OX40/OX40L mRNA在EAN中的表达及ROK抑制剂对其影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:吉兰-巴雷综合征(GBS)是一种常见的周围神经系统自身免疫性疾病,其病理改变主要为周围神经髓鞘脱失和炎性细胞浸润。实验性变态反应性神经炎(EAN)是研究GBS的理想动物模型,周围神经髓鞘蛋白抗原特异性CD4~+T细胞的活化是其发病关键。OX40/0X40L是新近发现的协同刺激分子,它们在维持CD4~+T细胞的增殖、分化和长期存活方面发挥重要作用。Rho/Rho激酶(ROK)信号通路是多系统疾病及损伤发生发展的重要病理途径,它可以促进T细胞迁移、炎性因子分泌、细胞凋亡和神经突触崩解,应用ROK抑制剂治疗后,多种炎性疾病症状明显改善。本实验通过观察0X40和OX40L mRNA在EAN大鼠坐骨神经、脾脏、外周血和淋巴结的动态表达变化及ROK抑制剂对其表达的影响,探讨OX40/0X40L与EAN发病的关系并以OX40/0X40L为切入点探讨ROK抑制剂治疗EAN的分子机制,为其临床应用奠定理论基础。
     方法:54只Lewis大鼠随机分为EAN模型组(n=6,6,6),EAN+ROK抑制剂干预组(n=6,6,6),完全弗氏佐剂对照组(CFA)组(n=6,6,6)。EAN组大鼠用合成肽段P2 53-78aa+CFA+NS免疫,EAN+ROK抑制剂组从模型制作前两天腹腔注射法舒地尔注射液(25mg/kg.d)治疗。观察各组大鼠发病情况和组织病理学改变。分别在第9天、17天、26天处死动物取其坐骨神经根、脾脏、外周血单个核细胞和淋巴结,采用RT-PCR技术检测OX40和OX40LmRNA在各组织的表达水平。
     结果:EAN组大鼠在抗原免疫后第17天达到发病高峰,OX40和OX40L mRNA在第9天(发病早期)和第17天时表达均较高,与第26天相比有显著差异(p<0.05),各时间点与对照组相比有显著差异(p<0.05);EAN+ROK抑制剂组大鼠与EAN组相比,其平均最高临床评分明显降低(p<0.01),坐骨神经炎性细胞浸润和脱髓鞘减轻,OX40和OX40L在各时间点的表达减少(p<0.05)。CFA组大鼠无症状。
     结论:OX40/0X40L可能与EAN发病有关;ROK抑制剂可以减轻EAN发病程度,抑制OX40/0X40L的表达可能是其作用机制之一。
Objective Guillain-Barre Syndrome(GBS) is an autoimmune disease of the peripheral nervous system, characterized by multifocal demyelination and inflammation cells infiltration in peripheral nerves and spinal nerve roots._Experimental allergic neuritis(EAN) is a classical animal model to study pathogenetis of GBS. The activation of peripheral nervous myelin antigen specific CD4~+T cell play key roles in the development of EAN. OX40/OX40L is a new co-stimulatory molecules, it appears to be particularly important for regulating the extent of CD4~+ T cell expansion in the primary T cell respons. Rho/ROK plays an important role in various pathological processes, promoting the migration of T cells, inducing the secretion of inflammatory factors, and triggering cell apoptosis and synapse disintegration. Rho-kinase inhibitors may ameliorate the symptoms in many inflammatory diseases. In this study, through observing the expression of mRNA of OX40 and OX40L in the sciatic nerve, spleen, Peripheral blood mononuclear cells and lymph nodes of EAN and the changes of OX40 and OX40L under the influence of Rho-kinase inhibitor, we explored the roles of OX40/OX40L in EAN/GBS process and the molecular mechanism of Rho-kinase inhibitor.
