胆管癌干细胞的分离、鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨肿瘤干细胞标记物CD24、CD44、EpCAM和CD34在胆管癌中的表达,初步明确其能否用于胆管癌干细胞的分选。方法:免疫细胞化学、RT-PCR、Western Blotting和流式细胞术检测CD24、CD44、EpCAM和CD34在胆管癌细胞系QBC939和胆囊癌细胞系GBC-SD中的表达水平;免疫组织化学检测CD24、CD44、EpCAM和CD34在50例胆管组织(10例正常胆管组织、20例肝门部胆管癌、20例胆总管下段肿瘤)中的表达,流式细胞术检测其中8例胆管癌组织CD24、CD44、EpCAM和CD34的表达率。
     结果:在QBC939细胞系中,流式细胞术检测CD24+、CD44+和EpCAMhigh的表达率分别为57.57%、89.41%和97.74%,CD24+CD44+EpCAMhigh的表达率为51.01%;在GBC-SD细胞系中,流式细胞术检测CD24+、CD44+和EpCAMhigh的表达率分别为82.61%、93.56%和98.36%,CD24+CD44+EpCAMhigh的表达率为80.59%;在两株细胞系中,RT-PCR检测CD24、CD44和EpCAM mRNA高表达,CD34mRNA呈弱表达;免疫细胞化学、Western Blotting检测CD24、CD44和EpCAM蛋白均表达,CD34蛋白呈无表达;在人胆管癌组织中,免疫组织化学检测CD24、CD44和EpCAM蛋白均表达,而CD34蛋白无表达;流式细胞术检测CD24、CD44、EpCAMhigh CD24+EpCAMhigh/CD44+EpCAMhigh、CD44+CD24+的表达率分别为5.19-21.39%、3.79-42.32%、70.83-94.48%、4.27-19.73%、1.88-21.61%、0.43-6.60%,CD24+CD44+EpCAMhigh表达率为0.39-2.27%(均值:0.94%)。
     结论:CD24、CD44和EpCAM是胰腺癌干细胞和乳腺癌干细胞表面标记物,其在胆管癌中的表达率和以上两者肿瘤干细胞的分选比例十分相似,可作为胆管癌干细胞表面标记物。
     目的:检测及分选人胆管癌中的CD24+CD44+EpCAMhigh细胞亚群,探讨其是否具有肿瘤干细胞样生物学特性。
     方法:将新鲜人胆管癌标本种植到NOD/SCID小鼠皮下,建立荷人胆管癌小鼠模型。流式细胞术分选CD24+CD44+EpCAMhigh亚群细胞,NOD/SCID小鼠移植瘤试验鉴定其成瘤和分化能力。
     结果:建立稳定的NOD/SCID小鼠移植瘤模型,分选得到CD24+CD44+EpCAMhigh亚群细胞。NOD/SCID小鼠移植瘤试验,103个CD24+CD44+EpCAMhigh细胞能成瘤(3/8),而CD24-CD44-EpCAMlow/-细胞需5x104才能成瘤(1/8)。CD24+CD44+EpCAMhigh胆管癌细胞NOD/SCID小鼠移植瘤的组织类型及标记物的表达率和原代肿瘤相似。
     结论:人胆管癌中含有CD24+CD44+EpCAMhigh细胞亚群,具有强成瘤能力、自我更新和分化的能力,可能是胆管癌干细胞。
Objective:To investigate the expression of CD24, CD44, EpCAM and CD34 in cholangiocarcinoma and determine whether they may be candidate marker isolated cancer stem cells.
     Methods:Immunocytochemistry staining, RT-PCR, Western blotting and Flow cytometry were employed to examine the expression and rate of CD24, CD44, EpCAM and CD34 at protein and mRNA levels both in Human cholangiocarcinoma cells (QBC-939) and Human gallbladder carcinoma cells (GBC-SD), respectively. The samples resected from patients undergoing surgical resection in our hospital, used for immunohistochemistry included 10 normal bile duct tissues,20 perihilar cholangiocarcinomas, and 20 distal biliary cancers. Of the 40 Extrahepatic cholangiocarcinoma,8 fresh cancer samples were used to perform the expression and rate of CD24, CD44, EpCAM and CD34 by Flow cytometry.
