DCs在抗CD45RB单克隆抗体诱导免疫耐受中的作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的抗CD45RB抗体可以抑制T细胞的增殖,诱导移植免疫耐受,而树突状细胞通过与T细胞相互作用而发挥免疫调节作用。本研究通过观察抗CD45RB单克隆抗体在体内外对DCs成熟和功能的影响,以阐明DCs在抗CD45RB单克隆抗体诱导免疫耐受中的作用机制。方法无菌分离C57BL/6小鼠骨髓细胞,体外用rmGM-CSF和IL-4诱导骨髓细胞生成DCs,LPS刺激其为成熟DCs,同时加入不同剂量的抗CD45RB单克隆抗体,第6天用流式细胞仪检测对成熟DCs表型、细胞周期和抗原吞噬能力的影响,用ELISA检测培养上清中IL-12含量。通过多次过滤法提取成熟DCs外分泌体(exosomes, Dex),利用混合淋巴细胞实验检测DCs和Dex对T细胞增殖能力的影响。体内实验部分,将Balb/C小鼠心脏移植到C57BL/6小鼠,分别在移植0、1、3、5、7天经腹腔注射抗CD45RB单克隆抗体0.1mg/次/天;在0、1、3、5、7天分别处死受体鼠提取骨髓细胞,在体外用rmGM-CSF、IL-4和LPS将其诱导为成熟DCs,观察形态学改变,流式细胞术检测DCs细胞表型和吞噬能力,ELISA检测培养上清IL-12含量。
     结果体外实验表明随着抗CD45RB单克隆抗体的增加,BMC来源DCs特异性标记CDllc无明显变化,而DCs成熟度标记CD83、共刺激分子CD80、CD86和MHC-Ⅱ分子I-Ab的表达则随着抗CD45RB单克隆抗体剂量增加而降低;抗CD45RB单克隆抗体使成熟DCs抗原吞噬能力增强,IL-12的分泌量降低,细胞呈增殖状态,抗CD45RB单克隆抗体抑制DCs成熟具有剂量依赖型。混合淋巴细胞实验表明经抗CD45RB单克隆抗体处理的DCs和分泌的Dex,可抑制T细胞增殖,外分泌体Dex在DCs增强或抑制T细胞增殖作用中也具有明显的剂量依赖性。体内实验表明,经抗CD45RB单克隆抗体治疗后,受体鼠骨髓细胞在体外诱导的mDCs,在形态学与对照组无明显变化,细胞表型CDllc的表达也无明显区别,CD83、CD80、CD86和I-Ab的表达则随着时间的延长而降低,DCs抗原吞噬能力随着时间的延长而增加,IL-12分泌能力逐渐下降,其结果与体外实验相似。
     结论体内外实验表明抗CD45RB单克隆抗体诱导免疫耐受的机制,主要是抑制DCs的成熟和功能,形成一种耐受性树突状细胞(tolerogenic dendritic cells,tDCs)以及外分泌体Dex可显著抑制T细胞的增殖,发挥免疫抑制作用,诱导免疫耐受的产生。
Objective Anti-CD45RB monoclonal antibody has been reported to inhibit proliferation of T cells and immunologic tolerance.The dendritic cells (DCs) play a immune regulation role by interacting with T cells. This experiment has explored anti-CD45RB monoclonal antibody on maturation and functions of DCs during the differentiation of monocytes into mature DCs(mDCs) in vivo and vitro, to clarify the mechanisms of anti-CD45RB monoclonal antibody inducing immune tolerance.
     Methods The mature dendritic cells(mDCs) from C57BL/6 mice were cultured with rmGM-CSF、IL-4 and LPS for six days.The bone marrow cells treated with varying doses of anti-CD45RB monoclonal antibody in the experiment group.The phenotype, cell cycle and the phagocytic capability of mDCs were detected by flow cytometry. IL-12 level was determined with an ELISA kit.The exosomes (Dex) from DCs were extracted via repeated filter method, the mDCs and mDex after anti-CD45RB monoclonal antibody treatment and those without treatment (Ab-mDCs and Ab-mDex, respectively) were used for the following experiment of mixed lymphocyte reaction.In vivo, the heart from donor Balb/C mouse were transplanted into C57BL/6 mouse received anti-CD45RB monoclonal antibody at a dose of 0.1 mg/times/day in 0,1,3,5,7 days after transplanting, then BM cells obtained from reciptient mice in 0,1,3,5,7 days, and induced to mDCs with rmGM-CSF、IL-4 and LPS in vitro, and to observe the phenotypes and functioning of mDCs and IL-12 level in supernatant were detected by ELISA.
