RNA干扰Livin基因表达对膀胱癌细胞增殖与凋亡能力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Livin是最近发现的凋亡抑制蛋白(Inhibitor of Apoptosis Proteins, IAPs)家族成员,含有一个BIR结构域和一个RING结构域,可显著抑制细胞内源性和外源性凋亡的发生。已有研究表明,Livin在多种恶性肿瘤组织中(如黑色素瘤,肺癌,直肠癌等)呈现高表达,而在其相应的正常组织中不表达。其阳性表达往往与肿瘤的预后以及对化疗药物的抵抗密切相关。然而在膀胱癌中,Livin的表达情况以及Livin基因与膀胱癌预后以及对化疗敏感性的关系目前研究尚少。我们前期研究结果表明,Livin在膀胱癌标本中的阳性表达率高达78%,并与膀胱癌的分期有密切关系。Livin如何调控膀胱癌细胞的增殖、凋亡以及对化疗的敏感性有待于深入研究。
     目的:(1)检测Livin基因在膀胱癌细胞系中的表达情况,并使用RNAi的方法高效特异抑制Livin在膀胱癌细胞中的表达,观察Livin基因对膀胱癌增殖、凋亡以及对化疗敏感性的影响。(2)进一步探讨Livin基因与另两种凋亡抑制蛋白XIAP和Survivin在调节膀胱癌增殖与凋亡过程中是否存在协同作用。(3)初步探讨超声辐照超声微泡转染siRNA的有效参数和转染效率,为以Livin基因为靶点治疗膀胱癌寻找有效的治疗策略。
     方法:(1)通过RT-PCR的方法检测Livin两条剪接异构体mRNA在膀胱癌细胞系EJ, T24,5673, BIU-87中的表达情况。使用免疫细胞化学和Western blot的方法进一步检测Livin-α, Livin-β蛋白在上述四种细胞系中的表达情况。通过生物信息学的方法筛选能够高效特异抑制Livin表达的siRNA,并通过Western blot实验观察其下调Livin在人膀胱癌T24细胞中表达的效率。(2)通过胎盘蓝计数以及克隆形成实验检测下调Livin基因表达对人膀胱癌T24细胞增殖能力的影响。使用TUNEL实验检测下调Livin基因表达后T24细胞凋亡敏感性的变化,并通过Western blot的方法检测下调Livin表达后其相关Caspase蛋白的表达变化。(3)通过siRNA介导的联合干扰Livin,XIAP和Survivin三种IAPs基因在T24细胞中的表达,使用MTT实验和克隆形成实验比较联合干扰与单独干扰IAPs对膀胱癌细胞增殖能力的影响。使用Annexin-V—PI双重染色比较联合抑制与单独抑制IAPs对膀胱癌细胞凋亡能力的影响。(4)使用超声微泡的方法向T24细胞中转染荧光标记的siRNA小片段,通过荧光显微镜和流式细胞仪观察超声微泡介导基因转染的效率,并通过MTT实验评估超声微泡介导基因转染对细胞活力的影响。
     结果:
     1. Livin在膀胱癌细胞系中的表达以及Livin特异性siRNA的筛选
     在四种膀胱癌细胞系EJ,T24,5673,BIU-87中Livin的两条异构体只有Livin-α在膀胱癌细胞系中阳性表达,Livin-β阴性表达。RT-PCR结果显示,Livin-α和Livin-β在膀胱癌细胞系中的这种表达差异产生在转录水平,而不是由转录后翻译或翻译后蛋白修饰降解引起,Livin-βmRNA在膀胱癌细胞系中阴性表达。免疫细胞化学结果提示Livin主要在膀胱癌细胞浆内表达。Western blot结果进一步证实,在蛋白水平仅有Livin-α阳性表达,Livin-β阴性表达。通过生物信息学的方法筛选出五种Livin特异性siRNA,使用Western blot的方法检测每种siRNA在T24细胞中的干扰效率,结果表明5种siRNA均能够有效的抑制Livin基因的表达。
     2.下调Livin基因的表达对膀胱癌T24细胞增殖与凋亡的影响
     胎盘蓝计数结果表明,下调Livin基因在膀胱癌T24细胞中的表达可以有效的抑制膀胱癌的生长。克隆形成实验表明,与siRNA-NC相比,siRNA-Livin能够显著降低T24细胞的克隆形成能力。TUNEL实验表明,下调Livin的表达仅能轻度增加T24细胞的自发性凋亡,但能够显著提高T24细胞对肿瘤坏死因子TNF-α和化疗药物丝裂霉素的凋亡敏感性。Western blot结果表明下调Livin基因的表达可以显著增加细胞内激活型Caspase-3和激活型Caspase-9的表达,提示Livin通过Caspase依赖途径调节细胞的凋亡。
     3.联合抑制Livin,XIAP和Survivin对膀胱癌增殖、凋亡的影响
     Western blot实验表明,Livin,XIAP和Survivin在T24细胞中同时呈现明显的高表达,而在人膀胱上皮SV-HUC-1细胞不表达或低表达。siRNA介导的多基因联合抑制可以有效的抑制Livin,XIAP和Survivin在膀胱癌T24细胞中的表达。流式细胞(Annexin-V—PI双重染色)结果表明,与单个抑制IAP的表达相比,联合抑制IAPs的表达可以显著触发膀胱癌T24细胞的自发性凋亡,增加膀胱癌细胞对化疗药物的敏感性。MTT实验和克隆形成实验结果表明,联合抑制IAPs的表达能够更加明显的抑制膀胱癌细胞的增殖能力和克隆形成能力。另外,联合抑制IAPs的表达能够明显增加激活型Caspase-3,激活型Caspase-7和激活型Caspase-9以及胞浆内Smac的表达水平。
     4.超声辐照超声微泡介导siRNA转染T24细胞
     实验表明,与各阴性对照组相比,超声辐照超声微泡的方法可以明显增加siRNA向T24细胞中的转染效率。随着超声辐照强度的增加,siRNA的转染效率在一定范围内有所提高,同时也增加了对T24细胞毒性。与脂质体介导的siRNA体外转染相比,超声辐照超声微泡介导的siRNA转染效率仍然较低。以上实验说明,超声微泡是一种较为可行的基因转染方法,然而其具体的转染方法以及转染条件等技术性问题还有待于进一步解决。
     结论:
     1.下调Livin在T24细胞中的表达可以有效的抑制膀胱癌的生长,降低其克隆形成能力,提高T24细胞对肿瘤坏死因子TNF-α和化疗药物丝裂霉素的凋亡敏感性。
     2.联合抑制Livin, XIAP和Survivin的表达能够更加显著的抑制膀胱癌细胞的生长,纠正膀胱癌细胞的凋亡缺陷,触发膀胱癌细胞的自发性凋亡,增加膀胱癌细胞对化疗药物的敏感性。
     3.超声辐照超声微泡的方法可以明显增加siRNA向T24细胞中的转染效率。然而在现有的技术条件下,其细胞体外转染效率仍然低于传统的脂质体介导的基因转染。
Livin is the latest found IAP family member, containing one BIR do-main and one RING domain, which can potently inhibit both the intrinsic and the extrinsic cell apoptosis. It has been reported that Livin was highly expressed in many type of cancers including melanoma, lung cancer, colon cancer et al, but not expressed in their normal counterparts, and the positive expression of Livin was often correlated with the poor prognosis and resis-tance to chemotherapy. In our previous study, we have found that Livin was highly expressed in bladder cancer tissues, but how dose Livin regulate bladder cancer proliferation; apoptosis and chemosensitivity need further study.