     Results:In the QBC939 cell line, the mean frequencies of CD24+, CD44+, and EpCAMhigh cells were 57.57%,89.41% and 97.74%, respectively; 51.01% of QBC939 cells were CD24+CD44+EpCAMhigh. In the GBC-SD cell line, the mean frequencies of CD24, CD44 and EpCAMhigh cells were 82.61%,93.56% and 98.36%, respectively; 80.59% of GBC-SD cells were CD24+CD44+EpCAMhigh. In both cell lines, CD34 was weakly detected only by RT-PCR, but not by immunohistochemistry examination、western blot and flow cytometry analysis. On the contrary, CD24, CD44, EpCAM were highly expressed at mRNA and protein level by RT-PCR, Immunocytochemistry staining and western blot. The results were analogue to achieve in cholangiocarcinoma by immunohistochemistry examination, and the frequency of CD24, CD44, EpCAMhigh,CD24+EpCAMhigh, CD44+EpCAMhigh, CD44+CD24+were 5.19-21.39%,3.79-42.32%,70.83-94.48%,4.27-19.73%, 1.88-21.61%,0.43-6.60%. Furthermore, the expression rate of CD24+CD44+EpCAMhigh subpopulation was 0.39-2.27%(mean:0.94%).
     Conclusion:CD24 combined with CD44 and EpCAM may be a candidate marker isolated cancer stem cells from cholangiocarcinoma.
     Objective:To isolate CD24+CD44+EpCAMhigh subset cells of human cholangiocarcinoma and identify their cancer stem cell-like properties.
     Methods:The procedure of subcutaneous implant of NOD/SCID mice was performed to establish the xenografts model with cholangiocarcinoma specimens. CD24+CD44+EpCAMhigh subpopulation of cholangiocarcinoma cells were sorted from xenografts by flow cytometry, and their tumorigenic potential, self-renewal ability and differentiated ability were assessed.
     Results:CD24+CD44+EpCAMhigh subset cells isolated from 2 xenografts were found to be highly tumorigenic in NOD/SCID mice. CD24+CD44+EpCAMhigh cells consistently formed new tumors at 1×103 cells in three of eight mice tested, In contrast, CD24"CD44"EpCAMlow/- tumor cells were less tumorigenic and gived rise to tumors when 5×104 cells were s.c. inoculated in only one of eight mice animals. Tumors originated from CD24+CD44+EpCAMhigh cells in NOD/SCID mice recapitulated the histological features and heterogeneity of the original patient tumor.
     Conclusion:CD24+CD44+EpCAMhigh subset cells were discriminated in human cholangiocarcinoma, which had highly tumorigenic, self-renewal ability and differentiated ability. It was first confirmed that CD24+CD44+EpCAMhigh cells may be human cholangiocarcinoma cancer stem cells.
引文
[1]Rajagopalan V, Daines WP, Grossbard ML, et al. Gallbladder and biliary t ract carcinoma:A comprehensive update, Part 1[J].Oncology (Huntingt) 18 (7): 889-96,2004.
    [2]Daines WP, Rajagopalan V, Grossbard ML, et al. Gallbladder and biliary tract carcinoma:A comprehensive update, Part 2[J].Oncology (Huntingt) 18 (8):1049-59, 2004.
    [3]Bonnet D and Dick JE:Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730-37,1997.
    [4]Al-Hajj M, Wicha MS, Benito-Hernandez A, et al.Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad of Sci USA 100(7):3983-8,2003.
    [5]Singh SK, Clarke ID, Terasaki M, et al.Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821-8,2003.
    [6]Kim CF, Jackson EL, Woolfenden AE, et al.Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121(6):823-35,2005.
    [7]Yang YM and Chang JW:Bladder cancer initiating cells (BCICs) are among EMA-CD44v6+subset:novel methods for isolating undetermined cancer stem (initiating) cells. Cancer Invest 26(7):725-33,2008.