     Methods 54 female Lewis rats was immunized with the component of Synthetic PNS myelin sheath protein P2 53-78aa and Freund's complete adjuvant, and Rho-kinase inhibitor Fasudil(25mg/kg.d) were injected intraperitoneally daily from 2 days before antigen immunization. The clinical signs of rats and the histopathology were evaluated. The rats were sacrificed at 9days, 17days, 26days after immunized.Ox40 and OX40L mRNA was detected by RT-PCR which come from spleens, sciatic nerves, peripheral blood mononuclear cells and lymphonodes.
     Results The peak of clinical course come on 17d p.i in EAN, the mRNA expression of OX40/OX40L was higher on 9d and 17d than 26d.p.i(p<0.05),there was significance difference between the EAN group and CFA control group at the three time point(P<0.05);The demyelination and inflammation cells infiltrating was ameliorated in spinal nerve,The clinical scores in fasudil-treatment group was decereased significantly compared with EAN group(p<0.01);The mRNA expression of OX40 and OX40L in fasudil-treatment group was lower than EAN group at the three time point(p<0.05).CFA group didn't show any clinical manifestation.
     Conclusions OX40 and OX40L may play a role in the pathogenesis of EAN by taking part in inducing and effect stage. Rho-kinase inhibitor may ameliorate the development of EAN through inhabiting the OX40 and OX40L activation.
引文
[1] Hartung HP, Willison H, Jung S, et al. Autoimmune responses in peripheral nerve. Springer Semin Immunopathol, 1996,18(1):97—123.
    [2] Stoll G. Inflammatory cytokines in the nervous system: multifunctional mediators in autoimmunity and cerebral ischemia. Rev Neurol, 2002,158(10 Pt 1): 887-91.
    [3] Constantinescu CS, Goodman DB, Hilliard B, et al. Murine macrophages stimulatedwith central and peripheral nervous system myelin or purified myelin proteins release inflammatory products. Neurosci Lett, 2000,287(3): 171-4.
    [4] Constantinescu GS, Hilliard B, Fujioka T, et al.Pathogenesis of neuroim-munologic diseases. Experimental models Immunol Res,1998,17 (1-2): 217-27.
    [5] Rostami A, Brown MJ, Lisak RP, et al. The role of myelin P2 protein in the production of experimental allergic neuritis. Ann Neurol, 1984,16(6): 680-5.
    [6] Kitamura K, Suzuki M, Suzuki A,et al.The complete amino acid sequence of the P2 protein in bovine peripheral nerve myelin. FEBS Lett, 1980 ,115(1):27-30.
    [7] Peterson DJ, Jefferis WA, Green JR, et al. Antigens of activated rat T lymphocytes including a molecule of 50 000 Mr detected only on CD4 positive T blasts. Mol Immunol, 1987,24(12): 1281-90.
    [8] Miura S, Ohtani K, Numata N, et al. Molecular cloning and characterization of a novel glycoprotein, gp34, that is specifically induced by the human T-cell leukemia virus type I transactivator p40tax.MolCell Biol ,1991,11(3): 1313-25.
    [9] Patschan S, Dolff S, Kribben A, et al. CD134 expression on CD4~+ T cells is associated with nephritis and disease activity in patients with systemic lupus erythematosus. Clin Exp Immunol. 2006 ,145(2):235-42.
    [10] Souza HS, Elia CC, Spencer J,et al. Expression of lymphocyte-endothelial receptor-ligand pairs, alpha4beta7/MAdCAM-1 and OX40/OX40 ligand in the colon and jejunum of patients with inflammatory bowel disease.Gut,1999: 45(6):856-63.
    [11] Burgess JK, Blake AE, Boustany S, et al. CD40 and OX40 ligand are increased on stimulated asthmatic airway smooth muscle. J Allergy Clin Immunol, 2005, 115(2):302-8.
    [12] Susanna Carbonia, Fahmy Aboul-Eneinb, Caroline Waltzingera,etal.CD134 plays a crucial role in the pathogenesis of EAE and is upregulated in the CNS of patients with multiple sclerosis. J Neuroimmunol,2003,145(1-2):1 -11
    [13] Ndhlovu LC, Ishii N, Murata K, et al,Critical involvement of OX40 ligand signals in the T cell priming events during experimental autoimmune ence-phalomyelitis. J Immunol,2001,167(5):2991-9
    [14] Izmailova E, Walker R, Fitzgerald M, et al Quantitation of peripheral blood markers of rat experimental autoimmune encephalomyelitis. Autoimmunity,2007,40(5):355-65.
