ischemia and reperfusion with molecular and morphological markers. J Mol CellCardiol2000;32:209–24.
    [44] Hausenloy DJ, Yellon DM. Survival kinases in ischemic preconditioning andpostconditioning. Cardiovasc Res2006;70:240–53.
    [45] Murry CE, Jennings RB,Reimer KA. Preconditioningwith ischemia: a delay of lethalcell injury in ischemic myocardium. Circulation1986;74:1124–36.
    [46] Debska G, Kicinska A, Skalska J, et al. Opening of potassium channels modulatesmitochondrial function in rat skeletal muscle. Biochim Biophys Acta2002;1556:97–105.
    [47] Kicinska A, Szewczyk A. Protective effects of the potassium channelopener-diazoxide against injury in neonatal rat ventricular myocytes. Gen PhysiolBiophys2003;22:383–95.
    [48] Kis B, Nagy K, Snipes JA, et al. The mitochondrial K(ATP) channel openerBMS-191095induces neuronal preconditioning. Neuroreport2004;15:345–9.
    [49] Skak K, Gotfredsen CF, Lundsgaard D, et al. Improved beta-cell survival and reducedinsulitis in a type1diabetic rat model after treatment with a beta-cell-selective K(ATP)channel opener. Diabetes2004;53:1089–95.
    [50] Kitamura Y, Nomura Y. Stress proteins and glial functions: possible therapeutic targetsfor neurodegenerative disorders. Pharmacol Ther2003;97:35–53.
    [51] Pasha Z, Wang Y, Sheikh R, et al, Preconditioning Enhances Cell Survival andDifferentiation of Stem Cells during Transplantation in Infarcted Myocardium.Cardiovasc Res2008;77:134–42.
    [52] Dzau VJ, Gnecchi M, Pachori AS. Enhancing stem cell therapy through geneticmodification. J Am Coll Cardiol2005;46:1351–3.
    [53] Ye L, Haider H, Jiang S, et al. Reversal of myocardial injury using geneticallymodulated human skeletal myoblasts in a rodent cryoinjured heart model. Eur J HeartFail2005;7:945–52.
    [54] Azarnoush K,Maurel A, Sebbah L, et al. Enhancement of the functional benefits ofskeletal myoblast transplantation by means of coadministration of hypoxia-induciblefactor1alpha. J. Thorac Cardiovasc Surg2005;130:173–9.
    [55] Kofidis T, de Bruin JL, Yamane T,et al. Insulin-like growth factor promotesengraftment, differentiation, and functional improvement after transfer of embryonicstem cells for myocardial restoration. Stem Cells2004;22:1239–45.
    [56] Kanemitsu N, Tambara K, Premaratne GU, et al. Insulin-like growth factor-1enhancesthe efficacy of myoblast transplantation with its multiple functions in the chronicmyocardial infarction rat model. J Heart Lung Transplant2006;25:1253–62.
    [57] Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylatingand inhibiting a Forkhead transcription factor. Cell1999;96:857–68.
    [58] H USEINK.SALEM, CHRIST HIEME RMANN, Mesenchymal Stromal Cells:Current Understanding and Clinical Status. Stemcell,2010;28:585–596.
    [59] Boyle AJ, Schulman SP, Hare JM, et al. Is stem cell therapy ready for patients? StemCell Therapy for Cardiac Repair. Ready for the Next Step. Circulation.2006;114(4):339-352.
    [60] Wollert KC, Meyer GP, Lotz J, et al. Intracoronary autologous bone-marrow celltransfer after myocardial infarction: the BOOST randomised controlled clinical trial.Lancet.2004;364(9429):141-148.
    [61] Dai W, Hale S L, Martin B J, et al. Allogeneic mesenchymal stem cell transplantationin postinfarcted rat myocardium: short and long-term effects[J].Circulation,2005,112(2):214-223.
    [62] Israel M. Barbash, Pierre Chouraqui, Jhons AD,et al, Systemic Delivery of BoneMarrow-Derived Mesenchymal Stem Cells to the Infarcted Myocardium: Feasibility,Cell Migration, and Body Distribution [J]. Circulation,2003,108:863.