    [8]Fang D, Nguyen TK, Leishear K, et al.A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65(20):9328-37,2005.
    [9]Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, et al.Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian inhibiting substance responsiveness. Proc Natl Acad Sci USA 103(30):11154-9,2006.
    [10]Prince ME, Sivanandan R, Kaczorowski A, et al.Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 104(3):973-8,2007.
    [11]Collins AT, Berry PA, Hyde C, et al.Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65(23):10946-51,2005.
    [12]Malanchi I, Peinado H, Kassen D, et al.Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling. Nature 452(7187):650-3,2008.
    [13]Marhaba R, Klingbeil P, Nuebel T, et al. CD44 and EpCAM:cancer-initiating cell markers. Curr Mol Med 8(8):784-804,2008.
    [14]Li C, Heidt DG, Mollenberg N, et al. Identification of pancreatic cancer stem cells[J]. Pancreas 31 (4):452,2005.
    [15]Lyn H, Gillian M, Karin G, et al. The stem cell antigen CD34 functions as a regulator of hematopoietic cell adhesion [J]. Proc N atl Acad Sci USA 92 (26):12240-4,1995.
    [16]Badorff C, Brandes RP, Popp R, et al. Transdifferentiation of blood-derived human adult endothelial p rogenitor cells into functionally active cardiomyocytes [J]. Circulation 107 (7):1024-32,2003.
    [17]Sleeman KE, Kendrick H, Ashworth A, et al. CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells [J]. Breast Cancer Res 8(1):R7,2006.
    [18]Litvinov SV, Velders MP, Bakker HA, et al. Ep-CAM:a human epithelial antigen is a homophilic cell-cell adhesion molecule. J Cell Biol 125(2):437-46,1994.
    [19]Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells.Nature 414(6859):105-11,2001.
    [20]Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature 432(7015):396-401,2004.
    [21]Galli R, Binda E, Orfanelli U, et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res64(19):7011-21, 2004.
    [22]Hemmati HD, Nakano I, Lazareff JA, et al. Cancerous stem cells arise from pediatric brain tumors. Proc Natl Acad Sci U S A 100(25):15178-83,2003.
    [23]O'Brien CA, Pollett A, Gallinger S et al.A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445(7123):106-10,2007.
    [24]Li C, Heidt DG, Dalerba P, et al.Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030-7,2007.
    [25]Yang ZF, Ho DW, Ng MN, et al.Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 13(2):153-66,2008.
    [26]Costello RT, Mallet F, Gaugler B, et al. Human acute myeloid leukemia CD34+/CD38 progenitor cells have decreased sensitivity to chemotherapy and Fas induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Res 60(16):4403-11,2000.
    [27]Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer 5(4):274-84,2005.
    [28]Guzman ML, Swiderski CF, Howard DS, et al.Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci U S A 99(25):16220-5,2002.
    [29]Patrawala L, Calhoun T, Schneider-Broussard R, et al. Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25(12):1696-708,2006.
    [30]Stingl J, Eaves CJ, Kuusk U, et al.Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast. Differentiation 63(4):201-13,1998.
    [31]Liu AY, True LD, LaTray L, et al.Cell-cell interaction in prostate gene regulation and cytodifferentiation. Proc Natl Acad Sci U S A.94(20):10705-10,1997.
    [32]Gudjonsson, T., Villadsen, R., Nielsen, H. L., et al.Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties. Genes Dev 16(6):693-706,2002.
    [33]Piero Dalerba, Scott J Dylla, In-Kyung Park, et al. Phenotypic characterization of human colorectal cancer stem cells. PNAS 1049(24):10158-63,2007.
    [34]Shipitsin M and Polyak K:The cancer stem cell hypothesis:in search of definitions, markers, and relevance. Lab Invest 88(5):459-63,2008.
    [35]Costello RT, Mallet F, Gaugler B, et al. Human acute myeloid leukemia CD34+/CD38 progenitor cells have decreased sensitivity to chemotherapy and Fas induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Res 60(16):4403-11,2000.