    [15] Nohara C, Akiba H, Nakajima A,et al,Amelioration of experimental autoimmune encephalomyelitis with anti-OX40 ligand monoclonal antibody: a critical role for OX40 ligand in migration, but not development, of pathogenic T cells. J Immunol, 2001,166(3):2108-15.
    [16] HoningH, van den Berg TK, van der Pol SM, et al.RhoA activation promotes transendothelial migration of monocytes via ROCK. J Leukocyte Bio, 2004,75(3):523-28.
    [17] Hendriks JJ, Alblas J, van der Pol SM, eta.l Flavonoids influence monocytic GTPase activity and are protective in experimental allergic encephalitis. J Exp Med,2004,200(12): 1667-72
    [18] Nagatoya K, Moriyama T, Kawada N, et al.Y-27632 prevents tubulointerstitial fibrosis in mouse kidneys with unilateral ureteral obstruction. Kidney Int, 200261(5): 1684-95
    [19] Aihara M, Dobashi K, Iizuka K.Comparison of effects of Y-27632 and Isoproterenol on release of cytokines from human peripheral T cells. Int Imm-unopharmacol, 2003,3(12):1619-25.
    [20] Xiaojia Sun, Motozumi Minohara, Hitoshi Kikuchi.The selective Rho-kinase inhibitor Fasudil is protective and therapeutic in experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2006,180 (1-2):126—34.
    [21] Maurer M, Toyka KV, Gold R. Cellular immunity in inflammatory autoimmune neuropathies. Rev Neurol,2002,158(12 Pt 2): S7-15.
    [22] Harvey GK, Gold R, Hartung HP,et al. Non-neural- specific T lymphocytes can orchestrate inflammatory peripheral neuropathy. Brain, 1995,118(Pt 5):1263-72.
    [23] Pollard JD, Westland KW, Harvey GK,et al. Activated T cells of nonneural specificity open the blood-nerve barrier to circulating antibody. Ann Neurol,1995, 37(4): 467-75.
    [24] Powell HC, Braheny SL, Myers RR, et al. Early changes in experimental allergic neuritis. Lab Invest, 1983,48(3): 332-28.
    [25] Hartung HP, Schafer B, Heininger K, et al. The role of macrophages and eicosanoids in the pathogenesis of experimental allergic neuritis. Serial clinical,electrophysiological, biochemical and morphological observations. Brain,1988,111(Pt 5): 1039-59.
    
    [26] Hartung HP, Heininger K, Schafer B, et al. Immune mechanisms in inflammatory polyneuropathy. Ann N Y Acad Sci,1988,540:122-61.
    [27] Heininger K, Schafer B, Hartung HP, et al. The role of macrophages in experimental autoimmune neuritis induced by a P2-specific T-cell line. Ann Neurol,1988; 23(4): 326-31.
    [28] Flynn S, Toellner KM, Raykundalia C et al. CD4~+T cell cytokine differentiation: the B cell activation molecule, OX40 ligand, instructs CD4~+ T cells to express interleukin 4 and upregulates expression of the chemokine receptor, Blr-1. J Exp Med,1998,188(2):297-304.
    [29] Kopf M, Ruedl C, Schmitz N, et al. OX40 deficient mice are defective in Th cell proliferation but are competent in generating B cell and CTL responses after virus infection. Immunity, 1999,11(6):699-708.
    [30] Weatherill AR, Maxwell JR, Takahashi C,et al.OX40 ligation enhances cell cycle turnover of Ag-activated CD4~+ T cells in vivo.Cell Immunol, 2001,209(1):63-75.
    [31] Gramaglia I, Jember A, Pippig SD, et al, The OX40 costimulatory receptor determines the development of CD4 memory by regulating primary clonal expansion. J Immunol, 2000,165(6):3043-50.