     Results In vitro,the result indicated that the expression of CD83、CD80、CD86 and I-Abwere inhibited by anti-CD45RB monoclonal antibody in a dose dependent manner, but the expression of CD11c was no differently between experiment and control groups. The antigen phagocytosis of mDCs was higher and the IL-12 level was lower than that of control group. anti-CD45RB monoclonal antibody could inhibit DCs maturation in a dose dependent manner and the effects of Dex in DCs-induced proliferation of T cells were also in a dose dependent manner. In vivo, mDCs form the receptor mice were anti-CD45RB monoclonal antibody treated, the shape and expression of CD1 lc was no differently compared with control group, but the expression of CD83、CD80、CD86 and I-Ab was decreased in a dose dependent manner, the phagocytic activity was increased and IL-12 level was decreased with time, this result was similar with the result of experiment in vitro.
     Conclusions These findings suggested in the anti-CD45RB monoclonal antibody could profoundly inhibit the maturation and functioning of DCs in vitro and vivo and generate tolerogenic dendritic cells (tDCs) as well as Dex, thus resulting in obvious inhibition on T cell proliferation, immunosuppression and immune tolerance subsequently.
引文
[I]Walunas TL, Lenschow DJ, Bakker CY. et al. CTLA4 can function as a negative regulator of T cell activation[J].Immunity,1994,1(5):405-413.
    [2]Banchereau J,Steinman RM. Dendritic cells and the control of immunity[J]. Nature,1998, 392(6673):245-252.
    [3]Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells[J]. Annu Rev Immunol,2003, 21:685-711.
    [4]Vlad G, Cortesini R, Suciu-Foca N. License to heal:bidirectional interaction of antigen-specific regulatory T cells and tolerogenic APC[J]. J Immunol,2005,174(10):5907-5914.
    [5]Banchereau J, Steinman RM.Dendritic cells and the control of immunity [J]. Nature,1998, 3929(6673):245-252.
    [6]Lechler R, Ng WF, Steinman RM. Dendritic cells in transplantation-friend or foe[J]? Immunity, 2001,14(4):357-368.
    [7]Lutz MB, Suri RM, NiimiM, et al. I mmature dendritic cells generated with low doses of GM-CSF in the absence of IL-4 are maturation resistant and prolong allograft survival in vivo[J]. Eur J Immunol,2000,30(7):1813-1822.
    [8]Garrovillo M,Ali A,Depaz HA, et al. Induction of transplant tolerance with immunodominant allopeptide-pulsed host lymphoid and myeloid dendritic cells[J]. Am J Transplant,2001,1(2):129-137.
    [9]Peche H, Trinite B,Martinet B, et al. Prolongati on of heart allograft survival by immature dendritic cells generated from recipient type bone marrow progenitors[J].Am J Transplant,2005,5 (2):255-267.
    [10]Beriou G, Peche H, Guillonneau C, et al.Donor-specific allograft tolerance by administration of recipient-derived immature dendritic cells and suboptimal immunosuppression[J]. Transplantation, 2005,79(8):969-972.
    [11]McCurry KR, Colvin BL, Zahorchak AF, et al. Regulatory dendritic cell therapy in organ transplantation[J]. Transpl Int,2006,19(7):525-538.
    [12]Jonuleit H, Schmitt E, Schuler G, et al.Induction of interleukin 10-producing, nonproliferating CD4+T cells with regulatory properties by repetitive stimulation with allogenic immature human dendritic cells[J]. J Exp Med,2000,192(9):1213-1222.
    [13]DhodapkarMV, Steinman RM, Kras ovsky J, et al. Antigen-specific inhibition of effect or T cell function in humans after injecti on of immature dendritic cells[J]. J Exp Med,2001,193(2):233-238.
    [14]Morelli AE, Thomson AW. Dendritic cells:regulators of alloimmunity and opportunities for tolerance induction[J].I mmunol Rev,2003,196:125-146.
    [15]Lutz MB, Schuler G. Immature, semimature and fully mature dendritic cells:which signals induce tolerance or immunity?[J].Trends I mmunol,2002,23(9):445-449.
    [16]Feili-Hariri M, Dong X, Alber SM, et al.Immunotherapy of NOD mice with bonemarr ow2 derived dendritic cells[J]. Diabetes,1999,48(12):2300-2308.
    [17]Arpinati M, Green CL, Heimfeld S, et al. Granul ocytecolony stimulating fact or mobilizes T helper 2-inducing dendritic cells[J]. Blood,2000,95(8):2484-2490.
    [18]Fu F,Li Y,Qian S, et al. Costimulat orymolecule-deficient dendriteic cell progenitors(MHC class Ⅱ+, CD80dim, CD86-)prolong cardiac allograft survival in nonimmunosuppressed recipients[J].Transplantation, 1996,62(5):659-665.