     Objective:(1) Examining the expression of Livin in bladder cancer cell lines and knockdown its expression by RNAi to observe the effect on bladder cancer cell proliferation, apoptosis and chemosensitivity.(2) To determine whether could Livin, XIAP and Survivin synergistically regulate proliferation, apoptosis and chemosensitivity in bladder cancer. (3) Inves-tigating the optimal parameter of ultrasound destruction of microbubble mediated siRNA transfection to explore a possible gene delivery strategy for bladder cancer gene therapy.
     Methods:RT-PCR was used to exam the mRNA expression of the two Livin isoforms in bladder cancer cell lines including EJ, T24,5637, and BIU-87. Immunocytochemistry and Western blot assays were performed to determine the Livin protein expression in bladder cancer cell lines. Trypan blue staining and colony formation assay was performed to analyze the ef-fect of Livin knockdown on T24 cell proliferation. TUNEL assay was per-formed to analyze the effect of Livin knockdown on T24 cell sensitivity to proapoptotic stimuli. Combined knockdown of Livin, XIAP, and Survivin was achieved by siRNAs. MTT assay and colony formation assay were performed to analyze the inhibitory effect of combined IAPs knockdown on T24 cell growth. Annexin-V—PI double staining was performed to analyze the effect of combined IAPs knockdown on T24 cell apoptosis. FITC la-beled siRNA was transfected into T24 cells by ultrasound destruction of microbubble. Transfection efficiencies were observed by fluorescence mi-croscope and flow cytometry and the MTT assay was performed to observe the effect on cell viability.
     Results:Livin gene was highly expressed in the four kinds of bladder cancer cell lines. However, only the Livin-αisoform expressed in bladder cancer cell lines, but not Livin-β, both at the mRNA and the protein level. Silencing Livin expression could significantly inhibit T24 cell proliferation, promote sensitivity to proapoptotic stimuli. Combined knockdown of all three genes (Livin, XIAP and Survivin) synergistically inhibited prolifera-tion and transformation ability, and promoted cell apoptotic sensitivity to chemotherapy in the high grade bladder cancer T24 cells. Furthermore, combined knockdown of Livin, XIAP and Survivin markedly increased the abundance of active Caspase-3, active Caspase-7 and active Caspase-9, as well as increased the abundance of the cytosolic Smac. Ultrasound destruc-tion of microbubble has an obvious effect of promoting gene transfection. However, the efficiency of microbbuble mediated transfection of siRNA to T24 cell is about 30% which is still lower than the traditional liposome mediated gene transfection.
     Conclusion:Knockdown of Livin expression could significantly in-hibit T24 cell growth ability, promote sensitivity to proapoptotic stimuli. The combined knockdown of the three IAP genes (Livin, XIAP, and Sur-vivin) could greatly increase the spontaneous cell apoptosis and have a synergistic effect on regulation of cell growth and apoptosis. Microbubble mediated siRNA transfection might be a potent gene delivery technique in cancer gene therapy.
引文
1. Verhagen,A.M. and Vaux,D.L. Molecular mechanisms of apoptosis:an overview, Results Probl.Cell Differ.,23:11-24,1999.
    2. LaCasse,E.C., Mahoney,D.J., Cheung,H.H., Plenchette,S., Baird,S.and Korne-luk,R.G. IAP-targeted therapies for cancer, Oncogene,27:6252-6275,2008.
    3. Dubrez-Daloz,L., Dupoux,A. and Cartier,J. IAPs:more than just inhibitors of apoptosis proteins, Cell Cycle,7:1036-1046,2008.
    4. Mannhold,R., Fulda,S. and Carosati,E. IAP antagonists:promising candidates for cancer therapy, Drug Discov.Today,15:210-219,2010.
    5. Liston,P., Roy,N., Tamai,K., Lefebvre,C., Baird,S., Cherton-Horvat,G., Fara-hani,R., McLean,M., Ikeda,J.E., MacKenzie,A. and Korneluk,R.G. Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes, Nature,379:349-353,1996.
    6. Maier,J.K., Balabanian,S., Coffill,C.R., Stewart,A., Pelletier,L., Franks,D.J., Gendron,N.H. and MacKenzie,A.E. Distribution of neuronal apoptosis inhibitory protein in human tissues, J.Histochem.Cytochem.,55:911-923,2007.
    7. Rothe,M., Pan,M.G., Henzel,W.J., Ayres,T.M. and Goeddel,D.V. The TNFR2-TRAF signaling complex contains two novel proteins related to bacu-loviral inhibitor of apoptosis proteins, Cell,83:1243-1252,1995.
    8. Dai,Z., Zhu,W.G., Morrison,C.D., Brena,R.M., Smiraglia,D.J., Raval,A., Wu,Y.Z., Rush,L.J., Ross,P., Molina,J.R., Otterson,G.A. and Plass,C. A comprehensive search for DNA amplification in lung cancer identifies inhibitors of apoptosis cIAPl and cIAP2 as candidate oncogenes, Hum.Mol.Genet.,12:791-801,2003.
    9. Imoto,I., Yang,Z.Q., Pimkhaokham,A., Tsuda,H., Shimada,Y., Imamura,M., Ohki,M. and Inazawa,J. Identification of cIAPl as a candidate target gene within an amplicon at 11q22 in esophageal squamous cell carcinomas, Cancer Res.,61: 6629-6634,2001.
    10. Ambrosini,G., Adida,C. and Altieri,D.C. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma, Nat.Med.,3:917-921,1997.
    11. Hauser,H.P., Bardroff,M., Pyrowolakis,G. and Jentsch,S. A giant ubiquitin-conju-gating enzyme related to IAP apoptosis inhibitors, J.Cell Biol.,141:1415-1422, 1998.
    12. Kasof,G.M. and Gomes,B.C. Livin, a novel inhibitor of apoptosis protein family member, J.Biol.Chem.,276:3238-3246,2001.
    13. Richter,B.W., Mir,S.S., Eiben,L.J., Lewis,J., Reffey,S.B., Frattini,A., Tian,L., Frank,S., Youle,R.J., Nelson,D.L., Notarangelo,L.D., Vezzoni,P., Fearnhead,H.O. and Duckett,C.S. Molecular cloning of ILP-2, a novel member of the inhibitor of apoptosis protein family, Mol.Cell Biol.,21:4292-4301,2001.
    14. Verhagen,A.M., Coulson,E.J. and Vaux,D.L. Inhibitor of apoptosis proteins and their relatives:IAPs and other BIRPs, Genome Biol.,2:REVIEWS3009,2001.