    [36]Matsui W, Huff CA, Wang Q, et al. Characterization of clonagenic multiple myeloma cells. Blood 103(6):2332-6,2004.
    [37]Lagasse E, Weissman IL. Enforced expression of Bcl-2 in monocytes rescues macrophages and partially reverses osteopetrosis in op/op mice. Cell.89(7):1021-31, 1997.
    [38]Lagasse E, Weissman IL. Bcl-2 inhibits apoptosis of neutrophils but not their engulfment by macrophages. J Exp Med.179(3):1047-52,1994.
    [39]Domen J, Gandy KL, Weissman IL. Systemic overexpression of BCL-2 in the hematopoietic system protects transgenic mice from the consequences of lethal irradiation. Blood.91(7):2272-82,1998.
    [40]Zhou S, Schuetz JD, Bunting KD, et al.The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med.7(9):1028-34,2001.
    [41]Singh SK, Clarke ID, Terasaki M, et al.Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821-8,2003.
    [42]Li C, Heidt DG, Dalerba P, et al.Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030-7,2007.
    [43]Yang ZF, Ho DW, Ng MN, et al.Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 13(2):153-66,2008.
    [44]Hill RP:Identifying cancer stem cells in solid tumors:case not proven. Cancer Res 66(4):1890-5,2006.
    [45]Shmelkov SV, Butler JM, Hooper AT, et al.CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. J Clin Invest 118(6):2111-20,2008.
    [46]Jamieson CH, Weissman IL and Passegue E:Chronic versus acute myelogenous leukemia:a question of self-renewal. Cancer Cell 6(6):531-3,2004.
    [47]Singh SK, Hawkins C, Clarke ID, et al.Identification of human brain tumour initiating cells. Nature 432(7015):396-401,2004.
    [48]Campos LS:Neurospheres:insights into neural stem cell biology. J Neurosci Res 78(6): 761-9,2004.
    [49]Campos LS, Decker L, Taylor V et al.Notch, epidermal growth factor receptor, and betal-integrin pathways are coordinated in neural stem cells. J Biol Chem 281(8): 5300-9,2006.
    [50]Robey E, Chang D, Itano A, et al.An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell 87(3):483-92,1996.
    [51]Pear WS, Aster JC, Scott ML, et al.Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med 183(5): 2283-91,1996.
    [52]Gallahan D, Jhappan C, Robinson G, et al.Expression of a truncated Int3 gene in developing secretory mammary epithelium specifically retards lobular differentiation resulting in tumorigenesis. Cancer Res 56(8):1775-85,1996.
    [53]Uyttendaele H, Soriano JV, Montesano R et al.Notch4 and Wnt-1 proteins function to regulate branching morphogenesis of mammary epithelial cells in an opposing fashion. Dev Biol 196(2):204-17,1998.
    [54]Shih AH and Holland EC:Notch signaling enhances nestin expression in gliomas. Neoplasia 8(12):1072-82,2006.
    [55]Reguart N, He B, Taron M, et al.The role of Wnt signaling in cancer and stem cells. Future Oncol 1(6):787-97,2005.
    [56]Kolligs FT, Hu G, Dang CV et al.Neoplastic transformation of RK3E by mutant beta-catenin requires deregulation of Tcf/Lef transcription but not activation of c-myc expression. Mol Cell Biol 19(8):5696-706,1999.
    [57]Lowry WE, Blanpain C, Nowak JA, et al.Defining the impact of beta-catenin/Tcf transactivation on epithelial stem cells. Genes Dev 19(13):1596-611,2005.
    [58]Baeza N, Masuoka J, Kleihues P et al.AXIN1 mutations but not deletions in cerebellar medulloblastomas. Oncogene 22(4):632-6,2003.
    [59]Li Y, Welm B, Podsypanina K, et al.Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci USA 100(26):15853-8,2003.
    [60]Reya T, Duncan AW, Ailles L, et al. A role for Wnt signaling in self-renewal of haematopoietic stem cells. Nature 423(6938):409-14,2003.
    [61]Fleming HE, Janzen V, Lo Celso C, et al.Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2(3):274-83,2008.