    [19]Steinbrink K,Wolfl M, Jonuleit H, et al. Induction of tolerance by IL-10-treated dendritic cells[J]. J Immunol,1997,159(10):4772-4780.
    [20]Gorczynski RM, Cohen Z, Fu XM, et al. Interleukin-13, in combination with anti-interleukin-12, increases graft prolongation after portal venous immunization with cultured allogeneic bone marrow-derived dendritic cells[J].Transplantation,1996,62(11):1592-1600.
    [21]Woltman AM, de Fijter JW, Kamerling SW, et al. The effect of calcineurin inhibitors and corticosteroids on the differentiation of human dendritic cells[J].Eur J Immunol,2000,30(7):1807-1812.
    [22]Vanclee A, Schouten HC, Bos GM. Murine dendritic cells that are resistant to maturation are unable to induce tolerance to allogeneic stem cells[J].Transpl Immunol,2006,16(1):8-13.
    [23]Coates PT, Colvin BL, Kaneko K, et al. Pharmacologic, biologic,and genetic engineering approaches to potentiation of donor-derived dendritic cell tolerogenicity[J]. Transplantation,2003,75(9Suppl):32S-36S.
    [24]Hackstein H, Morelli AE, Larregina AT, et al. Aspirin inhibits in vitro maturation and in vivo immunostimulatory function of murine myeloid dendritic cells[J]. J Immunol,2001,166(12):7053-7062.
    [25]Lutz MB,Kukutsch NA,Menges M, et al. Culture of bone marrow cells in GM-CSF plus high doses of lipopolysaccharide generates exclusively immature dendritic cells which induce alloantigen-specific CD4 T cell anergy in vitro[J]. Eur J Immunol,2000,30(4):1048-1052.
    [26]Buonocore S,Van Meirvenne S, Demoor FX, et al. Dendritic cells transduced with viral interleukin 10 or Fas ligand:no evidence for induction of allotolerance in vivo[J]. Transplantation,2002,73(1 Suppl):S27-S30.
    [27]Gorczynski RM,Bransom J, Cattral M, et al. Synergy in induction of increased renal allograft survival after portal vein infusion of dendritic cells transduced to express TGF β and IL-10, along with administration of CHO cells expressing the regulatorymolecule OX-2[J]. Clin Immunol,2000,95(3):182-189.
    [28]Min WP, Gorczynski R, Huang XY, et al. Dendritic cells genetically engineered to express Fas ligand induce donor-specific hypore-sponsiveness and prolong allograft survival[J]. J Immunol,2000,164(1):161-167.
    [29]Giannoukakis N,Bonham CA,Qian S, et al. Prolongation of cardiac allograft survival using dendritic cells treated with NF-κB decoy 吗 oligonucleotides[J]. Mol Ther,2000,1(5 Pt1):430-437.
    [30]Machen J, Harnaha J, Lakomy R, et al. Antisense oligonucleotides down-regulating costimulation confer diabetes-preventive properties to nonobese diabetic mouse dendritic cells[J].J Immunol, 2004,173(7):4331-4341.
    [31]Hill JA, I chim TE, Kusznieruk KP, et al. I mmune modulation by silencing IL-12 production in dendritic cells using small interfering RNA[J]. J Immunol,2003,171(2):691-696.
    [32]Segura E, Nicco C, Lombard B, et al. ICAM-I on exosomes from mature dendritic cells is critical for efficient naive T-cell priming[J]. Blood,2005,106(1):216-223.
    [33]Thery C, Duban L, Segura E, et al. Indirect activation of naive CD4+T cells by dendritic cell-derived exosomes [J]. Nat Immunol,2002,3(12):1156-1162.
    [34]Andre F, Chaput N, Schartz NE, et al. Exosomes as potent cell-free peptide-based vaccine. Ⅰ. Dendritic cell-derived exosomes transfer functional MHC class I/peptide complexes to dendritic cells[J]. J Immunol, 2004,172(4):2126-2136.
    [35]Chaput N, Schartz NE, Andre F, et al. Exosomes as potent cell-free peptide-based vaccine. Ⅱ. Exosomes in CpG adjuvants efficiently prime naive Tcl lymphocytes leading to tumor rejection[J]. J Immunol,2004,172(4):2137-2146.
    [36]Viaud S, Terme M, Flament C, et al. Dendritic Cell-Derived Exosomes Promote Natural Killer Cell Activation and Proliferation:A Role for NKG2D Ligands and IL-15Ra[J]. PLoS One,2009,4(3):e4942.
    [37]Dai S, Wei D, Wu Z, et al. Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer[J]. Mol Ther,2008,16(4):782-790.