    15. Kurakin,A. and Bredesen,D.E. An unconventional IAP-binding motif revealed by target-assisted iterative screening (TAIS) of the BIR3-cIAP1 domain, J.Mol.Recognit.,20:39-50,2007.
    16. Cao,L., Wang,Z., Yang,X., Xie,L. and Yu,L. The evolution of BIR domain and its containing proteins, FEBS Lett.,582:3817-3822,2008.
    17. Silke,J. and Vaux,D.L. Two kinds of BIR-containing protein-inhibitors of apoptosis, or required for mitosis, J.Cell Sci.,114:1821-1827,2001.
    18. Vaux,D.L. and Silke,J. IAPs, RINGs and ubiquitylation, Nat.Rev.Mol.Cell Biol.,6:287-297,2005.
    19. Silke,J., Kratina,T., Chu,D., Ekert,P.G., Day,C.L., Pakusch,M., Huang,D.C. and Vaux,D.L. Determination of cell survival by RING-mediated regulation of in-hibitor of apoptosis (IAP) protein abundance, Proc.Natl.Acad.Sci.U.S.A,102: 16182-16187,2005.
    20. Hofmann,K., Bucher,P. and Tschopp,J. The CARD domain:a new apoptotic sig-nalling motif, Trends Biochem.Sci.,22:155-156,1997.
    21. Chang,M.X., Chen,W.Q. and Nie,P. Structure and expression pattern of teleost Caspase recruitment domain (CARD) containing proteins that are potentially involved in NF-kappaB signalling, Dev.Comp Immunol.,34:1-13,2010.
    22. Rajalingam,K. and Dikic,I. Inhibitors of apoptosis catch ubiquitin, Biochem.J., 417:el-e3,2009.
    23. Naito,M. Inhibition of apoptosis by a huge UBC protein, Apollon/BRUCE/BIRC6, Tanpakushitsu Kakusan Koso,51:1391-1394,2006.
    24. Elmore,S. Apoptosis:a review of programmed cell death, Toxicol.Pathol.,35: 495-516,2007.
    25. Orme,M. and Meier,P. Inhibitor of apoptosis proteins in Drosophila:gatekeepers of death, Apoptosis.,14:950-960,2009.
    26. Altieri,D.C. Survivin in apoptosis control and cell cycle regulation in cancer, Prog.Cell Cycle Res.,5:447-452,2003.
    27. Giodini,A., Kallio,M.J., Wall,N.R., Gorbsky,G.J., Tognin,S., Marchisio,P.C. Symons,M. and Altieri,D.C. Regulation of microtubule stability and mitotic progression by survivin, Cancer Res.,62:2462-2467,2002.
    28. Altieri,D.C. Molecular circuits of apoptosis regulation and cell division control: the survivin paradigm, J.Cell Biochem.,92:656-663,2004.
    29. Pohl,C. and Jentsch,S. Final stages of cytokinesis and midbody ring formation are controlled by BRUCE, Cell,132:832-845,2008.
    30. Pohl,C. and Jentsch,S. Midbody ring disposal by autophagy is a post-abscission event of cytokinesis, Nat.Cell Biol.,11:65-70,2009.
    31. Levkau,B., Garton,K.J., Ferri,N., Kloke,K., Nofer,J.R., Baba,H.A., Raines,E.W. and Breithardt,G. xIAP induces cell-cycle arrest and activates nuclear fac-tor-kappaB:new survival pathways disabled by Caspase-mediated cleavage during apoptosis of human endothelial cells, Circ.Res.,88:282-290,2001.
    32. Wang,H., Tan,S.S., Wang,X.Y., Liu.D.H., Yu,C.S., Bai,Z.L., He,D.L. and Zhao.J. Silencing livin gene by siRNA leads to apoptosis induction, cell cycle arrest, and proliferation inhibition in malignant melanoma LiBr cells, Acta Pharmacol.Sin., 28:1968-1974,2007.
    33. Jin,H.S. and Lee,T.H. Cell cycle-dependent expression of cIAP2 at G2/M phase contributes to survival during mitotic cell cycle arrest, Biochem.J.,399: 335-342,2006.
    34. Nakayama.K.I. and Nakayama,K. Ubiquitin ligases:cell-cycle control and cancer, Nat.Rev.Cancer,6:369-381,2006.
    35. Ciechanover,A. The ubiquitin system:historical perspective, Proc.Am.Thorac. Soc,7:11-12,2010.
    36. Rajalingam,K. and Dikic,I. Inhibitors of apoptosis catch ubiquitin, Biochem.J. 417:el-e3,2009.
    37. Dai,Y., Lawrence,T.S. and Xu,L. Overcoming cancer therapy resistance by tar-geting inhibitors of apoptosis proteins and nuclear factor-kappa B, Am.J.Transl.Res.,1:1-15,2009.
    38. Hofer-Warbinek,R., Schmid,J.A., Stehlik.C., Binder,B.R., Lipp,J. and de,M.R. Activation of NF-kappa B by XIAP, the X chromosome-linked inhibitor of apoptosis, in endothelial cells involves TAK1, J.Biol.Chem.,275:22064-22068, 2000.
    39. Jin,H.S., Lee.D.H., Kim,D.H., Chung,J.H., Lee,S.J. and Lee,T.H. cIAP1, cIAP2, and XIAP act cooperatively via nonredundant pathways to regulate genotoxic stress-induced nuclear factor-kappaB activation, Cancer Res.,69:1782-1791, 2009.
    40. Dhanasekaran,D.N. and Johnson,G.L. MAPKs:function, regulation, role in can-cer and therapeutic targeting, Oncogene,26:3097-3099,2007.
    41. Johnson,G.L. and Lapadat,R. Mitogen-activated protein kinase pathways medi-ated by ERK, JNK, and p38 protein kinases, Science,298:1911-1912,2002.
    42. Igaki,T., Kanda,H., Yamamoto-Goto,Y., Kanuka,H., Kuranaga,E., Aigaki,T. and Miura,M. Eiger, a TNF superfamily ligand that triggers the Drosophila JNK pathway, EMBO J.,21:3009-3018,2002.
    43. Furusu,A., Nakayama,K., Xu,Q., Konta,T. and Kitamura,M. MAP kinase-de-pendent, NF-kappaB-independent regulation of inhibitor of apoptosis protein genes by TNF-alpha, J.Cell Physiol,210:703-710,2007.
    44. Sanna,M.G., da Silva,C.J., Luo,Y., Chuang.B., Paulson,L.M., Nguyen,B., Dev-eraux,Q.L. and Ulevitch,R.J. ILPIP, a novel anti-apoptotic protein that enhances XIAP-mediated activation of JNK1 and protection against apoptosis, J.Biol.Chem.,277:30454-30462,2002.
    45. Sanna,M.G., da Silva,C.J., Ducrey,O., Lee,J., Nomoto.K., Schrantz,N., Dever-aux,Q.L. and Ulevitch,R.J. IAP suppression of apoptosis involves distinct mechanisms:the TAK1/JNK1 signaling cascade and Caspase inhibition, Mol.Cell Biol.,22:1754-1766,2002.