    [62]Hahn H, Wicking C, Zaphiropoulous PG, et al.Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85(6):841-51, 1996.
    [63]Raffel C, Jenkins RB, Frederick L, et al.Sporadic medulloblastomas contain PTCH mutations. Cancer Res 57(5):842-5,1997.
    [64]Palma V and Ruiz i Altaba A:Hedgehog-GLI signaling regulates the behavior of cells with stem cell properties in the developing neocortex. Development 131(2):337-45, 2004.
    [65]Liu S, Dontu G, Mantle ID, et al.Hedgehog signaling and Bmi-1 regulate selfrenewal of normal and malignant human mammary stem cells. Cancer Res 66(12):6063-71, 2006.
    [66]Bhardwaj G, Murdoch B, Wu D, et al.Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol 2(2):172-80, 2001.
    [67]Clement V, Sanchez P, de Tribolet N, et al.HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17(2):165-72,2007.
    [68]Gottesman MM, Fojo T and Bates SE:Multidrug resistance in cancer:role of ATP-dependent transporters. Nat Rev 2(1):48-58,2002.
    [69]Wolf NS, Kone A, Priestley GV and Bartelmez SH:In vivo and in vitro characterization of long-term repopulating primitive hematopoietic cells isolated by sequential Hoechst 33342-rhodamine 123 FACS selection. Exp Hematol 21(5):614-22,1993.
    [70]Tang C, Ang BT and Pervaiz S:Cancer stem cell:target for anti-cancer therapy. FASEB J 21(5):3777-85,2007.
    [71]Hirschmann-Jax C, Foster AE, Wulf GG, et al.A distinct'side population'of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 101(39): 14228-33,2004.
    [72]Goodell MA, Brose K, Paradis G, et al.Isolation and functional properties of murine atopoietic stem cells that are replicating in vivo. J Exp Med 183(4):1797-806,1996.
    [73]Liu G, Yuan X, Zeng Z, et al.Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67-79,2006.
    [74]Bao S, Wu Q, McLendon RE, et al.Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756-60,2006.
    [75]Li L and Xie T:Stem cell niche:structure and function. Annu Rev Cell Dev Biol 21: 605-31,2005.
    [76]Clarke MF and Fuller M:Stem cells and cancer:two faces of eve. Cell 124(6):1111-5, 2006.
    [77]Jin L, Hope KJ, Zhai Q, et al. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12(10):1167-74,2006.
    [78]Calabrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stem cells. Cancer Cell 11(1):69-82,2007.
    [79]Piccirillo SG, Reynolds BA, Zanetti N, et al:Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444(7120):761-65, 2006.
    [80]Fan X, Matsui W, Khaki L, et al. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 66(15):7445-52,2006.
    [81]Dang TP, Gazdar AF, Virmani AK, et al. Chromosome 19 translocation, overexpression of Notch3, and human lung cancer. J Natl Cancer Inst 92(16):1355-7,2000.
    [82]He B, You L, Uematsu K, et al. A monoclonal antibody against Wnt-1 induces apoptosis in human cancer cells. Neoplasia 6(1):7-14,2004.
    [83]Williams JA, Guicherit OM, Zaharian BI, et al. Identification of a small molecule inhibitor of the hedgehog signaling pathway:effects on basal cell carcinoma-like lesions. Proc Natl Acad Sci USA 100(8):4616-21,2003.
    [84]彭承宏,李勤裕,王兆海.肝门胆管癌外科治疗现况[J].肝胆外科杂志16(2):23-4,2008.
    [85]Khan SA, Thomas HC, Davidson BR, et al. Cholangiocarcinoma. Lancet 366(9493):1303-14,2005.
    [86]Nagino M, Nimura Y, Kamiya J, et al. Segmental liver resections for hilar cholangiocarcinoma. Hepatogastroenterology 45(19):7-13,1998.
    [87]Makuuchi M, Thai B1, Takayasu K, et al. Preoperative portal embolization to increase safety of major hepatectomy for hilar bile duct carcinoma:a preliminary report. Surgery 107(5):521-7,1990.