    [38]Xiu FM, Cao XT. Exosomes in the immune response and tolerance[J].J Microbiol Immunol,. 2004,2(4):231-235.
    [39]Peche H, Heslan M, Usal C, et al. Presentation of donor major histocompatibility complex antigens by bone marrow dendritic cell derived exosomes modulates allograft rejection[J]. Transplantation, 2003,76(10):1503-1510.
    [40]Peche H, Renaudin K, Beriou G, et al. Induction of toleance by exosomes and short-term immunosuppression in a fully MHC-mismatched rat cardiac allograft model[J]. Am J Transplant, 2006,6(7):1541-1550.
    [41]Kim SH, Lechman, ER, Bianco N, et al. Exosomes derived from IL-10-treated dendritic cells can suppress inflammation and collagen-induced arthritis[J]. J Immunol,2005,174 (10):6440-6448.
    [42]Kim SH, Bianco NR, Shufesky WJ, et al. MHC class Ⅱ+exosomes in plasma suppress inflammation in an antigen-specific and Fas ligand/Fas-dependent Mannermanner[J]. J Immunol,2007,179(4):2235-2241.
    [43]Kim SH, Bianco N, Menon R, et al. Exosomes derived from genetically modified DC expressing FasL are anti-inflammatory and immunosuppressive[J]. Mol Ther,2006,13(2):289-300.
    [44]Kim SH, Bianco NR, Shufesky WJ, et al. Effective treatment of inflammatory disease models with exosomes derived from dendritic cells genetically modified to express IL-4[J]. J Immunol, 2007,179(4):2242-2249.
    [45]Bianco NR, Kim SH,Ruffner MA, et al. Therapeutic effect of exosomes from indoleamine 2,3-Dioxygenase-Positive Dendritic Cells in collagen-induced arthritis and delayed-type hypersensitivity disease models[J]. Arthritis Rheum,2009,60(2):380-389.
    [46]Taylor DD, Akyol S, Gercel-Taylor C. Pregnancy-associated exosomes and their modulation of T cell signaling[J]. J Immunol 2006,176(3):1534-1542.
    [47]Admyre C, Johansson SM, Qazi KR, et al. Exosomes with immune modulatory features are present in human breast milk[J]. J Immunol,2007,179(3):1969-1978.
    [48]Lazarovits A, Zhang Z, Poppema S, et al. Prevention and reversal of renal allograft rejection by monoclonal antibody to CD45RB[J]. Nature,1996,380(6576):717-720.
    [49]Rayat GR, Gill RG. Indefinite survival of neonatal porcine islet xenografts by simultaneous targeting of LFA-1 and CD154 or CD45RB[J]. Diabetes,2005,54(2):443-451.
    [50]Lee EN, Kim EY, Lee J, et al. Changes in expression of T-cell activation-related molecules and
    硕士格文 刘金鹏 cytokines during tolerance induction in an allogeneic skin transplantation murine model[J]. Transplant Proc, 2004,36(8):2425-2428.
    [51]Camirand G, Rousseau J, Ducharme ME, et al. Novel Duchenne muscular dystrophy treatment through myoblast transplantation tolerance with anti-CD45RB, anti-CD154 and mixed chimerism[J]. Am J Transplant,2004,4(8):1255-1265.
    [52]Moore DJ, Huang X, Lee MK 4th, et al. Resistance to anti-CD45RB-induced tolerance in NOD mice: mechanisms involved[J]. Transpl Int,2004,17(5):261-269.
    [53]Visser L, Poppema S, de Haan B, et al. Prolonged survival of rat islet xenografts in mice after CD45RB monotherapy[J]. Transplantation,2004,77(3):386-391.
    [54]MinWP, Zhou D, Ichim TE, et al. Synergistic tolerance induced by LF15-0195 and anti-CD45RB monoclonal antibody through suppressive dendritic cells[J]. Transplantation,2003,75(8):1160-1165.
    [55]Zhong T, Liu Y, Jiang J, et al. Long-term limb allograft survival using a short course of anti-CD45RB monoclonal antibody, LF 15-0195, and rapamycin in a mouse model[J]. Transplantation, 2007,84(12):1636-1643.
    [56]Deng SP, Moore DJ, Huang XL, et al. Cutting Edge:Transplant Tolerance Induced by Anti-CD45RB Requires B Lymphocytes [J]. The Journal of Immunology,2007,178(10):6028-6032.
    [57]Arpinatim M,Green C, Heimfeld S, et al. Granulocyte-colony stimulating factor mobilizes T helper2-inducing dendritic cells[J]. Blood,2000,95(8):2484-2490.