    46. Arora,V., Cheung,H.H., Plenchette,S., Micali,O.C., Liston,P. and Korneluk,R.G. Degradation of survivin by the X-linked inhibitor of apoptosis (XIAP)-XAF1 complex, J.Biol.Chem.,282:26202-26209,2007.
    47. Dohi,T., Okada,K., Xia.F., Wilford,C.E., Samuel,T., Welsh,K., Marusawa.H., Zou,H., Armstrong,R., Matsuzawa,S., Salvesen,G.S., Reed,J.C. and Altieri,D.C. An IAP-IAP complex inhibits apoptosis, J.Biol.Chem.,279:34087-34090, 2004.
    48. Cheung,H.H., Plenchette,S., Kern,C.J., Mahoney,D.J. and Korneluk,R.G. The RING domain of cIAP1 mediates the degradation of RING-bearing inhibitor of apoptosis proteins by distinct pathways, Mol.Biol.Cell,19:2729-2740,2008.
    49. Conze,D.B., Albert,L., Ferrick,D.A., Goeddel,D.V., Yeh,W.C., Mak,T. and Ash-well,J.D. Posttranscriptional downregulation of C-IAP2 by the ubiquitin protein ligase c-IAP1 in vivo,Mol.Cell Biol.,25:3348-3356,2005.
    50. Rajalingam,K., Sharma,M.,Paland,N., Hurwitz,R., Thieck,O., Oswald,M., Ma-chuy,N. and Rudel,T. IAP-IAP complexes required for apoptosis resistance of C. trachomatis-infected cells, PLoS.Pathog.,2:e114,2006.
    51. Ryan,B.M., O'Donovan,N. and Duffy,M.J. Survivin:a new target for anti-cancer therapy, Cancer Treat.Rev.,35:553-562,2009.
    52. Romagnoli,M., Seveno,C., Bataille,R. and Barille-Nion,S. [Survivin in can-cerology:molecular aspects and therapeutic applications], Med.Sci.(Paris),24: 821-827,2008.
    53. Liu,B., Han,M., Wen,J.K. and Wang,L. Livin/ML-IAP as a new target for cancer treatment, Cancer Lett.,250:168-176,2007.
    54. Eckelman.B.P., Salvesen,G.S. and Scott,F.L. Human inhibitor of apoptosis pro-teins:why XIAP is the black sheep of the family, EMBO Rep.,7:988-994, 2006.
    55. Bilim,V., Kasahara,T., Hara,N., Takahashi,K. and Tomita,Y. Role of XIAP in the malignant phenotype of transitional cell cancer (TCC) and therapeutic activity of XIAP antisense oligonucleotides against multidrug-resistant TCC in vitro, Int.J.Cancer,103:29-37,2003.
    56. Karam,J.A., Lotan,Y., Ashfaq,R., Sagalowsky,A.I. and Shariat.S.F. Survivin ex-pression in patients with non-muscle-invasive urothelial cell carcinoma of the bladder,Urology,70:482-486,2007.
    57. Liu,H.B., Kong,C.Z., Zeng,Y., Liu,X.K., Bi,J.B., Jiang,Y.J. and Han,S. Livin may serve as a marker for prognosis of bladder cancer relapse and a target of bladder cancer treatment, Urol.Oncol.,27:277-283,2009.
    58. Yang,D., Song,X., Zhang,J., Ye,L., Wang,S., Che,X., Wang,J., Zhang,Z., Wang,L. and Shi,W. Therapeutic potential of siRNA-mediated combined knockdown of the IAP genes (Livin, XIAP, and Survivin) on human bladder cancer T24 cells, Acta Biochim.Biophys.Sin.(Shanghai),42:137-144,2010.
    59. Rodriguez-Berriguete,G., Fraile,B., de Bethencourt,F.R., Prieto-Folgado,A. Bartolome,N., Nunez,C., Prati,B., Martinez-Onsurbe,P., Olmedilla,G., Pani-agua,R. and Royuela,M. Role of IAPs in prostate cancer progression:immuno-histochemical study in normal and pathological (benign hyperplastic, prostatic intraepithelial neoplasia and cancer) human prostate, BMC.Cancer,10:18, 2010.
    60. Ashhab,Y., Alian,A., Polliack,A., Panet,A. and Ben,Y.D. Two splicing variants of a new inhibitor of apoptosis gene with different biological properties and tissue distribution pattern, FEBS Lett.,495:56-60,2001.
    61. Clem,R.J., Sheu,T.T., Richter,B.W., He,W.W., Thornberry,N.A., Duckett,C.S. and Hardwick,J.M. c-IAP1 is cleaved by Caspases to produce a proapoptotic C-terminal fragment, J.Biol.Chem.,276:7602-7608,2001.
    62. Owens,T.W., Foster.F.M., Valentijn.A., Gilmore,A.P. and Streuli,C.H. Role for X-linked Inhibitor of apoptosis protein upstream of mitochondrial permeabiliza-tion, J.Biol.Chem.,285:1081-1088,2010.
    63. Krieg.A., Mahotka,C., Krieg,T., Grabsch.H., Muller.W., Takeno.S., Suschek.C.V., Heydthausen,M., Gabbert,H.E. and Gerharz,C.D. Expression of different sur-vivin variants in gastric carcinomas:first clues to a role of survivin-2B in tu-mour progression, Br.J.Cancer,86:737-743,2002.
    64. Ling,X., Yang,J., Tan,D., Ramnath,N., Younis,T., Bundy,B.N., Slocum,H.K., Yang,L., Zhou,M. and Li,F. Differential expression of survivin-2B and sur-vivin-DeltaEx3 is inversely associated with disease relapse and patient survival in non-small-cell lung cancer (NSCLC), Lung Cancer,49:353-361,2005.
    65. Tirro,E., Consoli.M.L., Massimino,M., Manzella.L., Frasca,F., Sciacca,L., Vi-cari,L., Stassi,G., Messina,L., Messina,A. and Vigneri,P. Altered expression of c-IAP1, survivin, and Smac contributes to chemotherapy resistance in thyroid cancer cells, Cancer Res.,66:4263-4272,2006.
    66. Vellanki,S.H., Grabrucker,A., Liebau,S., Proepper,C., Eramo,A., Braun.V., Boeckers,T., Debatin,K.M. and Fulda,S. Small-molecule XIAP inhibitors en-hance gamma-irradiation-induced apoptosis in glioblastoma, Neoplasia.,11: 743-752,2009.
    67. Kami,K., Doi,R., Koizumi,M., Toyoda,E., Mori,T., Ito,D., Kawaguchi,Y., Fuji-moto,K., Wada,M., Miyatake,S. and Imamura.M. Downregulation of survivin by siRNA diminishes radioresistance of pancreatic cancer cells, Surgery,138: 299-305,2005.
    68. Crnkovic-Mertens,I., Hoppe-Seyler,F. and Butz,K. Induction of apoptosis in tumor cells by siRNA-mediated silencing of the livin/ML-IAP/KIAP gene, Oncogene,22:8330-8336,2003.
