抗人CD33单链抗体及其与CD80胞外区融合蛋白的构建、表达及功能检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:CD33是髓系细胞分化抗原,分子量为67KD,主要分布在髓系血细胞,特别是在分化的早期阶段。其胞内区含有免疫酪氨酸抑制基序(ITIM),所以它可能具有通过募集信号分子来调节细胞的生长与分化等功能。CD33在90%以上的急性髓系白血病患者都有表达。在造血干细胞表面没有表达,在成熟的粒细胞和其他组织也没有表达,因此CD33成为髓系白血病治疗的良好靶点。有文献证实AML细胞表面免疫共刺激分子CD80表达低下或缺乏,是导致白血病细胞不能被机体细胞毒性T细胞(CTL)有效地识别杀伤,从而逃逸宿主免疫监视的重要原因之一,而T细胞也因缺乏第二信号而无能。因此可以利用CD33表面抗原作为AML白血病细胞的表面标记,构建CD80胞外区-抗人CD33单链抗体(ExCD80-CD33scFv)融合基因、表达融合蛋白,通过融合蛋白中抗人CD33scFv将CD80胞外区结合到AML白血病细胞表面,刺激肿瘤特异性CTL细胞活化,从而增强抗肿瘤免疫。
     目的:构建及表达抗人CD33单链抗体(CD33scFv)基因,并检测其生物活性;扩增CD80胞外区,构建ExCD80-CD33scFv融合基因,并在大肠杆菌中表达融合蛋白,进一步检测融合蛋白的生物活性。
     方法:HIM3-4是血研所研制的分泌鼠源性抗人CD33单克隆抗体的杂交瘤细胞,并已获得国际人类白细胞分化抗原协作组会议正式命名。我们利用RT-PCR技术分别克隆了抗人CD33单克隆抗体HIM3-4的轻、重链可变区基因,并利用短肽(Gly4Ser)_3作为linker,通过overlap PCR方法组装成抗人CD33scFv。将获得的抗体基因克隆到具有强启动子的PET28a(+)载体上,应用IPTG诱导表达,纯化的表达产物经证明具有与靶抗原人类CD33特异结合的能力。CD80 DNA序列由王敏教授惠赠,我们通过另行设计带所需酶切位点的引物来扩增CD80胞外区,在此基础上,利用人血清白蛋白(HAS)第三结构域亲水性的403-427位氨基酸作为链间连接肽将抗人CD33单链抗体及人类细胞表面抗原CD80胞外区基因分别经酶切、纯化后克隆至原核表达载体PET22b(+)中,经IPTG诱导,在大肠杆菌内获得了融合蛋白的表达。融合蛋白的成功构建与表达,为下一步探讨血液肿瘤的免疫治疗机制奠定了基础。
     结果:1.通过RT-PCR方法,利用通用引物从HIM3-4杂交瘤细胞中克隆了抗体轻、重链可变区基因,分别为321bp和366bp,我们利用(GGGG)_3为连接肽构建了抗人CD33基因工程单链抗体,并在PET28a(+)中得到表达,蛋白大小约为31KD,经复性后具有与人CD33结合活性。2克隆出CD80胞外区序列,大小为633bp。3利用大小为25Aa的链间链接肽,将CD80胞外区与CD33ScFv连为融合表达基因,并在PET22b(+)中得到表达,蛋白大小约为55KD,经复性后具有与人CD33抗原结合活性。
     结论:1.从HIM3-4杂交瘤细胞中克隆了抗体轻、重链可变区基因,经测序为功能性重排的抗体可变区基因。2用(Gly_4Ser)_3连接肽基因将VH、VL连接成scFv基因,并用表达载体PET28a(+)表达了scFv蛋白。3.扩增了人类ExCD80 cDNA序列,测序显示序列正确。4.构建了PET22b(+)-ExCD80-CD33scFv融合基因表达质粒,并在含有稀有密码子的宿主菌Rosetta(DE3)中获得了表达。并初步探讨了其生物学功能。
Background:CD33,a normal self-antigen that is a Mr 67,000 cell surface glycoprotein largely restricted to the myeloid/monocytic lineage.It contains a conserved immunoreceptor tyrosine based inhibitory motif(ITIM) in the cytoplasmic tails,so it may have roles in modulating cellular functions via recruitment of signaling molecules.CD33 was selected as the target antigen because of its over expression on 90%of acute myeloid leukemia(AML) blasts and its lack of expression on pluripotent stem cells (12-14),and it is not expressed on mature granulocytes and other tissues either.Many reports confirmed that lack or low expression of costimulatory molecule CD80 on AML cells surfaces is one of most important reasons that CTL can not recognize and kill cancer cells efficiently.It is a recognized phenomenon that T cells are rendered anergic due to the lack of costimulatory molecules expression by tumor cells.Based on the above information,we constructed CD80-anti human CD33 single chain fragment variable(scFv) fusion gene and express it in prokaryocytic expression vector.By this mean, we can modulate the AML cells with fusion protein to enhance the tumor-specific immunity.
     Objectives:To construct and express the single chain variable fragments (scFv) gene against human CD33 antigen,and characterize its bioactivity.Ampligy the extracellular region of CD80.Construct CD80-anti human CD33 single chain fragment variable(scFv) fusion gene and express it in prokaryocytic expression vector,and then detect the biological activity of the fusion protein.
     Methods:The genes encoding the light and heavy chain variable regions were cloned by RT—PCR from a murine hybridoma cell line HIM3-4,which could produce monoclonal antibody(mAb) against human CD33 antigen and is named by International workshop on human leukocyte differentiation antigens.Then the light and heavy chain variable regions were fused together by a short peptide linker containing 15 amino acid(Gly4Ser)3 using splice-overlap extensive PCR.The recombinant anti-CD33 scFv was subcloned into the expression vector pET28a(+)and expressed in E.coli Rosetta after induction by IPTG.Flow cytometry analysis showed that the scFv could react with human CD33 antigen.CD80 sequence was kindly presented by professor Wang Min.The extracellular region of CD80 was amplified by PCR with primers containing designed restriction enzymes.The hydrophilic fragments of 403-427 from domainⅢof HSA was choosed as an interlinker for ExCD80-CD33ScFv construction.The fusion gene was cloned into PET22b(+),after the fusion protein was expressed with IPTG in E.coli.Rosetta(DE3),its biological activity was detected with indirect immunological fluorescence experiment.