    [58]Kohrgruber N, Halanek N, Groger M, et al. Survival, maturation, and function of CD11c+and CD11c-peripheral blood dendritic cells are differentially regulated by cytokines[J]. J Immunol,1999,163:3250-3259.
    [59]Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells[J]. Annu Rev Immunol,2000;18:767-811.
    [60]Pierre P, Turley SJ, Gatti E, Hull M, Meltzer J, Mirza A, Inaba K, Steinman RM, Mellman I. Developmental regulation of MHC class Ⅱ transport in mouse dendritic cells[J]. Nature,1997;388:787-792.
    [61]Pieters J. MHC class II restricted antigen presentation[J]. Cur Opin Immunol,1997; 9(1):89-96.
    [62]Mumille E, Trez CD, Pajak B, et al. T-cell dependent maturation of dendritic cells inresponse to bactcrial superantigens[J]. J Immunol,2002,168(9):4352-4360.
    [63]Ansari B,Coates PJ,Greenstein BD,et al. Insitu end-labelling detects DNA strand breaks in apoptosis and other physiological and pathological states[J]. J Pathol,1993,170:1-8.
    [64]David M. Sansom, Claire N, et al. What's the difference between CD80 and CD86? [J].TRENDS in Immunology,2003,24(6):313-318.
    [65]Punt JA, Roberts JL, Kearse KP, et al. Stoichiometry of the T cell antigen receptor(TCR) complex: each TCR/CD3 complex contains one TCR alpha, one TCR beta, and two CD3 epsilon chains[J]. J Exp, 1994,180(2):587-593.
    [66]Lanier LL, O'Fallon S, Somoza C, et el. CD80(B7) and CD86(B70) provide similar costimulatory signals for T cell proliferation, cytokine production, and generation of CTL[J]. J Immunol, 1995,154(1):97-105.
    [67]Zhou L.J. et al. A novel cell-surface molecule expressed by human interdigitating reticulum cells, Langerhans cells, and activated lymphocytes is a new member of the Ig superfamily[J]. J Immunol,1992, 149,735-742.
    [68]Wolenski, M. et al. Expression of CD83 in the murine immune system[J]. Med. Microbiol. Immunol,2003,192,189-192.
    [69]Breloer M. et al. CD83 is a regulator of murine B cell function in vivo[J]. Eur J Immunol,2007,37(3), 634-648.
    [70]Kretschmer B. et al. CD83 modulates B Cell function in vitro:increased IL-10 and reduced Ig secretion by CD83Tg B cells[J]. PLoSONE,2007,2(1), e755.
    [71]Prazma C.M. et al. CD83 expression is a sensitive marker of activation required for B cell and CD4+T cell longevity in vivo[J]. J Immunol,2007,179(7),4550-4562.
    [72]Cao W, et al. CD83 is preformed inside monocytes, macrophages and dendritic cells, but it is only stably expressed on activated dendritic cells[J]. Biochem J 2005,385(1),85-93.
    [73]Nicod L.P. et al.Upregulation of CD40, CD80, CD83 or CD86 on alveolar macrophages after lung transplantation[J]. J Heart Lung Transplant,2005,24(8):1067-1075.
    [74]Sharpe A.H, Freeman G.J. The B7-CD28 superfamily[J]. Nat Rev Immunol,2002,2(2),116-126.
    [75]Aerts-Toegaert C, Heirman C, Tuyaerts S, Corthals J, Aerts JL, Bonehill A, Thielemans K, Breckpot K. CD83 expression on dendritic cells and T cells:correlation with effective immune responses[J]. Eur J Immunol,2007,37(3):686-95.
    [76]Aerts-Toegaert C. et al.CD83 expression on dendritic cells and T cells:correlation with effective immune responses[J]. Eur J Immunol,32007,7,686-695.
    [77]Prechtel A.T, et al. CD83 Knockdown in Monocyte-Derived Dendritic Cells by Small Interfering RNA Leads to a Diminished T Cell Stimulation[J]. J Immunol,2007,178(9),5454-5464.
    [78]Dudziak D, Nimmerjahn F, Bornkamm G W, et al. Alternative splicing generates putative soluble CD83 proteins that inhibit T cell proliferation[J].J Immunol,2005;174(11):6672-6676.
    [79]Xu JF, Huang BJ, Yin H, et al. A limited course of soluble CD83 delays acute cellular rejection of MHC-mismatched mouse skin allografts[J].Transpl Int,2007,20(3):266-276.
    [80]Fujimoto, Y. et al. CD83 expression influences CD4+ T cell development in the thymus[J]. Cell, 2002,108(6),755-767.
    [81]Garcia-Martinez L.F. et al.A novel mutation in CD83 results in the development of a unique population of CD4+ T cells[J]. J Immunol,2004,173(5),2995-3001.