    69. Liu,G., Yuan,X., Zeng,Z., Tunici,P., Ng,H., Abdulkadir,I.R., Lu,L., Irvin.D., Black,K.L. and Yu,J.S. Analysis of gene expression and chemoresistance of CD133+cancer stem cells in glioblastoma, Mol.Cancer,5:67,2006.
    70. Notarbartolo.M., Cervello,M., Dusonchet,L., Cusimano,A. and D'Alessandro,N. Resistance to diverse apoptotic triggers in multidrug resistant HL60 cells and its possible relationship to the expression of P-glycoprotein, Fas and of the novel anti-apoptosis factors IAP (inhibitory of appptosis proteins), Cancer Lett.,180: 91-101,2002.
    71. Nakagawa,Y., Abe,S., Kurata,M., Hasegawa,M., Yamamoto,K., Inoue,M., Take-mura,T., Suzuki,K. and Kitagawa,M. IAP family protein expression correlates with poor outcome of multiple myeloma patients in association with chemo-therapy-induced overexpression of multidrug resistance genes, Am.J.Hematol., 81:824-831,2006.
    72. Zhang,M., Ho,A., Hammond,E.H., Suzuki.Y., Bermudez,R.S., Lee.R.J., Pile-pich,M., Shipley,W.U., Sandler.H., Khor,L.Y., Pollack,A. and Chakravarti,A. Prognostic value of survivin in locally advanced prostate cancer:study based on RTOG 8610, Int.J.Radiat.Oncol.Biol.Phys.,73:1033-1042,2009.
    73. Zhang,M., Coen.J.J., Suzuki,Y., Siedow,M.R., Niemierko.A., Khor,L.Y., Pol-lack,A., Zhang,Y., Zietman,A.L., Shipley,W.U. and Chakravarti,A. Survivin Is a Potential Mediator of Prostate Cancer Metastasis, Int.J.Radiat. On-col.Biol.Phys.,2010.
    74. Choi.J., Hwang,Y.K., Sung,K.W., Lee.S.H., Yoo.K.H., Jung,H.L., Koo.H.H., Kim,H.J., Kang,H.J., Shin,H.Y. and Ahn,H.S. Expression of Livin, an antiapop-totic protein, is an independent favorable prognostic factor in childhood acute lymphoblastic leukemia, Blood,109:471-477,2007.
    75. Nassar,A., Sexton,D., Cotsonis,G. and Cohen,C. Survivin expression in breast carcinoma:correlation with apoptosis and prognosis, Appl.Immunohistochem. Mol.Morphol.,16:221-226,2008.
    76. Ye.C.P., Qiu.C.Z., Huang,Z.X., Su,Q.C., Zhuang,W., Wu.R.L. and Li.X.F. Rela-tionship between survivin expression and recurrence, and prognosis in hepato-cellular carcinoma, World J.Gastroenterol.,13:6264-6268,2007.
    77. Smith,S.D., Wheeler,M.A., Plescia,J., Colberg,J.W., Weiss,R.M. and Altieri,D.C. Urine detection of survivin and diagnosis of bladder cancer, JAMA,285: 324-328,2001.
    78. Wu,Y.K., Chen,K.T., Kuo,Y.B., Huang,Y.S. and Chan,E.C. Quantitative detection of survivin in malignant pleural effusion for the diagnosis and prognosis of lung cancer, Cancer Lett.,273:331-335,2009.
    79. Shen,C., Hu,L., Xia,L. and Li,Y. The detection of circulating tumor cells of breast cancer patients by using multimarker (Survivin, hTERT and hMAM) quantitative real-time PCR, Clin.Biochem.,42:194-200,2009.
    80. Shen,C., Hu,L., Xia,L. and Li,Y. Quantitative real-time RT-PCR detection for survivin, CK20 and CEA in peripheral blood of colorectal cancer patients, Jpn.J.Clin.Oncol.,38:770-776,2008.
    81. Zhang,R., Ma,L., Zheng,M., Ren,J., Wang,T., Meng,Y., Zhao,J., Jia,L., Yao,L., Han,H., Li,K. and Yang,A. Survivin knockdown by short hairpin RNA abrogates the growth of human hepatocellular carcinoma xenografts in nude mice, Cancer Gene Ther.,17:275-288,2010.
    82. Zhang,Y., Wang,Y., Gao,W., Zhang,R., Han,X., Jia,M. and Guan,W. Transfer of siRNA against XIAP induces apoptosis and reduces tumor cells growth potential in human breast cancer in vitro and in vivo, Breast Cancer Res.Treat.,96: 267-277,2006.
    83. Schimmer,A.D., Estey,E.H., Borthakur,G., Carter,B.Z., Schiller,G.J., Tallman,M.S.,Altman,J.K., Karp,J.E., Kassis,J., Hedley,D.W., Brandwein,J., Xu,W., Mak,D.H., LaCasse,E., Jacob,C., Morris,S.J., Jolivet,J. and Andreeff,M. Phase Ⅰ/Ⅱ trial of AEG35156 X-linked inhibitor of apoptosis protein antisense oligonucleotide combined with idarubicin and cytarabine in patients with re-lapsed or primary refractory acute myeloid leukemia, J.Clin.Oncol.,27: 4741-4746,2009.
    84. Sun,W., Nikolovska-Coleska,Z., Qin,D., Sun,H., Yang,C.Y., Bai,L., Qiu,S., Wang,Y., Ma,D. and Wang,S. Design, synthesis, and evaluation of potent, non-peptidic mimetics of second mitochondria-derived activator of Caspases, J.Med.Chem.,52:593-596,2009.
    85. Sun,H., Nikolovska-Coleska,Z., Yang,C.Y., Qian.D., Lu,J., Qiu,S., Bai,L. Peng,Y., Cai,Q. and Wang,S. Design of small-molecule peptidic and nonpeptidic Smac mimetics, Acc.Chem.Res.,41:1264-1277,2008.
    86. Dai,Y., Liu,M., Tang,W., Li,Y., Lian,J., Lawrence,T.S. and Xu,L. A Smac-mimetic sensitizes prostate cancer cells to TRAIL-induced apoptosis via modulating both IAPs and NF-kappaB, BMC.Cancer,9:392,2009.
    87. Gaither,A., Porter,D., Yao,Y., Borawski.J., Yang,G., Donovan,J., Sage,D., Slisz,J., Tran,M., Straub,C, Ramsey,T., Iourgenko,V., Huang,A., Chen,Y., Schlegel,R., Labow,M., Fawell,S., Sellers,W.R. and Zawel,L. A Smac mimetic rescue screen reveals roles for inhibitor of apoptosis proteins in tumor necrosis factor-alpha signaling, Cancer Res.,67:11493-11498,2007.
    88. Dineen.S.P., Roland,C.L., Greer,R., Carbon,J.G., Toombs,J.E., Gupta,P., Barde-esy,N., Sun,H., Williams,N., Minna,J.D. and Brekken,R.A. Smac mimetic in-creases chemotherapy response and improves survival in mice with pancreatic cancer, Cancer Res.,70:2852-2861,2010.