    [88]Hemming AW, Reed AI, Howard RJ, et al. Preoperative portal vein embolization for extended hepatectomy. Ann Surg 237(5):686-91; Discussion 691-3,2003.
    [89]Abdalla EK, Barnett CC, Doherty D, et al. Extended hepatectomy in patients with hepatobiliary malignancies with and without preoperative portal vein embolization. Arch Surg 137(6):675-80; Discussion 680-1,2002.
    [90]Belghiti J. Arguments for a selective approach of preoperative portal vein embolization before major hepatic resection. J Hepatobiliary Pancreat Surg 11(1):21-4,2004.
    [91]Nagino M, Nimura Y, Kamiya J, et al. Selective percutaneous transhepatic embolization of the portal vein in preparation for extensive liver resection:the ipsilateral approach. Radiology 200(2):559-63,1996.
    [92]Shimamura T, Nakajima Y, Une Y, et al. Effi cacy and safety of preoperative percutaneous ntranshepatic portal embolization with absolute ethanol:a clinical study. Surgery 121(2):135-41,1997.
    [93]De Baere T, Roche A, Elias D, et al. Preoperative portal vein embolization for extension of hepatectomy indications. Hepatology 24(6):1386-91.1996.
    [94]Y. Yokoyama, M. Nagino, Y. Nimura. Mechanisms of Hepatic Regeneration Following Portal Vein Embolization and Partial Hepatectomy:A Review World J Surg 31(2): 367-74,2007.
    [95]Nagino M, Nimura Y, Kamiya J, et al. Changes in hepatic lobe volume in biliary tract cancer patients after right portal vein embolization. Hepatology 21(2):434-9,1995.
    [96]Ito A, Higashiguchi T. Effects of glutamine administration on liver regeneration following hepatectomy. Nutrition 15:(1) 23-8,1999.
    [97]Yoshida S, Yunoki T, Aoyagi K, et al. Effect of glutamine supplement and hepatectomy on DNA and protein synthesis in the remnant liver. J Surg Res 59:(4) 475-81,1995.
    [98]Kanai M, Tanaka M, Nimura Y, et al. Mitochondrial dysfunction in the non-obstructed lobe of rat liver after selective biliary obstruction. Hepatogastroenterology 39(5):385-91, 1992.
    [99]Kanai M, Nimura Y, Kamiya J, et al. Preoperative intrahepatic segmental cholangitis in patients with advanced carcinoma involving the hepatic hilus. Surgery 119(5):498-504,
    1996.
    [100]Hirai I, Kimura W, Fuse A, et al. Evaluation of preoperative portal embolization for safe hepatectomy, with special reference to assessment of nonembolized lobe function with 99mtc-gsa spect scintigraphy. Surgery 133(5):495-506,2003.
    [101]Kamiya S, Nagino M, Kanazawa H, et al. The value of bile replacement during external biliary drainage:an analysis of intestinal permeability, integrity, and microfl ora. Ann Surg 239(4):510-7,2004.
    [102]Kanazawa H, Nagino M, Kamiya S, et al. Synbiotics reduce postoperative infectious complications:a randomized controlled trial in biliary cancer patients undergoing hepatectomy. Langenbecks Arch Surg 390(2):104-13,2005.
    [103]Imamura H, Shimada R, Kubota M, et al. Preoperative portal vein embolization:an audit of 84 patients. Hepatology 29(4):1099-105,1999.
    [104]Liatsos GD, Mykoniatis MG, Margeli A, et al. Effect of acute ethanol exposure on hepatic stimulator substance (hss) levels during liver regeneration:protective functionof hss. Dig Dis Sci 48(10):1929-38,2003.
    [105]Marshall A, Rushbrook S, Davies SE, et al. Relation between hepatocyte g1 arrest, impaired hepatic regeneration, and fi brosis in chronic hepatitis C virus infection. Gastroenterology128:33-42,2005.
    [106]Skullman S, Ihse I, Larsson J. Influence of malnutrition on regeneration and composition of the liver in rats. Acta Chir Scand 156(10):717-22,1990.