    [82]Luthje K. et al.Transgenic expression of a CD83-immunoglobulin fusion protein impairs the development of immune competent CD4-positive T cells[J]. Eur J Immunol,2006,36(8),2035-2045.
    [83]Dudziak D, Nimmerjahn F, Bornkamm GW, Laux G.Alternative splicing generates putative soluble CD83 proteins that inhibit T cell proliferation[J]. J Immunol,2005,174(11):6672-6.
    [84]Kotzor N, Lechmann M, Zinser E, Steinkasserer A.The soluble form of CD83 dramatically changes the cytoskeleton of dendritic cells[J]. Immunobiology,2004,209(1-2):129-140.
    [85]Kadowaki N. Dendritic cells:a conductor of T cell differentiation[J].Allergol Int,2007,56(3):193-199.
    [86]Van Parijs L, Perez VL, Biuckians A, et al. Role of interleukin 12 and costimulators in T cell anergy in vivo[J]. J Exp Med,1997,]86(7):1119-1128.
    [87]Johnstone Rm, Adam M, Hammond JR, et al. Vesicle formation during reticulocyte maturation: association of plasma membrane activities with released vesicles (exosomes) [J]. J Biol Chem, 1987,262(19):9412-9420.
    [88]Futter CE, Pearse A, Hewlett LJ, et al. Multivesicular endosomes containing internalized EGF-EGF receptor complexes mature and then fuse directly with lysosomes[J]. J Cell Biol,1996,132(6):1011-1023.
    [89]Johnstone RM, Mathew A, Mason AB, et al. Exosome formation during maturation of mammalian and avian reticulocytes:evidence that exosome release is a major route for externalization of obsolete membrane proteins[J]. J Cell Physiol,1991,147(1):27-36.
    [90]Kim SH,Bianco N, Menon R, Lechman ER, Shufesky WJ, Morelli AE, Robbins PD.Exosomes derived from genetically modified DC expressing FasL are anti-inflammatory and immunosuppressive[J]. Mol Ther, 2006,13(2):289-300.
    [91]Segura E, Nicco C, Lombard B, et al. ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming[J]. Blood,2005,106(1):216-23.
    [92]Peche H, Heslan M, Usal C, Amigorena S, Cuturi MC.Presentation of donor major histocompatibility complex antigens by bone marrow dendritic cell-derived exosomes modulates allograft rejection[J].: Transplantation,2003,76(10):1503-1510.
    [93]Peche H, Renaudin K, Beriou G, Merieau E, Amigorena S, Cuturi MC. Induction of tolerance by exosomes and short-term immunosuppression in a fully MHC-mismatched rat cardiac allograft model[J]. Am J Transplant,2006,6(7):1541-1550.
    [94]高思海,李平,潘铁成,等.大鼠颈部异位心脏移植模型的改进[J].中国医师杂志,2004,11(6):1464-1462.
    [95]高思海.张永科,杨辰垣.大鼠腹部异位心脏移植术的改进[J].中华实用医学,2002,4(21):22-23.
    [96]柳祎,孙宗全.小鼠颈部异位心脏移植技术的改进[J].华中科技大学学报(医学版),2003,32(5):522-525.
    [97]高开柱,孙宗全,杜心灵等.套管法建立小鼠颈部心脏移植模型的探讨[J].华中科技大学学报(医学版),2006,35(5):638-640.
    [98]夏春秋,景华,程小峰等.工作型大鼠异位心脏移植模型的建立[J].医学研究生学报,2005,18(4):330-333.
    [99]LIU Y, CHENY, LIU F Q, et al. Combined treatment with triptolide and rapamycin prolongs graft survival in a mouse model of cardiac transplantation[J]. Transpl Int,2008,21(5):483-494.
    [100]XIA G,HE J,LEVENTHAL JR. Ex vivo-expanded natural CD4+CD25+regulatory T cells synergize with host T-cell depletion to promote long-term survival of allografts [J]. Am J Transplant,2008.8(2): 298-306.
    [101]CHENG x, Yu x, DING YJ, et al. The Thl7/Treg imbalance in patients with acute coronary syndrome[J]. Clin Immunol,2008,127(1):89-97.
    [102]李基业.小鼠腹部异位心脏移植技术的改进[J].中国比较医学杂志,2005,15(1):43-44.
    [103]李伟栋,倪一鸣,冯强.小鼠腹腔异位心脏移植技术的改良[J].心脏杂志,2006,18(4):411-433.
    [104]朱鹏,陈义发,张宜江等.建立小鼠腹部心脏移植模型的体会[J].中国普通外科杂志2007,16(2):133-1 35.