    89. Crnkovic-Mertens,I., Bulkescher,J., Mensger,C., Hoppe-Seyler.F. and Hoppe-Seyler,K. Isolation of peptides blocking the function of anti-apoptotic Livin protein, Cell Mol.Life Sci.,2010.
    90. Nakahara,T., Takeuchi,M., Kinoyama,I., Minematsu,T., Shirasuna,K., Matsu-hisa,A., Kita,A., Tominaga,F., Yamanaka,K., Kudoh,M. and Sasamata,M. YM155, a novel small-molecule survivin suppressant, induces regression of established human hormone-refractory prostate tumor xenografts, Cancer Res.,67: 8014-8021,2007.
    91. Satoh,T., Okamoto,I., Miyazaki,M., Morinaga,R., Tsuya,A., Hasegawa,Y., Terashima,M., Ueda,S., Fukuoka,M., Ariyoshi,Y., Saito,T., Masuda,N., Wata-nabe,H., Taguchi,T., Kakihara,T., Aoyama,Y., Hashimoto,Y. and Nakagawa,K. Phase I study of YM155, a novel survivin suppressant, in patients with advanced solid tumors, Clin.Cancer Res.,15:3872-3880,2009.
    92. Song,Z., Liu,S., He,H., Hoti,N., Wang,Y., Feng,S. and Wu,M. A single amino acid change (Asp 53--> Ala53) converts Survivin from anti-apoptotic to pro-apoptotic, Mol.Biol.Cell,15:1287-1296,2004.
    93. Hariu,H., Hirohashi,Y., Torigoe,T., Asanuma,H., Hariu,M., Tamura,Y., Aketa,K., Nabeta,C., Nakanishi,K., Kamiguchi,K., Mano,Y., Kitamura,H., Kobayashi,J., Tsukahara,T., Shijubo,N. and Sato,N. Aberrant expression and potency as a cancer immunotherapy target of inhibitor of apoptosis protein family, Livin/ML-IAP in lung cancer, Clin.Cancer Res.,11:1000-1009,2005.
    94. Andersen,M.H., Reker,S., Becker,J.C. and thor,S.P. The melanoma inhibitor of apoptosis protein:a target for spontaneous cytotoxic T cell responses, J.Invest Dermatol.,122:392-399,2004.
    95. Schmollinger,J.C., Vonderheide,R.H., Hoar,K.M., Maecker,B., Schultze,J.L Hodi.F.S., Soiffer,R.J., Jung,K., Kuroda,M.J., Letvin.N.L., Greenfield,E.A. Mihm,M., Kutok,J.L. and Dranoff,G. Melanoma inhibitor of apoptosis protein (ML-IAP) is a target for immune-mediated tumor destruction, Proc.Natl. Acad.Sci.U.S.A,100:3398-3403,2003.
    96. Lladser,A., Ljungberg,K., Tufvesson,H., Tazzari,M., Roos,A.K., Quest,A.F. and Kiessling,R. Intradermal DNA electroporation induces survivin-specific CTLs, suppresses angiogenesis and confers protection against mouse melanoma, Cancer Immunol.Immunother.,59:81-92,2010.
    97. Kobayashi,J., Torigoe,T., Hirohashi,Y., Idenoue,S., Miyazaki,A., Yamaguchi,A., Hiratsuka,H. and Sato,N. Comparative study on the immunogenicity between an HLA-A24-restricted cytotoxic T-cell epitope derived from survivin and that from its splice variant survivin-2B in oral cancer patients, J.Transl.Med.,7:1,2009.
    98. Tsuruma,T., Iwayama,Y., Ohmura,T., Katsuramaki,T., Hata,F., Furuhata,T., Ya-maguchi,K., Kimura,Y., Torigoe,T., Toyota,N., Yagihashi,A., Hirohashi,Y., Asa-numa,H., Shimozawa,K., Okazaki,M., Mizushima,Y., Nomura,N., Sato,N. and Hirata,K. Clinical and immunological evaluation of anti-apoptosis protein, sur-vivin-derived peptide vaccine in phase I clinical study for patients with advanced or recurrent breast cancer, J.Transl.Med.,6:24,2008.
    1. Kasof,G.M. and Gomes,B.C. Livin, a novel inhibitor of apoptosis protein family member, J.Biol.Chem.,276:3238-3246,2001.
    2. Chen,N., Gong,J., Chen,X., Meng,W., Huang,Y., Zhao,F., Wang,L. and Zhou.Q. Caspases and inhibitor of apoptosis proteins in cutaneous and mucosal melanoma: expression profile and clinicopathologic significance, Hum.Pathol.,40: 950-956,2009.
    3. Crnkovic-Mertens,I., Muley,T., Meister,M., Hartenstein,B., Semzow,J., Butz,K. and Hoppe-Seyler,F. The anti-apoptotic livin gene is an important determinant for the apoptotic resistance of non-small cell lung cancer cells, Lung Cancer, 54:135-142,2006.
    4. Wang,X., Xu,J., Ju,S., Ni,H., Zhu,J. and Wang,H. Livin gene plays a role in drug resistance of colon cancer cells, Clin.Biochem.,43:655-660,2010.
    5. Morgan,T.M. and Clark,P.E. Bladder cancer, Curr.Opin.Oncol.,22:242-249, 2010.
    6. Elmore,S. Apoptosis:a review of programmed cell death, Toxicol.Pathol.,35: 495-516,2007.
    7. Wang,L., Zhang,Q., Liu,B., Han,M. and Shan,B. Challenge and promise:roles for Livin in progression and therapy of cancer, Mol.Cancer Ther.,7:3661-3669, 2008.
    8. Gazzaniga,P., Gradilone,A., Giuliani,L., Gandini,O., Silvestri,I., Nofroni,I., Saccani,G., Frati,L. and Agliano,A.M. Expression and prognostic significance of LIVIN, SURVIVIN and other apoptosis-related genes in the progression of su-perficial bladder cancer, Ann.Oncol.,14:85-90,2003.
    9. Liu,H.B., Kong,C.Z., Zeng,Y., Liu,X.K., Bi,J.B., Jiang,Y.J. and Han,S. Livin may serve as a marker for prognosis of bladder cancer relapse and a target of bladder cancer treatment, Urol.Oncol.,2008.
    10. Dorsett,Y. and Tuschl,T. siRNAs:applications in functional genomics and po-tential as therapeutics, Nat.Rev.Drug Discov.,3:318-329,2004.
    11. Kiefer,J., Yin,H.H., Que,Q.Q. and Mousses,S. High-throughput siRNA screening as a method of perturbation of biological systems and identification of targeted pathways coupled with compound screening, Methods Mol.Biol.,563:275-287, 2009.
    12. Harborth,J., Elbashir,S.M., Vandenburgh,K., Manninga,H., Scaringe,S.A., We-ber,K. and Tuschl,T. Sequence, chemical, and structural variation of small in-terfering RNAs and short hairpin RNAs and the effect on mammalian gene si-lencing, Antisense Nucleic Acid Drug Dev.,13:83-105,2003.