    [107]De Baere T, Roche A, Vavasseur D, et al. Portal vein embolization:utility for inducing left hepatic lobe hypertrophy before surgery. Radiology 188(1):73-7,1993.
    [108]De Baere T, Roche A, Elias D, et al. Preoperative portal vein embolization for extension of hepatectomy indications. Hepatology 24(6):1386-91,1996.
    [109]Huang JY, Yang WZ, Li JJ, et al. Portal vein embolization induces compensatory hypertrophy of remnant liver. World J Gastroenterol 12(1):408-14,2006.
    [110]Kubota K, Makuuchi M, Kusaka K, et al. Measurement of liver volume and hepatic functional reserve as a guide to decision-making in resectional surgery for hepatic tumors. Hepatology 26(5):1176-81,1997.
    [111]Denys A, Lacombe C, Schneider F, et al. Portal vein embolization with N-butyl cyanoacrylate before partial hepatectomy in patients with hepatocellular carcinoma and underlying cirrhosis or advanced fi brosis. J Vasc Interv Radiol 16(12):1667-74,2005.
    [112]Kutlu R, Sarac K, Yilmaz S, et al. Percutaneous right portal vein embolization with polyvinyl alcohol particles in gastric cancer metastasis:report of a case. Surg Today 35(9):765-9,2005.
    [113]Madoff DC, Abdalla EK, Gupta S, et al. Transhepatic ipsilateral right portal vein embolization extended to segment iv:improving hypertrophy and resection outcomes with spherical particles and coils. J Vasc Interv Radiol (2 Pt 1); 16:215-25,2005.
    [114]Kito Y, Nagino M, Nimura Y. Doppler sonography of hepatic arterial blood fl ow velocity after percutaneous transhepatic portal vein embolization. AJR Am J Roentgenol 176(4):909-12,2001.
    [115]Kyokane T, Nagino M, Oda K, et al. An experimental study of selective intrahepatic biliary ablation with ethanol. J Surg Res 96(2):188-96,2001.
    [116]Alison MR, Poulsom R, Jeffery R, et al. Hepatocytes from non-hepatic adult stem cells. Nature 406(6793):257,2000.
    [117]Am Esch JS 2nd, Knoefel WT,Klein M, et al. Portal application of autologous Cd133+ bone marrow cells to the liver:a novel concept to support hepatic regeneration. Stem Cells 23(4):463-70,2005.
    [118]Nagino M, Kamiya J, Kanai M, Uesaka K, Sano T, Yamamoto H, et al. Right trisegment portal vein embolization for biliary tract carcinoma:technique and clinical utility. Surgery 127(2):155-60,2000.
    [119]Nagino M, Nimura Y, Kamiya J, Kondo S, Uesaka K, Kin Y, et al. Right or left trisegment portal vein embolization before hepatic trisegmentectomy for hilar bile duct carcinoma. Surgery 117(6):677-81,1995.
    [120]apussotti L, Muratore A, Ferrero A, Anselmetti GC, Corgnier A, Regge D. Extension of right portal vein embolization to segment Iv portal branches. Arch Surg 140(11):1100-3. 2005.
    [121]Lee SG, Hwang S. How I do it:assessment of hepatic functional reserve for indication of hepatic resection. J Hepatobiliary Pancreat Surg 12(1):38-43,2005.
    [122]Wakabayashi H, Yachida S, Maeba T, et al. Evaluation of liver function for the application of preoperative portal vein embolization on major hepatic resection. Hepatogastroenterology 49(46):1048-52,2002.
    [123]Hirai I, Kimura W, Fuse A, et al. Evaluation of preoperative portal embolization for safe hepatectomy, with special reference to assessment of nonembolized lobe function with 99mtc-gsa spect scintigraphy. Surgery 133(5):495-506,2003.
    [124]Nishiguchi S, Shiomi S, Sasaki N, et al. Course before and after percutaneous transhepatic portal vein embolization of a patient with cholangiocarcinoma monitored by scintigraphy with Tc-99m galactosyl human serum albumin. Ann Nucl Med 14(3):231-4,2000.