    [105]Hasegawa T, Visovatti SH, Hyman MC, et al. Heterotopic vascularized murine cardiac transplantation to study graft arteriopathy[J]. Nature Protocols,2007,2(3):471-480.
    [106]Mustelin T, Coggeshall KM, Altman A. Rapid activation of the T-cell tyrosine protein kinase pp561ck by the CD45 phosphotyrosine phosphatase [J].Proc Natl Acad Sci USA,1989,86(16):6302-6036.
    [107]Cahir MC, Hurley TR, Pingel JT, Sefton BM, Thomas ML. Correlation between Src family member regulation by the protein-tyrosine-phosphatase CD45 and transmembrane signaling through the T-cell receptor[J]. Proc Natl Acad Sci USA,1993,90(4):1402-1406.
    [108]Justement L. Campbell K, Chien N, Cambier J. Regulation of B cell antigen receptor signal transduction and phosphorylation by CD45[J]. Science,1991,252:1839-1842.
    [109]Trowbridge IS, Thomas ML. CD45:an emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development[J]. Annu Rev Immunol,1994,12:85-116.
    [110]Chang HL, Lefrancois L, Zaroukian MH, and Esselman WJ. Developmental expression of CD45 alternate exons in murine T cells.Evidence of additional alternate exon use[J].J Immunol 1991,147:1687-1693.
    [111]Roach T, Slater S, KovalM, et al. CD45 Regulates Src family member kinese activity associated with macrophage integrin-mediated adhesion[J].Curr B iol,1997,7:408-417.
    [112]Pollack S, Ledbetter JA, Katz R, et al. Evidence for involvement of glycop rotein-CD45 phosphatase in reversing glycoprotein-CD3-induced microtubule-associated protein-2 kinase activity in Jurkat T-cells[J].B iochem J,1991,276:481-485.
    [113]Deans JP, Kanner S B, Torres RM, et al. Interaction of CD4:lck with the T cell receptor/CD3 complex induces early signaling events in the absence of CD45 tyrosine phosphatase[J]. Eur J Imm unol, 1992,22:661-668.
    [1]Banchereau J, Steinman RM. Dendritic cells and the control of immunity.Nature 1998;392:245-52.
    [2]Mellman I, Steinman RM. Dendritic cells:Specialized and regulated antigen processing machines. Cell 2001;106:255-8.
    [3]Kubach J, Becker C, Schmitt E, Steinbrink K, Huter E, Tuettenberg A, Jonuleit H. Dendritic cells: Sentinels of immunity and tolerance. Int J Hematol 2005;81:197-203.
    [4]Jonuleit H, Giesecke-Tuettenberg A, Tuting T, Thurner-Schuler B, Stuge TB, Paragnik L, et al. A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int J Cancer 200];93:243-51.
    [5]Soumelis V, Liu YJ. From plasmacytoid to dendritic cell:Morphological and functional switches during plasmacytoid pre-dendritic cell differentiation. Eur J Immunol 2006;36:2286-92.
    [6]Hadeiba H, Sato T, Habtezion A, Oderup C, Pan J, Butcher EC. CCR9 expression defines tolerogenic plasmacytoid dendritic cells able to suppress acute graftversus-host disease. Nat Immunol 2008;9:1253-60.
    [7]Jonuleit H, Kuhn U, Muller G, Steinbrink K, Paragnik L, Schmitt E, et al. Proinflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 1997;27:3135-42.
    [8]Heufler C, Koch F, Schuler G. Granulocyte/macrophage colony-stimulating factor and interleukin I mediate the maturation of murine epidermal Langerhans cells into potent immunostimulatory dendritic cells. J Exp Med 1988;167:700-5.
    [9]Inaba K, Steinman RM, Pack MW, Aya H, Inaba M, Sudo T, et al. Identification of proliferating dendritic cell precursors in mouse blood. J Exp Med 1992; 175:1157-67.
    [10]Schuler G, Thurner B, Romani N. Dendritic cells:From ignored cells to major players in T-cell-mediated immunity. Int Arch Allergy Immunol 1997; 112:317-22.
    [11]van Vliet SJ, den Dunnen J, Gringhuis SI, Geijtenbeek TB, van Kooyk Y. Innate signaling and regulation of Dendritic cell immunity. Curr Opin Immunol 2007; 19:435-40.
    [12]Geijtenbeek TB, van Vliet SJ, Engering A,et al. Self-and nonself-recognition by C-type lectins on dendritic cells. Annu Rev Immunol 2004; 22:33-54.
    [13]Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 2002; 20:709-60.
    [14]Sparwasser T, Koch ES, Vabulas RM, Heeg K, Lipford GB, Ellwart JW, Wagner H. Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation ofmurine dendritic cells. Eur J Immunol 1998;28:2045-54.