    13. Reynolds,A., Leake,D., Boese,Q., Scaringe,S., Marshall,W.S. and Khvorova,A. Rational siRNA design for RNA interference, Nat.Biotechnol.,22:326-330, 2004.
    14. Fedorov,Y., Anderson,E.M., Birmingham,A., Reynolds,A., Karpilow,J., Robin-son,K., Leake,D., Marshall,W.S. and Khvorova,A. Off-target effects by siRNA can induce toxic phenotype, RNA.,12:1188-1196,2006.
    15. McManus,M.T. and Sharp,P.A. Gene silencing in mammals by small interfering RNAs, Nat.Rev.Genet.,3:737-747,2002.
    16. Reynolds,A., Anderson,E.M., Vermeulen,A., Fedorov,Y., Robinson,K., Leake,D., Karpilow,J., Marshall, W.S. and Khvorova,A. Induction of the interferon response by siRNA is cell type-and duplex length-dependent, RNA.,12:988-993,2006.
    17. Ma,L., Huang,Y., Song,Z., Feng,S., Tian,X., Du,W., Qiu,X., Heese,K. and Wu,M. Livin promotes Smac/DIABLO degradation by ubiquitin-proteasome pathway, Cell Death.Differ.,13:2079-2088,2006.
    1. Crnkovic-Mertens,I., Semzow,J., Hoppe-Seyler,F. and Butz,K. Isoform-specific silencing of the Livin gene by RNA interference defines Livin beta as key me-diator of apoptosis inhibition in HeLa cells, J.Mol.Med.,84:232-240,2006.
    2. Ashhab,Y., Alian,A., Polliack,A., Panet,A. and Ben,Y.D. Two splicing variants of a new inhibitor of apoptosis gene with different biological properties and tissue distribution pattern, FEBS Lett.,495:56-60,2001.
    3. Cox,A.D. and Der,C.J. Biological assays for cellular transformation, Methods Enzymol.,238:277-294,1994.
    4. Belanger,M.M., Roussel,E. and Couet,J. Caveolin-1 is down-regulated in human lung carcinoma and acts as a candidate tumor suppressor gene, Chest,125: 106S,2004.
    5. Racine,C., Belanger,M., Hirabayashi,H., Boucher,M., Chakir,J. and Couet,J. Reduction of caveolin 1 gene expression in lung carcinoma cell lines, Bio-chem.Biophys.Res.Commun.,255:580-586,1999.
    6. Crnkovic-Mertens,I., Hoppe-Seyler,F. and Butz,K. Induction of apoptosis in tumor cells by siRNA-mediated silencing of the livin/ML-IAP/KIAP gene, Oncogene,22:8330-8336,2003.
    7. Wang,H., Tan.S.S., Wang,X.Y., Liu.D.H., Yu,C.S., Bai,Z.L., He,D.L. and Zhao,J. Silencing livin gene by siRNA leads to apoptosis induction, cell cycle arrest, and proliferation inhibition in malignant melanoma LiBr cells, Acta Pharmacol.Sin., 28:1968-1974,2007.
    8. Kim,D.H. and Rossi,J.J. Strategies for silencing human disease using RNA in-terference, Nat.Rev.Genet.,8:173-184,2007.
    9. Rana,T.M. Illuminating the silence:understanding the structure and function of small RNAs, Nat.Rev.Mol.Cell Biol.,8:23-36,2007.
    10. Rossi,J.J. Realizing the promise of RNAi, Mol.Ther.,16:810-811,2008.
    11. Dorsett,Y. and Tuschl.T. siRNAs:applications in functional genomics and po-tential as therapeutics, Nat.Rev.Drug Discov.,3:318-329,2004.
    12. Fedorov,Y., Anderson,E.M., Birmingham,A., Reynolds,A., Karpilow,J., Robin-son,K., Leake,D., Marshall,W.S. and Khvorova,A. Off-target effects by siRNA can induce toxic phenotype, RNA.,12:1188-1196,2006.
    13. Kim,D. and Rossi,J. RNAi mechanisms and applications, Biotechniques,44: 613-616,2008.
    14. Pai,S.L., Lin,Y.Y., Macaes,B., Meneshian,A., Hung,C.F. and Wu,T.C. Prospects of RNA interference therapy for cancer, Gene Ther.,13:464-477,2006.
    15. Myers,J.W., Chi,J.T., Gong,D., Schaner,M.E., Brown,P.O. and Ferrell,J.E. Minimizing off-target effects by using diced siRNAs for RNA interference, J.RNAi.Gene Silencing.,2:181-194,2006.
    16. Hannon,G.J. and Rossi,J.J. Unlocking the potential of the human genome with RNA interference, Nature,431:371-378,2004.
    17. Wu,K.Y., Wang,H.Z. and Hong,S.J. Mechanism of mitomycin-induced apoptosis in cultured corneal endothelial cells, Mol.Vis.,14:1705-1712,2008.
    18. Wang,L., Fuqing,Z., Zheng,L. and Tong,Q. Smac/DIABLO promotes mitomycin C-induced apoptosis of bladder cancer T24 cells, J.Huazhong.Univ Sci.Technolog.Med.Sci.,26:317-8,328,2006.
    19. Ghobrial,I.M., Witzig,T.E. and Adjei,A.A. Targeting apoptosis pathways in can-cer therapy, CA Cancer J.Clin.,55:178-194,2005.
    20. Hou,J.Q., He,J., Wen,D.G., Chen,Z.X. and Zeng,J. Survivin mRNA expression in urine as a biomarker for patients with transitional cell carcinoma of bladder, Chin Med.J.(Engl.),119:1118-1120,2006.
    21. Bilim.V., Kasahara,T., Hara,N., Takahashi,K. and Tomita,Y. Role of XIAP in the malignant phenotype of transitional cell cancer (TCC) and therapeutic activity of XIAP antisense oligonucleotides against multidrug-resistant TCC in vitro, Int.J.Cancer,103:29-37,2003.
    22. Zhao,J.H., Yang,C.T., Wu,J.W., Tsai,W.B., Lin,H.Y., Fang,H.W., Ho,Y. and Liu,H.L. RING domains functioning as E3 ligases reveal distinct structural fea-tures:a molecular dynamics simulation study, J.Biomol.Struct.Dyn.,26:65-74, 2008.
    1. LaCasse,E.C., Mahoney.D.J., Cheung,H.H., Plenchette,S., Baird,S. and Korne-luk,R.G. IAP-targeted therapies for cancer, Oncogene,27:6252-6275,2008.
    2. Schimmer,A.D. Inhibitor of apoptosis proteins:translating basic knowledge into clinical practice, Cancer Res.,64:7183-7190,2004.
    3. Wang,L., Zhang,Q., Liu,B., Han,M. and Shan,B. Challenge and promise:roles for Livin in progression and therapy of cancer, Mol.Cancer Ther.,7:3661-3669, 2008.