    [63] Bentzon JF, Stenderup K, Hansen FD, et al. Tis sue dis tribution and engraftment ofhuman mesenchymal s tem cel ls immortal ized by human telomeras e reverse transcriptase gene. Biochem Biophys Res Commun2005;330(3):633-640
    [64] Nagaya N, Kangawa K, Itoh T, et al. Transplantation of mesenchymal stem cellsimproves cardiac function in a rat model of dilated cardiomyopathy [J]. Circulation,2005,112(11):1128-1135.
    [65] Fedak P W, Weisel R D, Verma S, et al. Restoration and regeneration of failingmyocardium with cell transplantation and tissue engineering [J]. Semin ThoracCardiovasc Surg,2003,15(2):277-286.
    [66] Konstantinos E. Hatzistergos, Henry Quevedo,et al, Bone Marrow Mesenchymal StemCells Stimulate Cardiac Stem Cell Proliferation and Differentiation, CirculationResearch,2010,(5)1-10.
    [1] Maskos,U;Southern,EM. Oligonucleotide hybridizations on glass supports: a novellinker for oligonucleotide synthesis and hybridization properties of oligonucleotidessynthesised in situ". Nucleic Acids Res.20(7):1679–84.
    [2] Augenlicht LH, Kobrin D. Cloning and screening of sequences expressed in a mousecolon tumor. Cancer Research.198242(3):1088–1093.
    [3] Wahrman, MZ; Halsey, H; Anderson, L;et al. Expression of cloned sequences inbiopsies of human colonic tissue and in colonic carcinoma cells induced todifferentiate in vitro. Cancer Research47(22):6017–6021.
    [4] Augenlicht et al. Patterns of Gene Expression that Characterize the Colonic Mucosa inPatients at Genetic Risk for Colonic Cancer.Proceedings National Academy ofSciences1988(8):3286–3289.
    [5] Kulesh DA, Clive DR, Zarlenga DS,et al.Identification of interferon-modulatedproliferation-related cDNA sequences. Proc Natl Acad Sci USA1987(23):8453–8457.
    [6] Schena M, Shalon D, Davis RW, et al. Quantitative monitoring of gene expressionpatterns with a complementary DNA microarray. Science1985(5235):467–470.
    [7] Lashkari DA, DeRisi JL, McCusker JH,et al.Yeast microarrays for genome wideparallel genetic and gene expression analysis. Proc Natl Acad Sci USA1995(24):13057–13062.
    [8] Brown, Jason P.; Couillard-Després, Sébastien; Cooper-Kuhn, Christiana M.; et al.Transient expression of doublecortin during adult neurogenesis. The Journal ofComparative Neurology.2003.467(1):1–10. doi:10.1002/cne.10874.
    [9] Horesh D, Sapir T, Francis F,et al.Doublecortin, a stabilizer of microtubules. Hum. Mol.Genet.1999.8(9):1599–610. PMID10441322
    [10] Sapir T, Horesh D, Caspi M,et al.Doublecortin mutations cluster in evolutionarilyconserved functional domains. Hum. Mol. Genet.2000.9(5):703–12.
    [11] Caspi, M; Atlas, R; Kantor, A.et al.Entrez Gene: mucosal vascular addressin celladhesion molecule-1.Human molecular genetics.2011.9(15):2205–13.
    [12] Shyjan AM, Bertagnolli M, Kenney CJ,et al.Human mucosal addressin cell adhesionmolecule-1(MAdCAM-1) demonstrates structural and functional similarities to thealpha4beta7-integrin binding domains of murine MAdCAM-1, but extremedivergence of mucin-like sequences. J. Immunol.2009.156(8):2851–7.
    [13] Leung E, Berg RW, Langley R, et al.Genomic organization, chromosomal mapping,and analysis of the5' promoter region of the human MAdCAM-1gene.Immunogenetics2010.46(2):111–9.
    [14] Oomen, Charlotte A.; Girardi, Carlos E. N.; Cahyadi, Rudy; et al.Opposite Effects ofEarly Maternal Deprivation on Neurogenesis in Male versus Female Rats. PLoS ONE.2009.4(1): e3675.
    [15] Sun XJ, Wei J, Wu XY,et al. Identification and characterization of a novel humanhistone H3lysine36-specific methyltransferase. J Biol Chem,2005,280(42):35261–71.
    [16] Rega S, Stiewe T, Chang DI,et al.Identification of the full-length huntingtin-interacting protein p231HBP/HYPB as a DNA-binding factor. Mol Cell Neurosci2009,18(1):68–79.
