人肝源性干细胞在Fah~(-/-)Rag2~(-/-)小鼠中生物学行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝移植是目前终末期肝脏疾病唯一有效的治疗手段,但供肝来源的缺乏使其临床应用受到很大的限制。近二十年来,作为原位肝移植的替代方案,临床上一直致力于开展肝细胞移植技术的研究,并取得了一定的疗效。然而,可用于分离肝细胞的高质量供体肝脏在数量上无法得到保证,严重制约着肝细胞移植的临床应用。干细胞生物学的研究已经表明,干细胞具有呈指数分裂的增殖能力,也具有重新形成干细胞巢,并分化产生特定功能细胞,以重新建立组织的基本生物学特性。特别令人鼓舞的是,在体外实验中已有可能使胚胎干细胞和来源于胎肝组织的肝干细胞分化为肝前体细胞、成熟的肝细胞及胆管细胞,并且在活体动物的移植实验中也观察到了外源的干细胞对损伤肝脏的再殖(repopulation),能够使损伤肝脏在结构上和功能上得到有效的恢复。这些进展的取得,充分显示了利用干细胞对人类肝脏疾病进行临床治疗的可能性。
     本实验室以4.5-6周的流产人胚胎作为分离肝干细胞的材料,通过克隆化培养建立了人胎肝来源的干细胞系(hFLSC)。hFLSC具有以下的特性:①具有强大的增殖能力;②表达多种类型的分子标记:不仅表达肝干细胞相关的分子标志(如AFP、ALB、CK8、CK18、CK19、GGT、DPPⅣ、c-Met、Thy-1和c-kit等),还表达间质细胞的部分分子标志(如CD44、CD29、SDF-1等),但不表达造血干细胞标志(如CD44、CD29、SDF-1等);③具有多潜能性:在体外诱导实验中,能分化为肝细胞、胆管细胞、脂肪细胞、成骨细胞;④可以参与小鼠受损肝脏的再生:在四氯化碳急性损伤的重度联合免疫缺陷小鼠体内,检测到标记有绿色荧光蛋白基因的hFLSC细胞。然而,由于四氯化碳诱导的急性肝损伤模型本身的缺陷,不能对hFLSC移植后在小鼠体内的植入、归巢、再殖及其功能进行充分的评价。延胡索酰乙酰乙酸水解酶(fuarylacetoacetate hydrolase, FAH)基因剔除小鼠模型是评价外源性干细胞再殖损伤肝脏的理想动物模型,FAH基因剔除小鼠在细胞移植、再殖肝脏研究方面得到了广泛的应用。该小鼠存在广泛而持续的肝损伤,所造成的肝脏微环境特别适合于移植细胞的增殖。本课题在已建立的hFLSC细胞系基础上,选择FAH基因剔除小鼠模型作为评价hFLSC再殖损伤肝脏的基本动物模型,进一步探索hFLSC在小鼠体内的生物学特性以及其作为肝细胞移植细胞来源的可能性,为人胎肝来源的肝原始细胞的基础研究及临床应用建立基础。
     本课题分为两个部分:在第一部分实验中,通过对Fah-/-小鼠进行同品系野生型小鼠肝细胞的移植,观察Fah-/-小鼠肝再生环境促进移植肝细胞增殖的作用,为下一步进行hFLSC移植奠定基础。同时,虽然已知Fah-/-小鼠肝细胞自身的损伤是导致外源细胞植入和增殖的主要因素,然而对其病理学变化尤其采用电镜的方法分析肝细胞损伤的特点目前尚未见报道。本研究取Fah-/-小鼠停药后不同时间点的肝脏进行了HE染色和电镜检测,对Fah-/-小鼠肝脏损伤后的病理学变化进行了初步观察。在第二部分实验中,为了获得免疫缺陷的FAH基因剔除小鼠品系用于hFLSC移植,我们应用Fah-/-小鼠与Rag2-/-免疫缺陷小鼠进行杂交,建立了Fah-/-Rag2-/-小鼠品系。流式细胞仪检测表明Fah-/-Rag2-/-小鼠T细胞和B细胞功能缺失,可用于hFLSC的移植。将体外培养hFLSC细胞经脾脏注射移植Fah-/-Rag2-/-小鼠,取不同时间点的小鼠肝脏,通过免疫组织化学的方法检测hFLSC的植入、归巢及再殖效率,评价hFLSC肝向分化的能力。
     第一部分的研究表明,撤除NTBC的Fah-/-小鼠表现为毛刺、弓背、体重明显下降,撤药6-7周后小鼠死亡;而正常喂养NTBC的Fah-/-小鼠全部健康存活,体重稳定增长,并且具有正常的繁殖能力。我们成功的实现了野生型小鼠肝细胞在撤药的Fah-/-小鼠肝脏中的再殖。FAH免疫组织化学染色表明,肝细胞移植1周后即可在Fah-/-小鼠肝脏内检测到表达FAH蛋白的野生型肝细胞。随着时间的延长,移植肝细胞的再殖程度逐渐增加,3周时肝脏再殖22±6%,4周时肝脏再殖38±11%,6周时肝脏再殖67±8%,8周时肝脏再殖78±17%。8周时移植的肝细胞几乎完全重建了Fah-/-小鼠的肝脏,再殖的肝细胞进入Fah-/-小鼠肝脏结构,但并不破坏肝脏的小叶结构,嵌合体肝脏的肝板结构和肝小叶结构仍然正常,且不形成病理性的结节增生。HE染色和电镜检测进一步证明Fah-/-小鼠自体肝细胞发生进行性、不可逆转的损伤是促进移植肝细胞增殖的内在机制。
     第二部分的研究表明,首先,我们成功建立了Fah-/-Rag2-/-小鼠品系:以Fah-/-小鼠为参照,以CD3、CD19为标志物,流式细胞仪检测Fah-/-Rag2-/-小鼠骨髓细胞中T细胞(CD3+)、B细胞(CD19+)的数量变化,结果表明Fah-/-Rag2-/-小鼠T细胞和B细胞功能缺失。其次,hFLSC移植Fah-/-Rag2-/-小鼠后,在1、3、5、6、8周,应用Fah免疫组织化学染色都能检测到hFLSC存在,因为FAH酶的表达是检测再殖细胞(Fah+/+)的一个理想标志。我们进一步通过肝细胞功能蛋白——白蛋白免疫组织化学染色的方法,初步评价了hFLSC在Fah-/-Rag2-/-小鼠肝脏中的肝向分化能力。结果表明部分小鼠肝脏标本白蛋白染色为阳性。初步的实验结果提示:移植的hFLSC能够植入到Fah-/-Rag2-/-小鼠受损肝脏中,但其肝脏再殖的效率较低,小鼠的肝脏功能不能恢复正常。
     本研究的实验结果表明:Fah-/-小鼠是研究肝细胞移植的理想模型,Fah-/-小鼠自体肝细胞发生进行性、不可逆转的损伤是促进移植肝细胞增殖的内在机制;来源于4.5-6周的流产人胚胎的肝原始细胞可能是肝细胞移植的候选细胞之一,但其肝脏再殖效率可能与其成熟程度有密切的关系,临床应用前进行肝向诱导分化可能是必要的程序。