     Results:1 SDS-PAGE and Western blot analysis showed that the recombinant anti-CD33 scFv gene was expressed in the form of inclusion body in E.coli Rosetta(DE3),and the purified fusion protein was obtained after a series of purification steps including cell lysis,inclusion body solubilization, Ni2+ metal affinity chromatography and protein refolding.Flow cytometry(FCM) analysis showed that the scFv could react with human CD33 antigen,the VL was 321bp,the VH was 366bp.2 The extracellular region of CD80 was cloned by PCR,it is about 633bp.3 structing a ExCD80-CD33ScFv sequence in PET22b(+) vector by genetic engineering,then expressing it in the E.Coli Rosetta(DE3). The fusion protein was 55KSD fragment with human CD33-binding specificity after renaturation.
     Conclusions:(1) The VL and VH gene of CD33ScFv were cloned from hybridoma cell line HIN3-4.(2) Combinant anti-CD33 scFv gene has been successfully constructed and expressed in E.coli Rosetta(DE3).(3) the ExCD80 gene was successfully amplified.4 PET22b(+)-ExCD80-CD33ScFv was successfully expressed in Rosetta(DE3),its biological activity was detected initialy.
引文
1.Lowenberg,B.,J.R.Downing,and A.Burnett,Acute myeloid leukemia.N Engl J Med,1999.341 (14):p.1051-62.
    2.Cripe,L.D.andS.Hinton,Acute myeloid leukemia in adults.Curr Treat Options Oncol,2000.1(1):p.9-17.
    3.Parisi,E.,et al.,Acute myelogenous leukemia:advances and limitations of treatment.Oral Surg Oral Med Oral Pathol Oral Radiol Endod,2002.93(3):p.257-63.
    4.Dash,A.and D.G.Gilliland,Molecular genetics of acute myeloid leukaemia.Best Pract Res Clin Haematol,2001.14(1):p.49-64.
    5.Kogan,S.C.and J.M.Bishop,Acute promyelocytic leukemia:from treatment to genetics and back.Oncogene,1999.18(38):p.5261-7.
    6.Newland,A.,Progress in the treatment of acute myeloid leukaemia in adults.Int J Hematol,2002.76 Suppl 1:p.253-8.
    7.Gorin,N.C.,et al.,New Developments in the Therapy of Acute Myelocytic Leukemia.Hematology Am Soc Hematol Educ Program,2000:p.69-89.
    8.Arceci,R.J.,et al.,Safety and efficacy of gemtuzumab ozogamicin in pediatric patients with advanced CD33+ acute myeloid leukemia.Blood,2005.106(4):p.1183-8.
    9.Mulford,D.,Antibody therapy for acute myeloid leukemia.Semin Hematol,2008.45(2):p.104-9.
    10.Biedermann,B.,et al.,Analysis of the CD33-related siglec family reveals that Siglec-9 is an endocytic receptor expressed on subsets of acute myeloid leukemia cells and absent from normal hematopoietic progenitors.Leuk Res,2007.31(2):p.211-20.
    11.Crocker,P.R.,J.C.Paulson,and A.Varki,Siglecs and their roles in the immune system.Nat Rev Immunol,2007.7(4):p.255-66.
    12.Greenberg,P.D.,Adoptive T cell therapy of tumors:mechanisms operative in the recognition and elimination of tumor cells.Adv Immunol,1991.49:p.281-355.
    13.Melief,C.J.,Tumor eradication by adoptive transfer of cytotoxic T lymphocytes.Adv Cancer Res,1992.58:p.143-75.
    14.Johnson,J.G.and M.K.Jenkins,Accessory cell-derived signals required for T cell activation.Immunol Res,1993.12(1):p.48-64.
    15.Norton,S.D.,et al.,The CD28 ligand,B7,enhances IL-2 production by providing a costimulatory signal to T cells.J Immunol,1992.149(5):p.1556-61.
    16.Galvin,F.,et al.,Murine B7 antigen provides a sufficient costimulatory signal for antigen-specific and MHC-restricted T cell activation.J Immunol,1992.149(12):p.3802-8.
    17.Guinan,E.C.,et al.,Pivotal role of the B7:CD28 pathway in transplantation tolerance and tumor immunity.Blood,1994.84(10):p.3261-82.
    18.Marti,W.R.,et al.,Nonreplieating recombinant vaccinia virus encoding human B-7 molecules elicits effective costimulation of naive and memory CD4+ T lymphocytes in vitro.Cell Immunol,1997.179(2):p.146-52.
    19.Hodge,J.W.,et al.,Admixture of a recombinant vaccinia virus containing the gene for the costimulatory molecule B7 and a recombinant vaccinia virus containing a tumor-associated antigen gene results in enhanced specific T-cell responses and antitumor immunity.Cancer Res,1995.55(16):p.3598-603.
    20.Gerstmayer,B.,et al.,Costimulation of T cell proliferation by a chimeric B7-2 antibody fusion protein specifically targeted to cells expressing the erbB2 proto-oncogene.J Immunol,1997.158(10):p.4584-90.
    21.Jung,D.,et al.,Strong immunogenic potential of a B7 retroviral expression vector:generation of HLA-B7-restricted CTL response against selectable marker genes.Hum Gene Ther,1998.9(1):p.53-62.
    22.Notter,M.,et al.,Targeting of a B7-1 (CD80)immunoglobulin G fusion protein to acute myeloid leukemia blasts increases their costimulatory activity for autologous remission T cells.Blood,2001.97(10):p.3138-45.
    23.Kohler,G.and C.Milstein,Continuous cultures of fused cells secreting antibody of predefined specificity.Nature,1975.256(5517):p.495-7.
    24.Nabel,G.J.,Genetic,cellular and immune approaches to disease therapy:past and future.Nat Med,2004.10(2):p.135-41.