    [17] Faber, P W; Barnes G T, Srinidhi J,et al.Huntingtin interacts with a family of WWdomain proteins. Hum. Mol. Genet.(ENGLAND)2008,7(9):1463–74.
    [18] Srivastava M, McBride OW, Fleming PJ,et al.Genomic organization andchromosomal localization of the human nucleolin gene. J Biol Chem,2010265(25):14922–31.
    [19] Erard MS, Belenguer P, Caizergues-Ferrer M,et al. A major nucleolar protein,nucleolin, induces chromatin decondensation by binding to histone H1. Eur J Biochem2008,175(3):525–30.
    [20] Said EA, Krust B, Nisole S, et al."The anti-HIV cytokine midkine binds the cellsurface-expressed nucleolin as a low affinity receptor". J. Biol. Chem.2002,277(40):37492–502.
    [21] Said EA, Courty J, Svab J, et al.Pleiotrophin inhibits HIV infection by binding the cellsurface-expressed nucleolin". FEBS J.2005,272(18):4646–59.
    [22] Morimoto, Hiroyuki; Okamura Hirohiko, et al. Interaction of protein phosphatase1delta with nucleolin in human osteoblastic cells". J. Histochem. Cytochem.(UnitedStates)2010,50(9):1187–93.
    [23] Dubois, Thierry; Zemlickova Eva,et al.Centaurin-alpha1associates in vitro and invivo with nucleolin. Biochem. Biophys. Res. Commun.(United States)2004,301(2):502–8.
    [24] Li, D; Dobrowolska G, Krebs E G.The physical association of casein kinase2withnucleolin". J. Biol. Chem,1996,271(26):15662–8.
    [25] Fouraux, Michael A; Bouvet Philippe,et al.Nucleolin associates with a subset of thehuman Ro ribonucleoprotein complexes". J. Mol. Biol.(England)2002,320(3):475–88.
    [26] Haluska, P; Saleem A, Edwards T K, et al."Interaction between the N-terminus ofhuman topoisomerase I and SV40large T antigen". Nucleic Acids Res.2009,26(7):1841–7.
    [27] Bharti, A K; Olson M O, Kufe D W, et al. Identification of a nucleolin binding site inhuman topoisomerase I. J. Biol. Chem.2010,271(4):1993–7.
    [28] Daniely, Yaron; Dimitrova Diana D,et al. Stress-Dependent Nucleolin MobilizationMediated by p53-Nucleolin Complex Formation". Mol. Cell. Biol.2010,22(16):6014–22..
    [29] Sakaguchi, Masakiyo; Miyazaki Masahiro,et al. S100C/A11is a key mediator ofCa2+-induced growth inhibition of human epidermal keratinocytes. J. Cell Biol.2005,163(4):825–35.
    [30] Li, Y P; Busch R K, Valdez B C,et al. C23interacts with B23, a putativenucleolar-localization-signal-binding protein". Eur. J. Biochem.(1996)237(1):153–8.
    [31] Khurts, Shilagardi; Masutomi Kenkichi,et al. Nucleolin interacts with telomerase. J.Biol. Chem.(2004)279(49):51508–15.
    [32] Tominaga, K; Srikantan S, Lee EK,et al.Competitive Regulation of NucleolinExpression by HuR and miR-494. Mol. Cell. Biol.(2011)31(20):4219–31.
    [33] Livnah O, Stura EA, Middleton SA,et al. Crystallographic evidence for preformeddimers of erythropoietin receptor before ligand activation. Science2009,283(5404):987–90.
    [34] Youssoufian H, Longmore G, Neumann D, et al. Structure, function, and activation ofthe erythropoietin receptor". Blood.2003.81(9):2223–36.
    [35] Wilson IA, Jolliffe LK.The structure, organization, activation and plasticity of theerythropoietin receptor. Curr. Opin. Struct. Biol.2009.9(6):696–704.
    [36] Forsberg EC, Serwold T, Kogan S,et al. New evidence supportingmegakaryocyte-erythrocyte potential of flk2/flt3+multipotent hematopoieticprogenitors. Cell2006.126(2):415–26.
    [37] Wu H, Liu X, Jaenisch R,et al. Generation of committed erythroid BFU-E and CFU-Eprogenitors does not require erythropoietin or the erythropoietin receptor. Cell1995.83(1):59–67.