    4. Dean,E.J., Ranson,M., Blackhall,F. and Dive,C. X-linked inhibitor of apoptosis protein as a therapeutic target, Expert.Opin.Ther.Targets.,11:1459-1471, 2007.
    5. Kanwar,R.K., Cheung,C.H., Chang,J.Y. and Kanwar,J.R. Recent Advances in Anti-Survivin Treatments for Cancer, Curr.Med.Chem.,2010.
    6. Galban,S. and Duckett,C.S. XIAP as a ubiquitin ligase in cellular signaling, Cell Death.Differ.,17:54-60,2010.
    7. Ryan,B.M., O'Donovan,N. and Duffy,M.J. Survivin:a new target for anti-cancer therapy, Cancer Treat.Rev.,35:553-562,2009.
    8. Wolanin,K. and Piwocka,K. [Role of survivin in mitosis], Postepy Biochem., 53:10-18,2007.
    9. Bilim,V., Kasahara,T., Hara,N., Takahashi,K. and Tomita,Y. Role of XIAP in the malignant phenotype of transitional cell cancer (TCC) and therapeutic activity of XIAP antisense oligonucleotides against multidrug-resistant TCC in vitro, Int.J.Cancer,103:29-37,2003.
    10. Shariat,S.F., Karakiewicz,P.I., Godoy,G., Karam,J.A., Ashfaq,R., Fradet,Y., Is-barn,H., Montorsi,F., Jeldres,C., Bastian,P.J., Nielsen,M.E., Muller,S.C., Saga-lowsky,A.I. and Lotan,Y. Survivin as a prognostic marker for urothelial carci-noma of the bladder:a multicenter external validation study, Clin.Cancer Res., 15:7012-7019,2009.
    11. Liu,H.B., Kong,C.Z., Zeng,Y., Liu,X.K., Bi,J.B., Jiang,Y.J. and Han,S. Livin may serve as a marker for prognosis of bladder cancer relapse and a target of bladder cancer treatment, Urol.Oncol.,27:277-283,2009.
    12. Tong,Q.S., Zheng.L.D., Wang,L., Zeng,F.Q., Chen,F.M., Dong,J.H. and Lu,G.C. Downregulation of XIAP expression induces apoptosis and enhances chemo- therapeutic sensitivity in human gastric cancer cells, Cancer Gene Ther.,12: 509-514,2005.
    13. Li,J., Feng,Q., Kim,J.M., Schneiderman,D., Liston,P., Li,M., Vanderhyden,B., Faught,W., Fung,M.F., Senterman,M., Korneluk,R.G. and Tsang,B.K. Human ovarian cancer and cisplatin resistance:possible role of inhibitor of apoptosis proteins, Endocrinology,142:370-380,2001.
    14. Gill.C., Dowling,C., O'Neill,A.J. and Watson,R.W. Effects of cIAP-1, cIAP-2 and XIAP triple knockdown on prostate cancer cell susceptibility to apoptosis, cell survival and proliferation, Mol.Cancer,8:39,2009.
    15. Fedorov.Y., Anderson,E.M., Birmingham,A., Reynolds,A., Karpilow,J., Robin-son,K., Leake,D., Marshall,W.S. and Khvorova,A. Off-target effects by siRNA can induce toxic phenotype, RNA.,12:1188-1196,2006.
    16. Korga,A., Korobowicz,E. and Dudka,J. [Role of mitochondrial protein Smac/Diablo in regulation of apoptotic pathways], Pol.Merkur Lekarski.,20: 573-576,2006.
    17. Creagh,E.M., Murphy,B.M., Duriez,P.J., Duckett,C.S. and Martin,S.J. Smac/Diablo antagonizes ubiquitin ligase activity of inhibitor of apoptosis pro-teins, J.Biol.Chem.,279:26906-26914,2004.
    18. Chowdhury,I., Tharakan,B. and Bhat,G.K. Caspases-an update, Comp Bio-chem.Physiol B Biochem.Mol.Biol.,151:10-27,2008.
    19. Rajalingam,K. and Dikic,I. Inhibitors of apoptosis catch ubiquitin, Biochem.J., 417:el-e3,2009.
    20. Dubrez-Daloz,L., Dupoux,A. and Cartier,J. IAPs:more than just inhibitors of apoptosis proteins, Cell Cycle,7:1036-1046,2008.
    1. Oh,Y.K. and Park,T.G. siRNA delivery systems for cancer treatment, Adv.Drug Deliv.Rev.,61:850-862,2009.
    2. Li,L. and Shen,Y. Overcoming obstacles to develop effective and safe siRNA therapeutics, Expert.Opin.Biol.Ther.,9:609-619,2009.
    3. Sharma,A., Tandon,M., Bangari,D.S. and Mittal,S.K. Adenoviral vector-based strategies for cancer therapy, Curr.Drug ther.,4:117-138,2009.
    4. Feril,L.B., Jr. Ultrasound-mediated gene transfection, Methods Mol.Biol.,542: 179-194,2009.
    5. Wang.S.L., Yao,H.H. and Qin,Z.H. Strategies for short hairpin RNA delivery in cancer gene therapy, Expert.Opin.Biol.Ther.,9:1357-1368,2009.
    6. Al-Dosari,M.S. and Gao,X. Nonviral gene delivery:principle, limitations, and recent progress, AAPS.J.,11:671-681,2009.
    7. Yoon,C.S. and Park,J.H. Ultrasound-mediated gene delivery, Expert.Opin.Drug Deliv.,7:321-330,2010.
    8. Reslan,L., Mestas,J.L., Herveau,S., Bera,J.C. and Dumontet,C. Transfection of cells in suspension by ultrasound cavitation, J.Control Release,142:251-258, 2010.
    9. Taniyama,Y. and Morishita,R. [Development of plasmid DNA-based gene trans-fer], Yakugaku Zasshi,126:1039-1045,2006.
    10. Wang ZG, Ling ZY and Ran HT Experimental study on ultrasound-mediated mi-crobubble destruction deliver VEGF gene to myocardium of rats and its bioloy-ical effects, Chinese Journal of Medical Imaging Technology,19:656-658, 2004.
    11. Schwendener.R.A. Liposomes in biology and medicine, Adv.Exp.Med.Biol., 620:117-128,2007.
    12. Mehier-Humbert,S., Bettinger,T., Yan,F. and Guy,R. Influence of polymer adju-vants on the ultrasound-mediated transfection of cells in culture, Eur.J.Pharm. Biopharm.,72:567-573,2009.
    13. Li,Y.S., Davidson,E., Reid,C.N. and McHale,A.P. Optimising ultrasound-medi-ated gene transfer (sonoporation) in vitro and prolonged expression of a trans-gene in vivo:potential applications for gene therapy of cancer, Cancer Lett., 273:62-69,2009.
    14. Duvshani-Eshet,M., Baruch,L., Kesselman,E., Shimoni,E.and Machluf,M. Therapeutic ultrasound-mediated DNA to cell and nucleus:bioeffects revealed by confocal and atomic force microscopy, Gene Ther.,13:163-172,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700