    [32] Kaye J, Hsu ML, Sauron ME, et al. Selective development of CD4~+ T cells in transgenic mice expressing a class II MHC restricted antigen receptor[J] .Nature,1989, 341(6244):746-9.
    
    [33] Gramaglia I, Weinberg AD, Lemon M, et al.OX40 ligand: a potent costimulatory molecule for sustaining primary CD4~+T cell responses. J Immunol. 1998,161(12):6510-7.
    [34] Rogers PR, Song J, Gramaglia I, et al. OX40 promotes Bcl-xl and Bcl-2 expression and is essential for long term survival of CD4~+T cells. Immunity, 2001,15(3) :445-455.
    [35] Gramaglia I, Weinberg AD, Lemon M, et al, OX40 ligand: a potent costimulatory molecul for sustaining primary CD4~+ T cell responses, J Immunol, 1998 ,161(12):6510-7
    [36] Lee SW, Park Y, Song A,et al, Functional dichotomy between OX40 and 4-1BB in modulating effector CD8~+ T cell responses. J. Immunol. 2006, 177(7): 4464-72.
    [37] Ruby CE., Redmond WL, Haley D, et al. Anti-OX40 stimulation in vivo enhances CD8~+ memory T cell survival and significantly increases recall responses. Eur J Immunol, 2007,37(1): 157-66
    [38] Stuber E, Neurath M, Calderhead D, et al. Crosslinking of OX40 ligand ,a member of the TNF/NGF cytokine family ,induces proliferation and differentiation in murine splenic B cells. Immunity,1995 ,2(5):507-21
    [39] Stuber E ,Strober W. The T cell-B cell interaction via OX40/OX40L is necessary for the T cell dependent humoral immune response. J Exp Med, 1996 ,83(3):979-89
    [40] Ohshima Y, Tanaka Y, Tozawa H, et al.Expression and function of OX40 ligand on human dendritic cells.J Immunol, 1997,159(8):3838-48,
    [41] Weinberg AD, Wegmann KW, Funatake C, et al, Blocking OX~-40/OX~-40 Ligand Interaction In Vitro and In Vivo Leads to Decreased T Cell Function and Amelioration of Experimental Allergic Encephalomyeliti, J Immunol, 1999,162(3): 1818-26.
    [42] Weinberg AD, Wallin JJ, Jones RE,et al.Target organ-specific up-regulation of the MRC OX40 marker and selective production of Th1 lymphokine mRNA by encephalitogenic T helper cells isolated from the spinal cord of rats with experimental autoimmune encephalomyelitis. J Immunol, 1994,152(9):4712-21.
    [43] Leung T, Manser E, Tan L, et al. A novel serine / threonine kinase binding theRas related RhoA GTP as which translocates the kinase to peripheral membranes.J Biol Chem, 1995,270(49): 29051 - 4.
    [44] Riento K, Ridley AJ. Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol, 2003,4(6): 446 - 56.
    [45] Noma K, Oyama N, Liao JK. Physiological role of ROCKs in the cardiovascular system. Am J Physiol Cell Physiol, 2006,290(3):C661-8
    
    [46] Vicari RM, Chaitman B, Keefe D, et al. Efficacy and safety of fasudil in patients with stable angina: a double-blind, placebo controlled, phase trial. J Am Coll Cardiol, 2005, 46(10): 1803-11.,
    [47] Schaafsma D, Gosens R, Bos IS, et al. Role of contractile prostaglandins and Rho kinase in growth factor induced airway smoothmuscle contraction. Respir Res, 2005, 27(6): 85.
    [48] Ishikura K, Yamada N, ItoM, et al. Beneficial acute effects of rho kinase inhibitor in patients with pulmonary arterial hypertension. Circ J, 2006, 70(2): 174-78
    [49] Thorlacius K, Slotta JE, Laschke MW, et al. Protective effect of fasudil, a Rho kinase inhibitor, on chemokine expression, leukocyte recruitment, and hepato-cellular apoptosis in septic liver injury. J Leukoc Biol, 2006, 79(5): 923 -31.