    [38] Socolovsky M, Fallon AE, Lodish HF. The prolactin receptor rescues EpoR-/-erythroid progenitors and replaces EpoR in a synergistic interaction with c-kit. Blood2009,92(5):1491–6.
    [39] Socolovsky M, Dusanter-Fourt I, Lodish HF.The prolactin receptor and severelytruncated erythropoietin receptors support differentiation of erythroid progenitors. J.Biol. Chem.2008.272(22):14009–12.
    [40] Zang H, Sato K, Nakajima H,et al. The distal region and receptor tyrosines of the Eporeceptor are non-essential for in vivo erythropoiesis." EMBO J200920(12):3156–66.
    [41] Hahmann C, Schroeter T.Rho-kinase inhibitors as therapeutics: from pan inhibition toisoform selectivity. Cell Mol Life Sci.2010.67(2):171–7.
    [42] Riento K, Ridley AJ.Rocks: multifunctional kinases in cell behaviours. Nat Rev MolCell Biol20034(6):446–56.
    [43] Leung T, Chen XQ, Manser E,et al. The p160RhoA-binding kinase ROK alpha is amember of a kinase family and is involved in the reorganization of the cytoskeleton"Mol. Cell. Biol.2009.16(10):5313–27.
    [44] Nakagawa O, Fujisawa K, Ishizaki T,et al. ROCK-I and ROCK-II, two isoforms ofRho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBSLett.1996.392(2):189–93.
    [45] Meyer R, Hatada EN, Hohmann HP, et al. Cloning of the DNA-binding subunit ofhuman nuclear factor kappa B: the level of its mRNA is strongly regulated by phorbolester or tumor necrosis factor alpha". Proc Natl Acad Sci U S A,2010.88(3):966–70
    [46] Skarnes, W. C.; Rosen, B.; West, A. P.; et al. A conditional knockout resource for thegenome-wide study of mouse gene function". Nature (2011).474(7351):337–342.
    [47] Murphree AL, Benedict WF.Retinoblastoma: clues to human oncogenesis". Science2009223(4640):1028–33.
    [48] Korenjak M, Brehm A. E2F-Rb complexes regulating transcription of genesimportant for differentiation and development". Curr. Opin. Genet. Dev.2010.15(5):520–7.
    [49] Münger K, Howley PM. Human papillomavirus immortalization and transformationfunctions". Virus Res.2009.89(2):213–28.
    [50] Neuman E, Sellers WR, McNeil JA, et al. Structure and partial genomic sequence ofthe human E2F1gene. Gene2009.173(2):163–9.
    [51] Kong, Hee Jeong; Yu Hyun Jung, et al. Interaction and functional cooperation of thecancer-amplified transcriptional coactivator activating signal cointegrator-2andE2F-1in cell proliferation". Mol. Cancer Res.(United States)2010.1(13):948–58.
    [1] Martin GR. Isolation of a pluripotent cell line from earlymouse embryos cultured inmedium conditi oned by teratocarcinoma stem cells [J]. Proc Natl Acad Sci USA,1981,78(12):7634-7638.
    [2] Bianco. P., Robey. PG., Simmons. P.J, Mesenchymal stem cells: revisiting history,concepts, and assays. Cell Stem Cell,2008.2,313–319.
    [3] Rebelatto, C.K., Aguiar, A.M., Moretao, M.P.,et al Dissimilar differentiation ofmesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue.Exp. Biol. Med.2008.233,901–913.
    [4] Mizuno, H., Adipose-derived stemcells for tissue repair and regeneration: ten years ofresearch and a literature review. J. Nippon Med. Sch.2009.76,56–66.
    [5] Zuk, P.A., Zhu, M., Ashjian, P., et al., Human adipose tissue is a source of multipotentstem cells. Mol. Biol. Cell.2002.13,4279–4295.
    [6] Pittenger MF, Mackay AM, Beck SC, et al, Multilineage potential of adult humanmesenchymal stem cells. Science1999;284(5411):143–147.
    [7] Amado LC, Saliaris AP, Schuleri KH, et al. Cardiac repair with intramyocardialinjection of allogeneic mesenchymal stem cells after myocardialinfarction[J].PNAS,2005,102(32):11474-11479.