    25.Abou-Jawde,R.,et al.,An overview of targeted treatments in cancer. Clin Ther,2003.25(8):p.2121-37.
    26.Khazaeli,M.B.,R.M.Conry,and A.F.LoBuglio,Human immune response to monoclonal antibodies.J Immunother Emphasis Tumor Immunol,1994.15(1):p.42-52.
    27.Verma,R.,E.Boleti,and A.J.George,Antibody engineering:comparison of bacterial,yeast,insect and mammalian expression systems.J Immunol Methods,1998.216(1-2):p.165-81.
    28.O'Kennedy,R.and P.Roben,Antibody engineering:an overview.Essays Biochem,1991.26:p.59-75.
    29.Brekke,0.H.and G.A.Loset,New technologies in therapeutic antibody development.Curr Opin Pharmacol,2003.3(5):p.544-50.
    30.Huston,J.S.,et al.,Medical applications of single-chain antibodies.Int Rev Immunol,1993.10(2-3):p.195-217.
    31.Wannesson,L.andM.Ghielmini,Overview of antibody therapy in B-cell non-Hodgkin's lymphoma.Clin Lymphoma,2003.4 Suppl 1:p.S5-12.
    32.Bestagno,M.,et al.,Recombinant antibodies in the immunotherapy of neuroblastoma:perspectives of new developments.Cancer Lett,2003.197(1-2):p.193-8.
    33.Wulfing,C.and A.Pluckthun,Protein folding in the periplasm of Escherichia coli.Mol Microbiol,1994.12(5):p.685-92.
    34.Winter,G.and C.Milstein,Man-made antibodies.Nature,1991.349(6307):p.293-9.
    35.Coia,G.,P.J.Hudson,and G.G.Lilley,Construction of recombinant extended single-chain antibody peptide conjugates for use in the diagnosis of HIV-1 and HIV-2.J Immunol Methods,1996.192(1-2):p.13-23.
    36.Kriangkum,J.,et al.,Bispecific and bifunctional single chain recombinant antibodies.Biomol Eng,2001.18(2):p.31-40.
    37.Schoonjans,R.,et al.,A new model for intermediate molecular weight recombinant bispecific and trispecific antibodies by efficient heterodimerization of single chain variable domains through fusion to a Fab-chain.Biomol Eng,2001.17(6):p.193-202.
    38.Trinh,R.,et al.,Optimization of codon pair use within the (GGGGS)3 linker sequence results in enhanced protein expression.Mol Immunol,2004.40(10):p.717-22.
    39.Turner,D.J.,M.A.Ritter,and A.J.George,Importance of the linker in expression of single-chain'Fv antibody fragments:optimisation of peptide sequence using phage display technology.J Immunol Methods,1997.205(1):p.43-54.
    40.Kipriyanov,S.M.,G.Moldenhauer,andM.Little,High level production of soluble single chain antibodies in small-scale Escherichia coli cultures.J Immunol Methods,1997.200(1-2):p.69-77.
    41.Lee,M.H.,et al.,Bacterial expression and in vitro refolding of a single-chain fv antibody specific for human plasma apolipoprotein B-100.Protein Expr Purif,2002.25(1):p.166-73.
    42.Alfthan,K.,et al.,Properties of a single-chain antibody containing different linker peptides.Protein Eng,1995.8(7):p.725-31.
    43.Helfrich,W.,et al.,A rapid and versatile method for harnessing scFv antibody fragments with various biological effector functions.J Immunol Methods,2000.237(1-2):p.131-45.
    44.Gruber,M.,et al.,Efficient tumor cell lysis mediated by a bispecific single chain antibody expressed in Escherichia coli.J Immunol,1994.152(11):p.5368-74.
    45.Fang,M.,et al.,Characterization of an anti-human ovarian careinomaxanti-human CD3 bispecific single-chain antibody with an albumin-original interlinker.Gynecol Oncol,2004.92(1):p.135-46.
    1.Mirick,G.R.,et al.,A review of human anti-globulin antibody(HAGA,HAMA,HACA,HAHA) responses to monoclonal antibodies.Not four letter words.Q J Nucl Med Mol Imaging,2004.48(4):p.251-7.
    2.Schelledens,H.,D.Crommelin,W.Jiskoot,immunogenicity of antibody therapeutics,handbook of therapeutic antibodies.ED:Dubel S.Wiley-VCH,Weinheim,2007.
    3.Hwang,W.Y.and J.Foote,Immunogenicity of engineered antibodies.Methods,2005.36(1):p.3-10.
    4.Jones,P.T.,et al.,Replacing the complementarity-determining regions in a human antibody with those from a mouse.Nature,1986.321(6069):p.522-5.
    5.Fuh,G.,et al.,Structure-function studies of two synthetic anti-vascular endothelial growth factor Fabs and comparison with the Avastin Fab.J Biol Chem,2006.281(10):p.6625-31.
    6.Pal,G.,et al.,Comprehensive and quantitative mapping of energy landscapes for protein-protein interactions by rapid combinatorial scanning.J Biol Chem,2006.281(31):p.22378-85.
    7.Asano,R.,et al.,Humanization of the bispecific epidermal growth factor receptor x CD3 diabody and its efficacy as a potential clinical reagent.Clin Cancer Res,2006.12(13):p.4036-42.
    8.Leonard,G.P.,Engineering of therapeutic antibodies to minimize immunogenicity and optimize function.Advanced Drug Delivery Reviews,2006.58:p.640-656.
    9.Kashmiri,S.V.,et al.,SDR grafting—a new approach to antibody humanization.Methods,2005.36(1):p.25-34.
    10.Tamura,M.,et al.,Structural correlates of an anticarcinoma antibody:identification of specificity-determining residues(SDRs) and development of a minimally immunogenic antibody variant by retention of SDRs only.J Immunol,2000.164(3):p.1432-41.
    11.Gonzales,N.R.,et al.,SDR grafting of a murine antibody using multiple human germline templates to minimize its immunogenicity.Mol Immunol,2004.41(9):p.863-72.