    [15]Lapointe R, Toso JF, Butts C, YoungHA,Hwu P.Human dendritic cells require multiple activation signals for the efficient generation of tumor antigen-specific T lymphocytes. Eur J Immunol 2000;30:3291-8.
    [16]Steinbrink K, Wolfl M, Jonuleit H, Knop J, Enk AH. Induction of tolerance by lL-10-treated dendritic cells. J Immunol 1997;47:72-80.
    [17]Morse MA, Mosca PJ, Clay TM, et al. Dendritic cell maturation in active immunotherapy strategies[J].Expert Opin Biol Ther,2002,2(l):35-43.
    [18]Mahnke K, Schmitt E, Bonifaz L, Enk AH, Jonuleit H. Immature, but not inactive:The tolerogenic function of immature dendritic cells. Immunol Cell Biol 2002;80:477-83.
    [19]Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M, et al. Dendritic cells induce peripheral cell unresponsiveness under steady state conditions in vivo. J Exp Med 2001; 194:769-79.
    [20]Roncarolo MG, Levings MK, Traversari C. Differentiation of T regulatory cells by immature dendritic cells. J Exp Med 2001; 193:F5-10.
    [21]Yamazaki S, Inaba K, Tarbell KV, Steinman RM. Dendritic cells expand antigenspecific Foxp3+CD25+ CD4+regulatory T cells including suppressors of alloreactivity. Immunol Rev 2006; 212:314-29.
    [22]Jonuleit H, Schmitt E, Schuler G, Knop J, Enk AH. Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 2000; 192:1213-22.
    [23]Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N. Antigenspecific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 2001; 193:233-8.
    [24]Mahnke K, Guo M, Lee S, Sepulveda H, Swain SL, Nussenzweig M, Steinman RM.The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class Ⅱ-positive lysosomal compartments. J Cell Biol 2000; 151:673-84.
    [25]Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class Ⅰ products and peripheral CD8+T cell tolerance. J Exp Med 2002; 196:1627-38.
    [26]Mahnke K, Qian Y, Knop J, Enk AH. Induction of CD4+/CD25+regulatory T cells by targeting of antigens to immature dendritic cells. Blood 2003; 101:4862-9.
    [27]Bruder D, Westendorf AM, Hansen W, Prettin S, Gruber AD, Qian Y, et al. On the edge of autoimmunity:T-cell stimulation by steady-state dendritic cells prevents autoimmune diabetes. Diabetes 2005; 54:3395-3401.
    [28]Kretschmer K, Apostolou I, Hawiger D, Khazaie K, Nussenzweig MC, von Boehmer H. Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol 2005;6:1219-27.
    [29]Lu L, Bonham CA, Liang X, Chen Z, Li W, Wang L, et al. Liver-derived DEC205+B220+. J Immunol 2001; 166:7042-52.
    [30]Kronin V, Suss G, Winkel K, Shortman K. The regulation of T cell responses by a subpopulation of CD8+DEC205+murine dendritic cells. Adv Exp Med Biol 1997; 417:239-48.
    [31]Kronin V, Wu L, Gong S, Nussenzweig MC, Shortman K. DEC-205 as a marker of dendritic cells with regulatory effects on CD8 T cell responses. Int Immunol 2000; 12:731-5.
    [32]Yamazaki S, Dudziak D, Heidkamp GF, Fiorese C, Bonito AJ, Inaba K, et al. CD8+CD205+splenic dendritic cells are specialized to induce Foxp3+regulatory T cells. J Immunol 2008; 181:6923-33.
    [33]Kato M, McDonald KJ, Khan S, Ross IL, Vuckovic S, Chen K, et al. Expression of human DEC-205 (CD205) multilectin receptor on leukocytes. Int Immunol 2006; 18:857-69.
    [34]Butler M, Morel AS, Jordan WJ, Eren E, Hue S, Shrimpton RE, Ritter MA. Altered expression and endocytic function of CD205 in human dendritic cells, and detection of a CD205-DCL-1 fusion protein upon dendritic cell maturation. Immunology 2007; 120:362-71.
    [35]Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, SchadendorfD. Vaccination of melanoma patients with peptide-or tumor lysate-pulsed dendritic cells. Nat Med 1998; 4:328-32.
    [36]Tacken PJ, de Vries, IJ, Torensma R, Figdor CG. Dendritic-cell immunotherapy:From ex vivo loading to in vivo targeting. Nat Rev Immunol 2007;7:790-802.
    [37]Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature 2007; 449:419-26.
    [38]Shultz LD, Ishikawa F, Greiner DL. Humanized mice in translational biomedical research. Nat Rev Immunol 2007; 7:118-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700