    [8] Gojo, S., Gojo, N., Takeda, Y.,et al, In vivo cardiovasculogenesis by direct injection ofisolated adult mesenchymal stem cells. Exp. Cell Res.2003.288,51–59.
    [9]Barbash,I.M.,Chouraqui,P.,Baron, J., et al., Systemic delivery ofbonemarrow-derivedmesenchymal stemcells to the infarctedmyocardium: feasibility,cell migration, and body distribution. Circulation.2003.108,863–868.
    [10] Kinnaird, T., Stabile, E., Burnett, M.S.,et al. Marrow-derived stromal cells expressgenes encoding a broad spectrumof arteriogenic cytokines and promote in vitro and invivo arteriogenesis through paracrine mechanisms. Circ. Res.2004.94,678–685.
    [11] Caplan, A.I., Dennis, J.E., Mesenchymal stem cells as trophic mediators. J. Cell.Biochem.2006.98,1076–1084.
    [12] Du, Y.Y., Zhou, S.H., Zhou, T., et al, Immuno-inflammatory regulation effect ofmesenchymal stem cell transplantation in a rat model of myocardial infarction.Cytotherapy.2008.10,469–478.
    [13] Guo, J., Lin, G.S., Bao, C.Y., et al. Anti-inflammation role for mesenchymal stemcellstransplantation inmyocardial infarction. Inflammation.2007.30,97–104.
    [14] Paul, D., Samuel, S.M., Maulik, N., Mesenchymal stem cell: present challenges andprospective cellular cardiomyoplasty approaches for myocardial regeneration.Antioxid. Redox Signal.2009.11,1841–1855.
    [15] Nakanishi, C., Yamagishi, M., Yamahara, K.,et al. Activation of cardiac progenitorcells through paracrine effects of mesenchymal stem cells. Biochem. Biophys. Res.Commun.2008.374,11–16.
    [16] Si, Y.-L., et al., MSCs: Biological characteristics, clinical applications and theiroutstanding concerns. Ageing Res. Rev.(2010).
    [17] Ohishi,M., Schipani, E., Bonemarrowmesenchymal stemcells. J. Cell. Biochem.2010.109,277–282.
    [18] Le Blanc, K., Ringden, O., Immunomodulation bymesenchymal stemcells and clinicalexperience. J. Intern. Med.2007.262,509–525.
    [19] Jones, S., Horwood, N., Cope, A., et al.,2007. The antiproliferative effect ofmesenchymal stem cells is a fundamental property shared by all stromal cells.J.Immunol.179,2824–2831.
    [20] Corcione, A., Benvenuto, F., Ferretti, E.,et al, Human mesenchymal stem cellsmodulate B-cell functions. Blood.2006.107,367–372.
    [21] Djouad, F., Charbonnier, L.M., Bouffi, C., et al, Mesenchymal stem cells inhibit thedifferentiation of dendritic cells through an interleukin-6-dependent mechanism StemCells.2007.25,2025–2032.
    [22] Meirelles Lda, S., Fontes, A.M., Covas,D.T., et al, Mechanisms involved in thetherapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev.2009.20,419–427.
    [23] Meirelles Lda, S., Fontes, A.M., Covas,D.T.,et al. Mechanisms involved in thetherapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev.2009.20,419–427.
    [24] Fiorina, P., Jurewicz, M., Augello, A., et al. Immunomodulatory function of bonemarrow-derived mesenchymal stem cells in experimental autoimmune type1diabetes.J. Immunol.2009.183,993–1004.
    [25] Bouffi, C., Djouad, F., Mathieu, M., et al., Multipotent mesenchymal stromal cells andrheumatoid arthritis: risk or benefit? Rheumatology.2009.48,1185–1189.
    [26] Zhang, H., Zeng, X., Sun, L., Allogenic bone-marrow-derived mesenchymal stemcellstransplantation as a novel therapy for systemic lupus erythematosus. Expert. Opin.Biol. Ther.2010.10,701–709.
    [27] Tyndall, A., EULAR Stromal Cell Translational Group. Mesenchymal stem cells formultiple sclerosis: can we find the answer? Mult. Scler.2010.16,386.
    [28] Martino, G., Franklin, R.J., Van Evercooren, A.B., et al., Stem Cells in MultipleSclerosis (STEMS) Consensus Group,2010. Stem cell transplantation in multiplesclerosis: current status and future prospects. Nat. Rev. Neurol.6,247–255.