    12.Graziano,R.F.,et al.,Construction and characterization of a humanized anti-gamma-Ig receptor type I (Fc gamma RI)monoclonal antibody.J Immunol,1995.155(10):p.4996-5002.
    13.Carter,P.,et al.,Humanization of an anti-p185HER2 antibody for human cancer therapy.Proc Natl Acad Sci U S A,1992.89(10):p.4285-9.
    14.Damschroder,M.M.,et al.,Framework shuffling of antibodies to reduce immunogenicity and manipulate functional and biophysical properties.Mol Immunol,2007.44(11):p.3049-60.
    15.Hu,W.G.,et al.,Humanization and mammalian expression of a murine monoclonal antibody against Venezuelan equine encephalitis virus.Vaccine,2007.25(16):p.3210-4.
    16.Zimmermann,J.,et al.,Antibody evolution constrains conformational heterogeneity by tailoring protein dynamics.Proc Natl Acad Sci U S A,2006.103(37):p.13722-7.
    17.Saldhana,J.,Molecular Engineering 1:Humanization.handbook of therapeutic antibodies.ED:Dubel S.Wiley-VCH,Weinheim,2007.
    18.Al-Lazikani,B.,A.M.Lesk,and C.Chothia,Standard conformations for the canonical structures of immunoglobulins.J Mol Biol,1997.273(4):p.927-48.
    19.Kaas,Q.,M.Ruiz,and M.P.Lefranc,IMGT/3Dstructure-DB and IMGT/StructuralQuery,a database and a tool for immunoglobulin,T cell receptor and MHC structural data.Nucleic Acids Res,2004.32(Database issue):p.D208-10.
    20.Boado,R.J.,et al.,Humanization of anti-human insulin receptor antibody for drug targeting across the human blood-brain barrier.Biotechnol Bioeng,2007.96(2):p.381-91.
    21.Padlan,E.A.,A possible procedure for reducing the immunogenicity of antibody variable domains while preserving their ligand-binding properties.Mol Immunol,1991.28(4-5):p.489-98.
    22.Staelens,S.,et al.,Humanization by variable domain resurfacing and grafting on a human IgG4,using a new approach for determination of non-human like surface accessible framework residues based on homology modelling of variable domains.Mol Immunol,2006.43(8):p.1243-57.
    23.Fontayne,A.,et al.,Rational humanization of the powerful antithrombotic anti-GPIbalpha antibody:6B4.Thromb Haemost,2006.96(5):p.671-84.
    24.Roque-Navarro,L.,et al.,Humanization of predicted T-cell epitopes reduces the immunogenicity of chimeric antibodies:new evidence supporting a simple method.Hybrid Hybridomics,2003.22(4):p.245-57.
    25.Peng,W.,et al.,A Delmmunized chimeric anti-C3b/iC3b monoclonal antibody enhances rituximab-mediated killing in NHL and CLL cells via complement activation.Cancer Immunol Immunother,2005.54(12):p.1172-9.
    26.Nanus,D.M.,et al.,Clinical use of monoclonal antibody HuJ591 therapy:targeting prostate specific membrane antigen.J Urol,2003.170(6 Pt 2):p.S84-8;discussion S88-9.
    27.Tan,P.,et al.,“Superhumanized” antibodies:reduction of immunogenic potential by complementarity-determining region grafting with human germline sequences:application to an anti~CD28.J Immunol,2002.169(2):p.1119-25.
    28.Hwang,W.Y.,et al.,Use of human germline genes in a CDR homology-based approach to antibody humanization.Methods,2005.36(1):p.35-42.
    29.Dufner,P.,L.Jermutus,and R.R.Minter,Harnessing phage and ribosome display for antibody optimisation.Trends Biotechnol,2006.24(11):p.523-9.
    30.Schlapschy,M.,et al.,Functional humanization of an anti-CD30 Fab fragment for the immunotherapy of Hodgkin' s lymphoma using an in vitro evolution approach.Protein Eng Des Sel,2004.17(12):p.847-60.
    31.Hoogenboom,H.R.,Selecting and screening recombinant antibody libraries.Nat Biotechnol,2005.23(9):p.1105-16.
    32.Rosok,M.J.,et al.,A combinatorial library strategy for the rapid humanization of anticarcinoma BR96 Fab.J Biol Chem,1996.271(37):p.22611-8.
    33.Son,J.H.,et al.,Humanization of agonistic anti-human 4-1BB monoclonal antibody using a phage-displayed combinatorial library.J Immunol Methods,2004.286(1-2):p.187-201.
    34.Dall'Acqua,W.F.,et al.,Antibody humanization by framework shuffling.Methods,2005.36(1):p.43-60.
    35.Jespers,L.S.,etal.,Guiding the selection of human antibodies from phage display repertoires to a single epitope of an antigen.Biotechnology (NY),1994.12(9):p.899-903.
    36.Alfenito,M.,Conversion from non-human to human,near-germline therapeutic antibodies via Humaneering.Cambridge Healthtech Institute' s Third Annual PEGS.The Protein Engineering Summit,2007.
    37.Adams,G.P.and L.M.Weiner,Monoclonal antibody therapy of cancer.Nat.Biotechnol,2005.23:p.1147-1157.
    38.Weiner,L.M.,Fully human therapeutic monoclonal antibodies.J Immunother,2006.29(1):p.1-9.
    39.Saltz,L.,C.Easley,and P.Kirkpatrick,Panitumumab.Nat Rev Drug Discov,2006.5(12):p.987-8.
    40.Gibson,T.,A.Ranganathan,and A.Grothey,Randomized phase Ⅲ trial results of panitumumab,a fully human anti-epidermal growth factor receptor monoclonal antibody,in metastatic colorectal cancer.Clin Colorectal Cancer,2006.6:p.29-31.
    41.Cohenuram,M.and M.W.Saif,Panitumumab the first fully human monoclonal antibody:from the bench to the clinic.Anticancer Drugs 2007.18:p.7-15.
    42.Rowinsky,E.K.,et al.,Safety,pharmacokinetics,and activity of ABX-EGF,a fully human anti-epidermal growth factor receptor monoclonal antibody in patients with metastatic renal cell cancer.J Clin Oncol,2004.22(15):p.3003-15.