    [50] Wakino S, Kanda T, Hayashi K. Rho/Rho kinase as a potential target for the reatment of renal disease. DrugNews Perspect, 2005,18(10): 639 - 43.
    [51] Brabeck C, Beschomer R, Conrad S, et al.Lesional expression of RhoA and RhoB following traumatic brain injury in humans. J Neurotrauma, 2004,21(6):697-06.
    [52] Conrad S, Schluesener HJ, Trautmann K,et al.Prolonged lesional expression of RhoA and RhoB following spinal cord injury. J Comp Neurol,2005,487(2):166-75.
    [53] Greenwood J, Walters CE, Pryce G, et al.Lovastatin inhibits brain endothelial cell Rho-mediated lymphocyte migration and attenuates experimental autoimmune encephalomyelitis. FASEB J,2003,17(8): 905-7.
    [54] Walters CE, Pryce G, Hankey DJ, et al. Inhibition of Rho GTPases with protein prenyltransferase inhibitors prevents leukocyte recruitment to the central nervous system and attenuates clinical signs of disease in an animal model of multiple sclerosis. J Immunol,2002, 168(8): 4087-94.
    [55] Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature,2002,420(6916): 629-35.
    [56] Pixley FJ, Xiong Y,Yu RY, et al. BCL6 suppresses RhoA activity to alter macrophage morphology and motility. J Cell Sci, 2005,118(Pt9): 1873-83.
    [57] Madema P, Cottell DC, Berlasconi G, et al.Lipoxins induce actin reorganization in monocytes and macrophages but not in neutrophils: differential involvement of rho GTPases. Am J Pathol,2002,160(6): 2275-8
    [58] Ridley AJ. Rho proteins, PI 3-kinases, and monocyte/macrophage motility. FEBS Lett,2001,498(2-3):168-71.
    [59]Kim JS,Kim JG,Moon MY,et al.Transforming growth factor-betal regulates macrophage migration via RhoA.Blood,2006,108(6):1821-9.
    [60]Lang P,Guizani L,Vitte-Mony I,et al.ADP-ribosylation of the rasrelated,GTP-binding protein RhoA inhibits lympho cyte-mediated cytotoxicity.J Biol Chem,1992,267(17):11677-80.
    [61]Zhiren Zhang,Uwe Fauser,Hermarm J,et al.Expression of RhoA by inflammatory macrophages and T cells in rat experimental autoimmune neuritis.J Cell Mol Med,2007,11(1):111-9.
    [1] Peterson DJ, Jefferis WA, Green JR, et al. Antigens of activated rat T lymphocytes including a molecule of 50 ,000 Mr detected only on CD4 positive T blasts, Mol Immunol, 1987,24(12): 1281-90.
    [2] Latza U, Durkop H, Schnittger S, et al. The human OX40 homolog: cDNA structure, expression and chromosomal assignment of the ACT35 antigen, Eur J Imunol, 1994 ,24(3) :677-83.
    [3] Miura S, Ohtani K, Numata N, et al. Molecular cloning and characterization of a novel glycoprotein, gp34, that is specifically induced by the human T-cell leukemia virus type I transactivator p40tax.MolCell Biol,1991,11(3): 1313-25.
    [4] Flynn S, Toellner KM, Raykundalia C et al. CD4~+T cell cytokine differentiation: the B cell activation molecule, OX40 ligand, instructs CD4~+T cells to express interleukin 4 and upregulates expression of the chemokine receptor, Blr-1. J Exp Med,1998,188(2):297-04.
    [5] Kopf M, Ruedl C, Schmitz N, et al. OX40 deficient mice are defective in Th cell proliferation but are competent in generating B cell and CTL responses after virus infection. Immunity, 1999,11(6):699-08.
    [6] Weatherill AR, Maxwell JR, Takahashi C,et al.OX40 ligation enhances cell cycle turnover of Ag-activated CD4~+T cells in vivo.Cell Immunol, 2001 Apr 10;209(1):63-75.
    [7] Gramaglia I, Jember A, Pippig SD, et al. The OX40 costimulatory receptor determines the development of CD4 memory by regulating primary clonal expansion. J Immunol, 2000,165(6):3043-50.