    [29] Shake JG, Gruber PJ, Baumgartner WA, et al. Mesenchymal stem cell implantation ina swine myocardial infarct model: engraftment and functional effects. Ann ThoracSurg2002;73(6):1919–1926.
    [30] Yoon YS, Park JS, Tkebuchava T, et al, Unexpected severe calcification aftertransplantation of bone marrow cells in acute myocardial infarction. Circulation2004;109(25):3154–3157.
    [31] Jiang Y, Vaessen B, Lenvik T, et al, Multipotent progenitor cells can be isolated frompostnatal murine bone marrow, muscle, and brain. Exp Hematol2002;30(8):896–904.
    [32] Min Cheng, Junlan Zhou, Min Wu, et al, CXCR4-Mediated Bone Marrow ProgenitorCell Maintenance and Mobilization Are Modulated by c-kit Activity. CirculationResearch, Oct.29,2010.110:1-11.
    [33] Psaltis, P.J., Zannettino, A.C., Worthley, S.G., et al, Concise review: mesenchymalstromal cells: potential for cardiovascular repair. Stem Cells.2008.26,2201–2210.
    [34] Petrie Aronin, C.E., Tuan, R.S., Therapeutic potential of the immunomodulatoryactivities of adult mesenchymal stem cells. Birth Defects Res. C. EmbryoToday.2010.90,67–74.
    [35] Ankrum, J., Karp, J.M., Mesenchymal stemcell therapy: two steps forward, one stepback. Trends Mol. Med.(Epub ahead of print).2010.
    [36] Konstantinos E. Hatzistergos, Henry Quevedo, et al, Bone Marrow MesenchymalStem Cells Stimulate Cardiac Stem Cell Proliferation and Differentiation. CirculationResearch October1,2010
    [37] Chapel, A., Bertho, JM., Bensiodhoum, M., et al. Mesenchymal stem cells home toinjured tissues when co-infused with hematopoietic cells to treat a radiation-inducedmulti organ failure syndrome. J. Gene Med.2003.5,1028–1038.
    [38] Chavakis, E., Urbich, C., Dimmeler, S., Homing and engraftment of progenitor cells:a prerequisite for cell therapy. J. Mol. Cell. Cardiol.2008.45,514–522.
    [39] Brooke, G., Tong, H., Levesque, J.P., et al., Molecular trafficking mechanisms ofmultipotent mesenchymal stem cells derived from human bone marrow and placenta.Stem Cells Dev.2008.17,929–940.
    [40]Cselenyak, A., Pankotai, E., Horvath, E.M., et al., Mesenchymal stem cells rescuecardiomyoblasts from cell death in an in vitro ischemia model via direct cell-to-cellconnections. BMC Cell Biol.2010.11,29.
    [41] Perán, M., Marchal, J.A., López, E., et al. Human cardiac tissue inducestransdifferentiation of adult stem cells towards cardiomyocytes. Cytotherapy.2010.12,332–337.
    [42] Toma, C., Pittenger, M.F., Cahill, K.S.,et al., Human mesenchymal stem cellsdifferentiate to a cardiomyocyte phenotype in the adult murine heart.Circulation.2002.105,93–98.
    [43] Cheng, Z., Liu, X., Ou, L., et al, Mobilization of mesenchymal stem cells bygranulocyte colony-stimulating factor in rats with acute myocardial infarction.Cardiovasc. Drugs Ther.2008.22,363–371.
    [44] Crisan, M., Chen, C.W., Corselli, M., et al., Perivascular multipotent progenitor cellsin human organs. Ann. N. Y. Acad. Sci.2009.1176,118–123.
    [45] Khan,W.S.,Adesida,A.B., Tew, S.R., et al, Bonemarrow-derived mesenchymal stemcells express the pericyte marker3G5in culture and show enhanced chondrogenesisin hypoxic conditions. J. Orthop. Res.2010.28,834–840.
    [46] Segers, V.F., Lee, R.T., Stem-cell therapy for cardiac disease. Nature.2008.451,937–942.
    [47]Dai,W.,Hale,S.L.,Martin,B.J.,etal. Allogeneicmesenchymal stemcelltransplantationinpostinfarcted ratmyocardium: short-and long-term effects.Circulation.2005.112,214–223.