    43.Farr,CD.,M.R.Tabet,and W.J.Ball,Three-dimensional quantitative structure-activity relationship analysis of ligand binding to human sequence antidigoxin monoclonal antibodies using comparative molecular field analysis.J Med Chem 2002.45:p.3257-3270.
    44.Babcock,G.,B.TJ,and H.HJ,Human monoclonal antibodies directed against toxins A and B prevent Clostridium difficile-induced mortality in hamsters.Infect Immun,2006.74:p.6339-6347.
    45.Coughlin M,et al.,Generation and characterization of human monoclonal neutralizing antibodies with distinct binding and sequence features against SARS coronavirus using XenoMouse((R))..Virology.361:p.93-102.
    46.Vitale L,et al.,Prophylaxis and therapy of inhalational anthrax by a novel monoclonal antibody to protective antigen that mimics vaccine-induced immunity.Infect Immun,2006.74:p.5840-5847.
    47.Maitta,R.W.,Protective and nonprotective hunjan immunoglobulin M monoclonal antibodies to Cryptococcus neoformans glucuronoxylomannan manifest different specificities and gene use profiles.Infect Immun,2004.72:p.4810-4818.
    48.Parry,R.,et al.,Identification of a novel prostate tumor target,mindin/RG-1,for antibody-based radiotherapy of prostate cancer.Cancer Res 2005.65:p.8397-8405.
    49.Rathanaswami,P.,S.Roalstad,and L.Roskos,Demonstration of an in vivo generated subpicomolar affinity fully human monoclonal antibody to interleukin-8.Biochem Biophys Res Commun,2005.334:p.1004-1013.
    50.Burgess,T.,et al.,Fully human monoclonal antibodies to hepatocyte growth factor with therapeutic potential against hepatocyte growth factor/c-Met-dependent human tumors.Cancer Res 2006.66:p.1721-1729.
    51.Melnikova,V.and M.Bar-Eli,Bioimmunotherapy for melanoma using fully human antibodies targeting MCAM/MUC18 and IL-8.Pigment Cell Res,2006.19:p.395-405.
    52.Villadsen,L.,L.Skov,and T.Dam,n situ depletion of CD4+ T cells in human skin by Zanolimumab.Arch Dermatol Res,2007.298:p.449-455.
    53.Teeling,J.,W.Mackus,and L.Wiegman,The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20.J Immunol 2006.177:p.362-371.
    54.Wu,Y.,et al.,Anti-vascular endothelial growth factor receptor-1 antagonist antibody as a therapeutic agent for cancer.Clin Cancer Res 2006.12:p.6573-6584.
    55.Ma,D.,et al.,Potent antitumor activity of an auristatin-conjugated, fully human monoclonal antibody to prostate-specific membrane antigen.Clin Cancer Res,2006.12:p.2591-2596.
    56.Nozawa,S.,D.Aoki,and K.Tsukazaki,HMMC-1:a humanized monoclonal antibody with therapeutic potential against Mullerian duct-related carcinomas.Clin Cancer Res,2004.10:p.7071-7078.
    57.Bleeker WK,L.v.B.J.,van Ojik HH et al.,Dual mode of action of a human anti-epidermal growth factor receptor monoclonal antibody for cancer therapy.J Immunol,2004.173:p.4699-4707
    58.Lammerts van Bueren JJ,B.W.,Bogh HO,Effect of target dynamics on pharmacokinetics of a novel therapeutic antibody against the epidermal growth factor receptor:implications for the mechanisms of action.Cancer Res,2006.66:p.7630.
    59.Bender NK,H.C.,Dr¨oll B,Immunogenicity,efficacy and adverse events of adalimumab in RA patients.Rheumatol Int 2007.27:p.269-274.
    1.Keir,M.E.,et al.,PD-1 and its ligands in tolerance and immunity.Annu Rev Immunol,2008.26:p.677-704.
    2.Yokochi,T.,R.D.Holly,and E.A.Clark,B lymphoblast antigen (BB-1)expressed on Epstein-Barr virus-activated B cell blasts,B lymphoblastoid cell lines,and Burkitt's lymphomas.J Immunol,1982.128(2):p.823-7.
    3.Lkemizu s,S.A.,Structure and climerization of a soluble form of CD80.immunity,2000:p.51.
    4.Wolthers,K.C.,et al.,Increased expression of CD80,CD86 and CD70 on T cells from HIV-infected individuals upon activation in vitro:regulation by CD4+ T cells.Eur J Immunol,1996.26(8):p.1700-6.
    5.Sabzevari,H.,et al.,Acquisition of CD80 (B7-1)by T cells.J Immunol,2001.166(4):p.2505-13.
    6.Taylor,P.A.,et al.,B7 expression on T cells down-regulates immune responses through CTLA-4 ligation viaT-T interactions [corrections].J Immunol,2004.172(1):p.34-9.
    7.Paust,S.,et al.,Engagement of B7 on effector T cells by regulatory T cells prevents autoimmune disease.Proc Natl Acad Sci U S A,2004.101(28):p.10398-403.
    8.Grohmann,U.,et al.,CTLA-4-Ig regulates tryptophan catabolism in vivo.Nat Immunol,2002.3(11):p.1097-101.
    9.Fallarino,F.,et al.,Modulation of tryptophan catabolism by regulatory T cells.Nat Immunol,2003.4(12):p.1206-12.
    10.Munn,D.H.,M.D.Sharma,and A.L.Mellor,Ligation of B7-1/B7-2 by human CD4+ T cells triggers indoleamine 2,3-dioxygenase activity in dendritic cells.J Immunol,2004.172(7):p.4100-10.
    11.Greenfield,E.A.,K.A.Nguyen,and V.K.Kuchroo,CD28/B7 costimulation:a review.Crit Rev Immunol,1998.18(5):p.389-418.
    12.McAdam,A.J.,A.N.Schweitzer,and A.H.Sharpe,The role of B7 co-stimulation in activation and differentiation of CD4+ and CD8+ T cells.Immunol Rev,1998.165:p.231-47.