    [8] Kaye J, Hsu ML, Sauron ME, et al. Selective development of CD4~+ T cells in transgenic mice expressing a class II MHC restricted antigen receptor. Nature,1989, 341(6244):746-9.
    [9] Zheng B, Han S, Zhu Q, et al. Alternative pathways for the selection of antigen specific peripheral T cells. Nature,1996, 384(6606):263-6
    [10] Gramaglia I, Weinberg AD, Lemon M, et al.OX40 ligand: a potent costimulatory molecule for sustaining primary CD4~+ T cell responses. J Immunol, 1998, 161(12):6510-7.
    [11] Weinberg AD, Vella AT, Croft M.OX40 life beyond the effector T cell stage. Semin Immunol, 1998 ,10(6):471-80.
    [12] Gramaglia I, Weinberg AD, Lemon M, et al. OX40 ligand: a potent costimu-latory molecul for sustaining primary CD4~+T cell responses, J Immunol,1998,161(12) :6510-7.
    [13] Rogers PR, Song J, Gramaglia I, et al. OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long term survival of CD4~+T cells. Immunity,2001,15(3):445-455.
    [14] Kopf M,Ruedl C,Schmitz N, et al. OX40 deficient mice are defective in Th cell proliferation but are competent in generating B cell and CTL responses after virus infection. Immunity, 1999,11(6): 699-708.
    
    [15] Dawicki W,Bertram EM,Sharpe AH, et al. 4-1BB and OX40 act independently to facilitate robust CD8~+ and CD4~+ recall responses. J. Immunol,2004.173(10): 5944-5951.
    [16] Bansal-Pakala P,Halteman BS,Cheng MH, et al. Costimulation of CD8~+T cell responses by OX40. J Immunol,2004. 172(8):4821-5.
    [17] Lee S. W, Y. Park, A. Song,et al. Functional dichotomy between OX40 and 4-IBB in modulating effector CD8~+T cell responses. J. Immunol, 2006, 177 (7):4464-72.
    [18] Ruby CE., Redmond WL, Haley D, et al. Anti-OX40 stimulation in vivo enhances CD8~+ memory T cell survival and significantly increases recall responses. Eur J Immunol, 2007,37(1): 157-66
    [19] Sugamura, K., N. Ishii, A. D. Weinberg. Therapeutic targeting of the effector T-cell co-stimulatory molecule OX40. Nat Rev Immunol, 2004. 4(6): 420-31.
    [20] Weinberg AD, Rivera MM, Prell R,,et al, Engagement of the OX-40 receptor in vivo enhances antitumor immunity. J. Immunol, 2000,164(4): 2160-9.
    [21] Kjaergaard J, J. Tanaka, J. A. Kim,et al Therapeutic efficacy of OX40 receptor antibody depends on tumor immunogenicity and anatomic site of tumor growth.Cancer Res, 2000, 60(19): 5514-21.
    [22] Biagi E, G Dotti, E Yvon, et al. Molecular transfer of CD40 and OX40 ligands to leukemic human B cells induces expansion of autologous tumor reactive cytotoxic T lymphocytes. Blood,2005,105(6): 2436-42.
    [23] Murata S, Ladle B H, Kim PS, et al. OX40 costimulation synergizes with GM-CSF whole-cell vaccination to overcome established CD8~+T cell tolerance to an endogenous tumor antigen, J Immunol, 2006,176(2): 974-83.
    [24] Dannull J, Nair S, Su Z,et al.Enhancing the immunostimulatory function of dendritic cells by transfection with mRNA encoding OX40 ligand. Blood,2005, 105(8):3206-13.
    [25] Andarini, S., T. Kikuchi, M. Nukiwa, et al. Adenovirus vector-mediated in vivo gene transfer of OX40 ligand to tumor cells enhances antitumor immunity of tumor-bearing hosts. Cancer Res,2004,64: 3281-3287.