    [48] Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiactherapeutics. Circ Res2004;95(1):9–20.horac Surg,2006,30(2):353-361.
    [49] Rodrigues T, Carrondo MJ, Alves PM, et al. Purification of retroviral vectors forclinical application: biological implications and technological challenges [J].Biotechnol,2007,127:520-541.
    [50] Suzuki YJ, Evans T. Regulation of cardiac myocyte apoptosis by the GATA-4transcription factor. Life Sci.2004;74:1829–1838.
    [51] Das S, Engelman RM,Maulik N,et al. Angiotensin preconditioning of the heart:evidence for redox signaling. Cell Biochem Biophys2006;44:103–10.
    [52]Suzuki YJ, Nagase H, Day RM, et al. GATA-4regulation of myocardial survival in thepreconditioned heart. J Mol Cell Cardiol2004;37:1195–203.
    [53] Gurke L, Marx A, Sutter PM,, et al. Ischemic preconditioning improves post-ischemicskeletal muscle function. Am Surg1996;62:391–4
    [54] Xu M, Wang Y, Ayub A, et al. Mitochondrial K(ATP) channel activation reducesanoxic injury by restoring mitochondrial membrane potential. Am J Physiol HeartCirc Physiol2001;281:H1295–1303.
    [55] Takashi E, Ashraf M. Pathologic assessment of myocardial cell necrosis and apoptosisafter ischemia and reperfusion with molecular and morphological markers. J Mol CellCardiol2000;32:209–24.
    [56] Hausenloy DJ, Yellon DM. Survival kinases in ischemic preconditioning andpostconditioning. Cardiovasc Res2006;70:240–53.
    [57] Murry CE, Jennings RB,Reimer KA. Preconditioningwith ischemia: a delay of lethalcell injury in ischemic myocardium. Circulation1986;74:1124–36.
    [58] Debska G, Kicinska A, Skalska J, et al. Opening of potassium channels modulatesmitochondrial function in rat skeletal muscle. Biochim Biophys Acta2002;1556:97–105.
    [59] Kicinska A, Szewczyk A. Protective effects of the potassium channelopener-diazoxide against injury in neonatal rat ventricular myocytes. Gen PhysiolBiophys2003;22:383–95.
    [60] Kis B, Nagy K, Snipes JA, et al. The mitochondrial K(ATP) channel openerBMS-191095induces neuronal preconditioning. Neuroreport2004;15:345–9.
    [61] Skak K, Gotfredsen CF, Lundsgaard D, et al. Improved beta-cell survival and reducedinsulitis in a type1diabetic rat model after treatment with a beta-cell-selective K(ATP)channel opener. Diabetes2004;53:1089–95.
    [62] Kitamura Y, Nomura Y. Stress proteins and glial functions: possible therapeutic targetsfor neurodegenerative disorders. Pharmacol Ther2003;97:35–53.
    [63] Pasha Z, Wang Y, Sheikh R, et al, Preconditioning Enhances Cell Survival andDifferentiation of Stem Cells during Transplantation in Infarcted Myocardium.Cardiovasc Res2008;77:134–42.
    [64] Dzau VJ, Gnecchi M, Pachori AS. Enhancing stem cell therapy through geneticmodification. J Am Coll Cardiol2005;46:1351–3.
    [65] Ye L, Haider H, Jiang S, et al. Reversal of myocardial injury using geneticallymodulated human skeletal myoblasts in a rodent cryoinjured heart model. Eur J HeartFail2005;7:945–52.
    [66] Azarnoush K,Maurel A, Sebbah L, et al. Enhancement of the functional benefits ofskeletal myoblast transplantation by means of coadministration of hypoxia-induciblefactor1alpha. J. Thorac Cardiovasc Surg2005;130:173–9.
    [67] Kofidis T, de Bruin JL, Yamane T,et al. Insulin-like growth factor promotesengraftment, differentiation, and functional improvement after transfer of embryonicstem cells for myocardial restoration. Stem Cells2004;22:1239–45.
    [68] Kanemitsu N, Tambara K, Premaratne GU, et al. Insulin-like growth factor-1enhancesthe efficacy of myoblast transplantation with its multiple functions in the chronicmyocardial infarction rat model. J Heart Lung Transplant2006;25:1253–62.