    13.Suvas,S.,et al.,Distinct role of CD80 and CD86 in the regulation of the activation of B cell and B cell lymphoma.J Biol Chem,2002. 277(10):p.7766-75.
    14.Boussiotis,V.A.,et al.,Blockade of the CD28 co-stimulatory pathway:a means to induce tolerance.Curr Opin Immunol,1994.6(5):p.797-807.
    15.Tang,Q.,et al.,Cutting edge:CD28 controls peripheral homeostasis of CD4+CD25+regulatory T cells.J Immunol,2003.171(7):p.3348-52.
    16.Lohr,J.,et al.,The inhibitory function of B7 costimulators in T cell responses to foreign and self-antigens.Nat Immunol,2003.4(7):p.664-9.
    17.Jeannin,P.,etal.,Soluble CD86 is a costimulatory molecule for human T lymphocytes.Immunity,2000.13(3):p.303-12.
    18.Faas,S.J.,et al.,Primary structure and functional characterization of a soluble,alternatively spliced form of B7-1.J Immunol,2000.164(12):p.6340-8.
    19.Reiser,J.,et al.,Induction of B7-1 in podocytes is associated with nephrotic syndrome.J Clin Invest,2004.113(10):p.1390-7.
    20.Peach,R.J.,etal.,Complementarity determining region 1 (CDRl)-and CDR3-analogous regions in CTLA-4 and CD28 determine the binding to B7-1.J Exp Med,1994.180(6):p.2049-58.
    21.Freedman,A.S.,et al.,B7,a B-cell-restricted antigen that identifies preactivated B cells.J Immunol,1987.139(10):p.3260-7.
    22.Chang,T.T.,V.K.Kuchroo,and A.H.Sharpe,Role of the B7-CD28/CTLA-4 pathway in autoimmune disease.Curr Dir Autoimmun,2002.5:p.113-30.
    23.Slavik,J.M.,J.E.Hutchcroft,and B.E.Bierer,CD80 and CD86 are not equivalent in their ability to induce the tyrosine phosphorylation of CD28.J Biol Chem,1999.274(5):p.3116-24.
    24.Carreno,B.M.and M.Collins,The B7 family of ligands and its receptors:new pathways for costimulation and inhibition of immune responses.Annu Rev Immunol,2002.20:p.29-53.
    25.Thompson,C.B.and J.P.Allison,The emerging role of CTLA-4 as an immune attenuator.Immunity,1997.7(4):p.445-50.
    26.van der Merwe,P.A.,et al.,CD80 (B7-1)binds both CD28 and CTLA-4 with a low affinity and very fast kinetics.J Exp Med,1997.185(3):p.393-403.
    27.Bour-Jordan,H.and J.A.Blueston,CD28 function:a balance of costimulatory and regulatory signals.J Clin Immunol,2002.22(1): p.1-7.
    28.Lenschow,D.J.,T.L.Walunas,and J.A.Bluestone,CD28/B7 system of T cell costimulation.Annu Rev Immunol,1996.14:p.233-58.
    29.Lanzavecchia,A.,G.Lezzi,and A.Viola,From TCR engagement to T cell activation:a kinetic view of T cell behavior.Cell,1999.96(1):p.1-4.
    30.Carreno,B.M.,et al.,CTLA-4 (CD152)can inhibit T cell activation by two different mechanisms depending on its level of cell surface expression.J Immunol,2000.165(3):p.1352-6.
    31.Lenschow,D.J.,et al.,CD28/B7 regulation of Th1 and Th2 subsets in the development of autoimmune diabetes.Immunity,1996.5(3):p.285-93.
    32.Abrams,J.R.,et al.,CTLA4Ig-mediated blockade of T-cell costimulation in patients with psoriasis vulgaris.J Clin Invest,1999.103(9):p.1243-52.
    33.Bai,X.F.,et al.,B7-CTLA4 interaction promotes cognate destruction of tumor cells by cytotoxic T lymphocytes in vivo.Blood,2002.99(8):p.2880-9.
    34.Ueda,H.,et al.,Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease.Nature,2003.423(6939):p.506-11.
    35.Vijayakrishnan,L.,etal.,An autoimmune disease-associated CTLA-4 splice variant lacking the B7 binding domain signals negatively in T cells.Immunity,2004.20(5):p.563-75.
    36.Ishikawa,K.,et al.,Prediction of the coding sequences of unidentified human genes.X.The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro.DNA Res,1998.5(3):p.169-76.
    37.Aicher,A.,et al.,Characterization of human inducible costimulator ligand expression and function.J Immunol,2000.164(9):p.4689-96.
    38.Coyle,A.J.,et al.,The CD28-related molecule ICOS is required for effective T cell-dependent immune responses.Immunity,2000.13(1):p.95-105.
    39.Wall in,J.J.,et al.,Enhancement of CD8+ T cell responses by IC0S/B7h costimulation.J Immunol,2001.167(1):p.132-9.
    40.Okamoto,N.,et al.,PI3-kinase and MAP-kinase signaling cascades in AILIM/ICOS-and CD28-costimulated T-cells have distinct functions between cell proliferation and IL-10 production.Biochem Biophys Res Commun,2003.310(3):p.691-702.
    41.Parry,R.V.,et al.,CD28 and inducible costimulatory protein Src homology 2 binding domains show distinct regulation of phosphatidylinositol 3-kinase,Bcl-xL,and IL-2 expression in primary human CD4 T lymphocytes.J Immunol,2003.171(1):p.166-74.
    42.Riley,J.L.,et al.,ICOS costimulation requires IL-2 and can be prevented by CTLA-4 engagement.J Immunol,2001.166(8):p.4943-8.
    43.Kopf,M.,et al.,Inducible costimulator protein (ICOS)controls T helper cell subset polarization after virus and parasite infection.J Exp Med,2000.192(1):p.53-61.
    44.McAdam,A.J.,et al.,Mouse inducible costimulatory molecule (ICOS)expression is enhanced by CD28 costimulation and regulates differentiation of CD4+T cells.J Immunol,2000.165(9):p.5035-40.