    [125]Nishiyama Y, Yamamoto Y, Hino I, et al.99mtc Galactosyl human serum albumin liver dynamic spet for pre-operative assessment of hepatectomy in relation to percutaneous transhepatic portal embolization. Nucl Med Commun 24(7):809-17,2003.
    [126]Uesaka K, Nimura Y, Nagino M. Changes in hepatic lobar function after right portal vein embolization. An appraisal by biliary indocyanine green excretion. Ann Surg 223(1):77-83,1996.
    [127]Ladurner R, Brandacher G, Riedl-Huter C, et al. Percutaneous portal vein embolisation in preparation for extended hepatic resection of primary nonresectable liver tumours. Dig Liver Dis 35(10):716-21,2003.
    [128]Kubota K, Makuuchi M, Kusaka K, et al. Measurement of liver volume and hepatic functional reserve as a guide to decision-making in resectional surgery for hepatic tumors. Hepatology 26(5):1176-81,1997.
    [129]Farges O, Belghiti J, Kianmanesh R, et al. Portal vein embolization before right hepatectomy:prospective clinical trial. Ann Surg 237(2):208-17,2003.
    [130]Elias D, Ouellet JF, De Baere T, et al. Preoperative selective portal vein embolization before hepatectomy for liver metastases:long-term results and impact on survival. Surgeryl31 (3):294-9,2002.
    [131]Belghiti J. Arguments for a selective approach of preoperative portal vein embolization before major hepatic resection. J Hepatobiliary Pancreat Surg 11(1):21-4,2004.
    [132]Uesaka K, Nimura Y, Nagino M. Changes in hepatic lobar function after right portal vein embolization. An appraisal by biliary indocyanine green excretion. Ann Surg 223:77-83,1996.
    [133]Farges O, Belghiti J, Kianmanesh R, et al. Portal vein embolization before right hepatectomy:prospective clinical trial. Ann Surg 237(2):208-17,2003.
    [134]Hemming AW, Reed AI, Howard RJ, et al. Preoperative portal vein embolization for extended hepatectomy. Ann Surg 237(5):686-91; Discussion 691-3,2003.
    [135]Ji W, Liu WH, Ma KS, et al. Preoperative selective portal vein embolization in two-step hepatectomy for hepatocellular carcinoma in injured livers:a preliminary report. Hepatobiliary Pancreat Dis Int 2(2):216-20,2003.
    [136]Di Stefano DR, De Baere T, Denys A, et al. Preoperative percutaneous portal vein embolization:evaluation of adverse events in 188 patients. Radiology 234(4):625-30, 2005.
    [137]Elias D, De Baere T, Roche A, et al.During liver regeneration following right portal embolization the growth rate of liver metastases is more rapid than that of the liver parenchyma. Br J Surg 86(6):784-8,1999.
    [138]Kodama Y, Shimizu T, Endo H, et al. Complications of percutaneous transhepatic portal vein embolization. J Vase Interv Radiol 13(12):1233-7,2002.
    [139]Yukihiro Yokoyama, Masato Nagino, Hideki Nishio, et al. Recent advances in the treatment of hilar cholangiocarcinoma:portal vein embolization.J Hepatobiliary Pancreat Surg 14(5):447-454,2007.
    [140]Ohkubo M, Nagino M, Kamiya J, et al. Portal and mesenteric vein thrombosis after portal vein embolization in a patient with protein S defi ciency. J Hepatobiliary Pancreat Surg 11(5):338-41,2004.
    [141]Kamiya S, Nagino M, Kanazawa H, et al. The value of bile replacement during external biliary drainage:an analysis of intestinal permeability, integrity, and microfl ora. Ann Surg 239(4):510-7,2004.
    [142]Hemming AW, Reed AI, Fujita S, et al. Surgical management of hilar cholangiocarcinoma. Ann Surg 241(5):693-9; Discussion 699-702,2005.
    [143]Abdalla EK, Barnett CC, Doherty D, et al.Extended hepatectomy in patients with hepatobiliary malignancies with and without preoperative portal vein embolization. Arch Surg 137(6):675-80; Discussion 680-1,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700