    [26] Ruby CE, Redmond WL, Haley D, et al. Anti-OX40 stimulation in vivo enhances CD8~+ memory T cell survival and significantlyincreases recall responses. Eur J Immunol, 2007,37(1): 157-66
    [27] Redmond WL, Gough MJ, Charbonneau B, et al. Defects in the Acquisition of CD8~+T Cell Effector Function after Priming with Tumor or Soluble Antigen Can Be Overcome by the Addition of an OX40 Agonist, J Immunol, 2007,179(11): 7244-53.
    [28] Hisaya Akiba, Yasushi Miyahira, Machiko Atsuta,et al.Critical Contribution of OX40 Ligand to T Helper Cell Type 2 Differentiation in Experimental Leishmaniasis.J Exp Med, 2000,191(2),375-80
    [29] Hoshino A, Tanaka Y, Akiba H, et al.Critical role for OX40 ligand in the development of pathogenic Th2 cells in a murine model of asthma.Eur J Immunol, 2003,33(4):861-9.
    [30] Arestides RS, He H, Westlake RM, et al.Costimulatory molecule OX40L is critical for both Th1 and Th2 responses in allergic inflammation.Eur J Immunol, 2002,32(10):2874-80.
    [31] Tanaka H, Demeure CE, Rubio M, et al. Human monocyte-derived dendritic cells induce naive T cell differentiation into T helper cell type2(Th2) or Th1/Th2 effectors. Role of stimulator/responder ratio,J Exp Med, 2000,192(3):405-12.
    [32] Gavin MA, Clarke SR, Negrou E, et al. Homeostasis and anergy of CD4~+ CD25~+ suppressor T cells in vivo. Nat Immunol, 2002,3(1):33-41.
    [33] McHugh RS, Whitters MJ, Piccirillo CA,et al, CD4~+CD25~+ immunoregulatory T cells:gene expression analysis reveals a functional role for the glucocorticoid induced TNF receptor. Immunity,2002,16(2):311-23.
    [34] Takeda I, Ine S, Killeen N,et al.Distinct roles for the OX40/OX40 ligand interaction in regulatory and nonregulatory T cells. J Immunol, 2004,172 (6):3580-9.
    [35] Valzasina B, Guiducci C, Dislich H, et al.Triggering of OX40(CD134) on CD4~+CD25~+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR. Blood,2005,105(7):2845-51
    [36] Lane P.Role of OX40 signals in coordinating CD4~+ T cell selection, migration, and cytokine differentiation in T helper (Th) 1 and Th2 cells. J Exp Med, 2000 Jan 17;191(2):201-6
    [37] Akiba H, Miyahira Y, Atsuta M, et al.Critical contribution of OX40 ligand to T helper cell type 2 differentiation in experimental leishmaniasis. J Exp Med,2000 ,191(2):375-80
    [38] Nel AE, Slaughter N.T-cell activation through the antigen receptor. Part 2: role of signaling cascades in T-cell differentiation, anergy, immune senescence, and development of immunotherapy. J Allergy Clin Immunol,2002,109(6): 901-15.
    [39] Stuber E ,Neurath M,Calderhead D,et al. Crosslinking of OX40 ligand ,a member of the TNF/NGF cytokine family ,induces proliferation and different-tiation in murine splenic B cells. Immunity,1995,2(5):507-21
    [40] Stuber E,Strober W. The T cell-B cell interaction via OX40/OX40L is necessary for the T cell dependent humoral immune response. J Exp Med,1996,183(3):979-89
    [41] Ohshima Y, Tanaka Y, Tozawa H, et al.Expression and function of OX40 ligand on human dendritic cells. J Immunol,1997,159(8):3838-48,
    [42] Gramaglia I, Weinberg AD, Lemon M,et al.OX40 ligand: a potent costimulatory molecule for sustaining primary CD4~+T cell responses. J Immunol,1998,161(12):6510-7.
    [43] Bansal-Pakala P, Jember AG, Croft M.Signaling through OX40(CD134) breaks peripheral T-cell tolerance. Nat Med, 2001,7(8):907-12.
    [44] Rogers PR, Song J, Gramaglia I.OX40 promotes Bcl-xl and Bcl-2 expression and is essential for long-term survival of CD4~+ T cells. Immunity, 2001,15(3):445-55.