    45.Lohning,M.,et al.,Expression of ICOS in vivo defines CD4+ effector T cells with high inflammatory potential and a strong bias for secretion of interleukin 10.J Exp Med,2003.197(2):p.181-93.
    46.Wassink,L.,et al.,ICOS expression by activated human Th cells is enhanced by IL-12 and IL-23:increased ICOS expression enhances the effector function of both Thl and Th2 cells.J Immunol,2004.173(3):p.1779-86.
    47.Ogasawara,K.,S.K.Yoshinaga,and L.L.Lanier,Inducible costimulator costimulates cytotoxic activity and IFN-gamma production in activated murine NK cells.J Immunol,2002.169(7):p.3676-85.
    48.Ozkaynak,E.,et al.,Importance of IC0S-B7RP-1 costimulation in acute and chronic allograft rejection.Nat Immunol,2001.2(7):p.591-6.
    49.Kosuge,H.,et al.,Induction of immunologic tolerance to cardiac allograft by simultaneous blockade of inducible co-stimulator and cytotoxic T-lymphocyte antigen 4 pathway.Transplantation,2003.75(8):p.1374-9.
    50.Dong,H.,et al.,B7-H1,a third member of the B7 family,co-stimulates T-cell proliferation and interleukin-10 secretion.Nat Med,1999. 5(12):p.1365-9.
    51.Liang,S.C.,etal.,Regulation of PD-1,PD-L1,and PD-L2 expression during normal and autoimmune responses.Eur J Immunol,2003.33(10):p.2706-16.
    52.Freeman,G.J.,et al.,Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation.J Exp Med,2000.192(7):p.1027-34.
    53.Zhang,X.,et al.,Structural and functional analysis of the costimulatory receptor programmed death-1.Immunity,2004.20(3):p.337-47.
    54.Agata,Y.,et al.,Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes.Int Immunol,1996.8(5):p.765-72.
    55.Carter,L.,et al.,PD-1:PD-L inhibitory pathway affects both CD4(+)and CD8(+)T cells and is overcome by IL-2.Eur J Immunol,2002.32(3):p.634-43.
    56.Brown,J.A.,et al.,Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production.J Immunol,2003.170(3):p.1257-66.
    57.Rosenwald,A.,et al.,Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma.J Exp Med,2003.198(6):p.851-62.
    58.Iwai,Y.,et al.,Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade.Proc Natl Acad Sci USA,2002.99(19):p.12293-7.
    59.Chapoval,A.I.,et al.,B7-H3:a costimulatory molecule for T cell activation and IFN-gamma production.Nat Immunol,2001.2(3):p.269-74.
    60.Sun,X.,et al.,Mouse B7-H3 induces antitumor immunity.Gene Ther,2003.10(20):p.1728-34.
    61.Choi,I.H.,etal.,Genomic organization and expression analysis of B7-H4,an immune inhibitory molecule of the B7 family.J Immunol,2003.171(9):p.4650-4.
    62.Zang,X.,et al.,B7x:a widely expressed B7 family member that inhibits T cell activation.Proc Natl Acad Sci U S A,2003.100(18):p.10388-92.
    63.Sica,G.L.,et al.,B7-H4,a molecule of the B7 family,negatively regulates T cell immunity.Immunity,2003.18(6):p.849-61.
    64.Simon,I.,et al.,B7-h4 is a novel membrane-bound protein and a candidate serum and tissue biomarker for ovarian cancer.Cancer Res,2006.66(3):p.1570-5.
    65.Mao,Y.X.,et al.,Recombinant human B7-H4 expressed in Escherichia coli inhibits T lymphocyte proliferation and IL-2 secretion in vitro.Acta Pharmacol Sin,2006.27(6):p.741-6.
    66.Kryczek,I.,et al.,B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma.J Exp Med,2006.203(4):p.871-81.
    67.Krambeck,A.E.,et al.,B7-H4 expression in renal cell carcinoma and tumor vasculature:associations with cancer progression and survival.Proc Natl Acad Sci USA,2006.103(27):p.10391-6.
    68.Sun,Y.,et al.,B7-H3 and B7-H4 expression in non-small-cell lung cancer.Lung Cancer,2006.53(2):p.143-51.
    69.Salceda,S.,et al.,The immunomodulatory protein B7-H4 is overexpressed in breast and ovarian cancers and promotes epithelial cell transformation.Exp Cell Res,2005.306(1):p.128-41.
    70.Collins,M.,V.Ling,and B.M.Carreno,The B7 family of immune-regulatory ligands.Genome Biol,2005.6(6):p.223.
    71.Kryczek,I.,et al.,Cutting edge:induction of B7-H4 on APCs through IL-10:novel suppressive mode for regulatory T cells.J Immunol,2006.177(1):p.40-4.
    72.Suh,W.K.,et al.,Generation and characterization of B7-H4/B7Sl/B7x-deficient mice.Mol Cell Biol,2006.26(17):p.6403-11.
    73.Chen,L.,Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity.Nat Rev Immunol,2004.4(5):p.336-47.
    74.Gavrieli,M.,et al.,Characterization of phosphotyrosine binding motifs in the cytoplasmic domain of B and T lymphocyte attenuator required for association with protein tyrosine phosphatases SHP-1 and SHP-2.Biochem Biophys Res Commun,2003.312(4):p.1236-43.
    75.Gabrilovich,D.,Mechanisms and functional significance of tumour-induced dendritic-cell defects.Nat Rev Immunol,2004.4(12):p.941-52.
    76.Townsend,S.E.and J.P.Allison,Tumor rejection after direct costimulation of CD8+ T cells by B7~transfected melanoma cells.Science,1993.259(5093):p.368-70.
    77.Chen,L.,et al.,Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4.Cell,1992.71(7):p.1093-102.
    78.Wingren,A.G.,et al.,T cell activation pathways:B7,LFA-3,and ICAM-1 shape unique T cell profiles.Crit Rev Immunol,1995.15(3-4):p.235-53.
    79.Cavallo,F.,et al.,Co-expression of B7-1 and ICAM-1 on tumors is required for rejection and the establishment of a memory response.Eur J Immunol,1995.25(5):p.1154-62.