    [69] Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylatingand inhibiting a Forkhead transcription factor. Cell1999;96:857–68.
    [1] Daniele Torella, Ciro Indolfi, David F, et al, Cardiac stem cell-based myocardialregenration: Towards a translational approach Cardiovascular&HematologicalAgents in Medicinal Chemistry,2008,6:53-59
    [2] Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, Salio M,Battaglia M, Latronico M.V. Circ. Res.,2004,95,911.
    [3] Beltrami AP, Barlucchi L, Torella D, et al, Adult cardiac stem cells are multipotent andsupport myocardial regeneration. Cell.2003;114:763–776.
    [4] Oh H, Bradfute SB, Gallardo TD, et al, Cardiac progenitor cells from adultmyocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad SciU S A.2003;100:12313–12318.
    [5] Matsuura K, Nagai T, Nishigaki N, et al, Adult cardiac Sca-1-positive cells differentiateinto beating cardiomyocytes.[J] Biol Chem.2004;279:11384–11391.
    [6] Laugwitz KL, Moretti A, Lam J, et al, cardioblasts enter fully differentiatedcardiomyocyte lineages. Nature.2005;433:647–653.
    [7] Martin CM, Meeson AP, Robertson SM, et al, Persistent expression of the ATP-bindingcassette transporter, Abcg2, identifies cardiac SP cells in the developing and adultheart. Dev Biol.2004;265:262–275.
    [8] Torella D, Ellison G.M, Karakikes I, Nadal-Ginard B. Cell Mol. Life Sci.2007,64,661.
    [9] Behfar, A.; Perez-Terzic, C.; Faustino, R.S.; Arrell, D.K.; Hodgson, D.M.; Yamada, S.;Puceat, M.; Niederlander, N.; Alekseev, A.E.; Zingman, L.V.; Terzic, A. J. Exp. Med.,2007,204-405.
    [10] Jankowski, M.; Danalache, B.; Wang, D.; Bhat, P.; Hajjar, F.; Marcinkiewicz, M.;Paquin, J.; McCann, S.M.; Gutkowska,[J] Proc. Natl. Acad. Sci. USA,2004,101,13074.
    [11] Bollini S, Smart N, Riley PR. Resident cardiac progenitor cells: at the heart ofregeneration. J Mol Cell Cardiol.2011Feb;50(2):296-303.
    [12] Jezierska-Wo niak K, Mystkowska D, Tutas A, Jurkowski MK. Stem cells as therapyfor cardiac disease-a review. Folia Histochem Cytobiol.2011;49(1):13-25.
    [13] Matsuura K, Nagai T, Nishigaki N, Oyama T, Nishi J, Wada H, Sano M, TokoH,Akazawa H, Sato T, Nakaya H, Kasanuki H, Komuro I. Adult cardiacSca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem.2004Mar19;279(12):11384-91.
    [14] Andersen DC, Andersen P, Schneider M, Jensen HB, Sheikh SP. Murine"cardiospheres" are not a source of stem cells with cardiomyogenic potential. StemCells.2009Jul;27(7):1571-81
    [15] Urbanek K, Rota M, Cascapera S, et al, Cardiac stem cell possesses the growthfactor-receptor system that following activation the regenerative the infarctedmyocardium improving ventricular function and long term survival. Circ Res.2005;97:663–673.
    [16] Chimenti C, Kajstura J, Torella D, et al, Senescence and death of primitive cells andmyocytes lead to premature cardiac aging and heart failure. Circ Res.2003;93:604–613.
    [17] Khwaja A, Lehmann K, Marte BM, Downward [J]. Phosphoinositide3-kinaseinduces scattering and tubulogenesis in epithelial cells through a novel pathway. JBiol Chem.1998;273:18793–18801.
    [18] Royal I, Lamarche-Vane N, Lamorte L, et al, Activation of cdc42, rac, PAK, andrho-kinase in response to hepatocyte growth factor differentially regulates epithelialcell colony spreading and dissociation. Mol Biol Cell.2000;11:1709–1725.
    [19] Kawamura K, Takano K, Suetsugu S, et al, N-WASP and WAVE2acting downstreamof phosphatidylinositol3-kinase are required for myogenic cell migration induced byhepatocyte growth factor. J Biol Chem.2004;279:54862–54871.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700