    
    [45] Arch RH, Thompson CB.4-1BB and OX40 are members of a tumor necrosis factor (TNF) nerve growth factor receptor subfamily that bind TNF receptor-associated factors and activate nuclear factor kappaB. Mol Cell Biol, 1998,18(1):558-65
    [46] Kawamata S, Hori T, Imura A,et al. Activation of OX40 signal transduction pathways leads to tumor necrosis factor receptor-associated factor (TRAF) 2- and TRAF5 mediated NF-kappaB activation. J Biol Chem, 1998 273(10):5808-14.
    
    [47] Kunitomi A, Hori T, Imura A, et al.Vascular endothelial cells provide T cells with costimulatory signals via the OX40/gp34 system. J Leukoc Biol, 2000,68(1):111-8.
    
    [48] Kotani A ,Hori T, Matsumura Y,et al. Signaling of gp34(OX40 ligand) induces vascular endothelial cells to produce a CC chemokine RANTESP CCL5. Immunol Lett,2002 ,84 (1) :127.
    [49] Takaori Kondo A,Hori T, Fukunaga K,et al. Both amino and car boxyl terminal domains of TRAF3 negatively regulate NF kappaB activation induced by OX40 signaling, BiochemBiophys Res Commun,2000,272(3) :856-63.
    [50] Prell RA, Evans DE, Thalhofer C, et al. OX40 mediated memory T cell generation is TNF receptor associated factor dependent. J Immunol, 2003, 171 (11):5997-05.
    [51] Song J,Salek Ardakani S,Rogers PR,et al. The costimulation regulated duration of PKB activation controls T cell longevity, Nat Immunol, 2004,5 (2): 150-8.
    [52] Ndhlovu LC, Ishii N, Murata K, et al,Critical involvement of OX40 ligand signals in the T cell priming events during experimental autoimmune ence-phalomyelitis.J Immunol, 2001,167(5):2991-9
    [53] Izmailova E, Walker R, Fitzgerald M, et al Quantitation of peripheral blood markers of rat experimental autoimmune encephalomyelitis. Autoimmunity,2007,40(5):355-65.
    [54] Kaleeba J AR, OffnerH, Vandenbark AA, et al.The OX40 receptor provides a potent costimulatory signal capable of inducing encephalitogenicity in myelin-specific CD4~+T cells.Intemational Immunology, 1998,10(4), 453- 61.
    [55] Chitnis T, Najafian N, Abdallah KA, et al.CD28-independent induction of experimental autoimmune encephalomyelitis. J ClinInvest, 2001, 107(5):575-83.
    
    [56] Nohara C, Akiba H, Nakajima A,et al. Amelioration of experimental autoimmune encephalomyelitis with anti-OX40 ligand monoclonal antibody: a critical role for OX40 ligand in migration, but not development, of pathogenic T cells. J Immunol, 2001,166(3):2108-15.
    [57] Susanna Carbonia, Fahmy Aboul-Eneinb, Caroline Waltzingera,etal.CD134 plays a crucial role in the pathogenesis of EAE and is upregulated in the CNS of patients with multiple sclerosis, J Neuroimmunol, 2003,145(1-2):1 -11.
    [58] Weinberg AD,Sullivan TJ,Lemon M, et al. Selective depletion of myelin reactive T cells with the anti-OX40 antibody ameliorates autoimmune encepha-lomyelitis. Nature Med ,1996,2(2): 183-9
    [59] Ndhlovu LC, Ishii N, Murata K, et al. Critical Involvement of OX40 Ligand Signals in the T Cell Priming Events During Experimental Autoimmune Ence-phalomyelitis, J Immunol, 2001,167(5): 2991-9.
    [60] Weinberg AD, Wegmann KW, Funatake C, et al. Blocking OX'40/OX'40 Ligand Interaction In Vitro and In Vivo Leads to Decreased T Cell Function and Amelioration of Experimental Allergic Encephalomyeliti. J Immunol, 1999,162(3): 1818-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700