    80.Felzmann,T.,W.J.Ramsey,and R.M.Blaese,Anti-tumor immunity generated by tumor cells engineered to express B7-1 via retroviral or adenoviral gene transfer.Cancer Lett,1999.135(1):p.1-10.
    1 James MUNDAY,Sheena KERR,Jian NI,Ann L.CORNISH,Jiquan Q.ZHANG.Identification,characterization and leucocyte expression of Siglec-10,a novel human sialic acid-binding receptor.J Biol chem,2001,355:489-497.
    2 Crocker PR,Varki A.Siglecs,sialic acids and innate immunity.Trends Immunol,2001,22:337-342.
    3 Hernandez-Caselles T,Martinez-Esparza M,Perez-Oliva AB,Quintanilla-Cecconi AM,Garcia-Alonso A,Alvarez-Lopez rim,Garcia-Penarrubia P.A study of CD33(SIGLEC-3) antigen expression and function on activated human T and NK cells:two isoforms of CD33 are generated by alternative splicing.J Leukoc Biol,2006,79:46-58.
    4 Helen Floyd,Jian Ni,Ann L.Cornish,Zhizhen Zeng,Ding Liu.Siglec-8a novel eosinophil-specific member of the immunoglobulin superfamily.J Biol Chem,2000,275:861-866.
    5 Jiquan Q.Zhang,Gavin Nicoll,Claire Jones,and Paul R.Crocker.Siglec-9,a Novel Sialic Acid Binding Member of the Immunoglobulin Superfamily Expressed Broadly on Human Blood Leukocytes.J Biol Chem,2000,275:22121-22126.
    6 Takashi Angata,Sheena C.Kerr,David R.Greaves,Cloning and Characterization of Human Siglec-11.J Biol Chem,2002,277:24466-24474.
    7 Kevin Lock,Jiquan Zhang,Jinhua Lu.Expression of CD33-related siglecs on human mononuclear phagocytes,monocyte-derived dendritic cells and plasmacytoid dendritic cells.Immunobiology,2004(209)199-20719.
    8 Justin L.Sonnenburg2,3,Tasha K.Altheide3,and Ajit Varkil,.A uniquely human consequence of domain-specific functional adaptation in a sialic acid-binding receptor.Glycobiology,2004,14:339-346.
    9 Alphey MS,Attrill H,Crocker PR,van Aalten DM.High resolution crystal structures of Siglec-7.Insights into ligand specificity in the Siglec family.J Biol Chem,2003,278:3372-3377.
    10 Els C.M.Brinkman-Van der Linden,Eric R.Sjoberg,Lekh Raj Juneja,Paul R.Crockeri,Nissi Varki,and Ajit Varki.Loss of AKJlycolylneuraminic Acid in Human Evolution.J Biol Chem,2000,275:8633-8640.
    11 Kumamoto Y,Higashi N,Denda-Nagai K,Tsuiji M,Sato K,Crocker PR.Irimura T:Identification of sialoadhesin as a dominant lymph node counter-receptor for mouse macrophage galactose-type C-type lectin 1.J Biol Chem,2004,279:49274-49280.
    12 Angata T,Margulies EH,Green ED,Varki A.Large-scale sequencing of the CD33-related Siglec gene cluster in five mammalian species reveals rapid evolution by multiple mechanisms.Proc Natl Acad Sci,2004,101:13251-13256.
    13 R.Sjoberg,Lekh Raj Juneja,Paul R.Crockeri.Loss of N-Clycolylneuraminic Acid in Human Evolution.J Biol Chem,2000,275:8633-8640.
    14 Ikehara Y,Ikehara SK,Paulson JC.Negative regulation of T cell receptor signaling by Siglec-7 (p70/AIRM)and Siglec-9.J Biol Chem,2004,279:43117-43125.
    15 Lajaunias F,Dayer JM,Chizzolini C.Constitutive repressor activity of CD33 on human monocytes requires sialic acid recognition and phosphoinositide 3-kinase-mediated intracellular signaling.Eur J Immunol,2005,35:243-251.
    16 Avril T,Freeman SD,Attrill H,Clarke RG,Crocker PR.Siglec-5 (CD170)can mediate inhibitory signaling in the absence of immunoreceptor tyrosine-based inhibitory motif phosphorylation.J Biol Chem,2005,280:19843-19851
    17 Avril T,Floyd H,Lopez F,Vivier E,Crocker PR.The membraneproximal immunoreceptor tyrosine-based inhibitory motif is critical for the inhibitory signaling mediated by siglecs-7 and-9,CD33-related siglecs expressed on human monocytes and NK cells.J Immunol,2004,173:6841-6849.
    18 Nutku E,Hudson SA,Bochner BS.Mechanism of Siglec-8-induced human eosinophil apoptosis:role of caspases and mitochondrial injury.Biochem Biophys Res Commun,2005,336:918-924.
    19 Von Gunten S,Yousefi S,Seitz M,Jakob SM,Schaffner T.Siglec-9 transduces apoptotic and nonapoptotic death signals into neutrophils depending on the proinflammatory cytokine environment.Blood,2005,106:1423-31.
    20 Linenberger ML.CD33-directed therapy with gemtuzumab ozogamicin in acute myeloid leukemia:progress in understanding cytotoxicity and potential mechanisms of drug resistance.Leukemia,2005,19:176-182..
    21 Walter RB,Raden BW,Kamikura DM,Cooper JA,Bernstein ID:Influence of CD33 expression levels and ITIM-dependent internalization on gemtuzumab ozogamicin-induced cytotoxicity.Blood,2005,105:1295-1302.
    22 Bjoern Biedermann,Diana Gil,David T.Bowen,Paul R.Crocker.Analysis of the CD33-related siglec family reveals that Siglec-9 is an endocytic receptor expressed on subsets of acute myeloid leukemia cells and absent from normal hematopoietic progenitors.Leukemia Research.2006,in press.
    23 Paul R Crocker.Siglecs in innate immunity.Current Opinion in Pharmacology,2005,5:431-437

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700