Liver transplantation is currently the only effective treatment for end-stage liver disease. Clinical application of liver transplantation is limited by lack of donor livers. In the past two decades, as an alternative to liver transplantation, clinical hepatocyte transplantation has draw much attention and has achieved a certain effect. However, Resources for the isolation of cells for transplantation are limited and restrict the widespread application of liver cell therapies. The biological studies on stem cell have shown that stem cells divide exponentially, form a new nest, and differentiate into cells owning specific function and rebuild the organization. It is particularly encouraging that embryonic stem cells and hepatic stem cells derived from fetal liver may differentiate into liver precursor cells, mature hepatocytes and bile duct cells in vitro, and in vivo transplantation experiments also observed injury liver repopulation by exogenous stem cells, so that the liver damage on the structure and function is effectively recovered. The success achieved, which fully demonstrates the use of stem cells to human liver disease and the possibility of clinical treatment.
     The laboratory used human fetal liver of 4.5-6 weeks as the material to isolate stem cells by the method of cloning, then established a cell line named human fetal liver-derived stem cell lines (hFLSC). hFLSC has the following characteristics:①powerful proliferation;②expression of multiple types of molecular markers:not only the liver stem cell-related markers (such as AFP, ALB, CK8, CK18, CK19, GGT, DPPIV, c-Met, Thy-1 and c-kit, etc.), but also the interstitial cells of some molecular markers (such as CD44, CD29, SDF-1, etc.), but it did not express stem cell markers (such as CD44, CD29, SDF-1, etc.);③with multiple potential resistance:it can differentiate into hepatocyte, bile duct cells, fat cells, osteoblasts in vitro;④it can participate in the regeneration of liver damage in mice:using the mice model of acute liver damage induced by carbon tetrachloride(CCL4) with severe combined immunodeficiency, we detected hFLSC cells with green fluorescent protein marker gene. However, due to the defects of acute liver injury model induced by carbon tetrachloride, we are not able to fully evaluate the ability of implantation, homing, repopulation of hFLSC as well as its function. The model of Fumaric acid acetoacetate hydrolase (fuarylacetoacetate hydrolase, FAH) knockout mouse is an ideal animal model of liver injury to evaluate the repopulation of exogenous stem cells, FAH knockout mice has been widely used in the cell transplantation researches, the mice existent extensive and continuous mouse liver injury that caused liver micro-environment which is particularly suitable for the proliferation of transplanted cells. Our researches establishes on the basis of hFLSC, and choose FAH knockout mouse model as the basic animal models to evaluate the repopulation of hFLSC in liver injury, and further explore the biological characteristics of in mice and the possibilities of hFLSC as a cell source for liver cell transplantation, and establish a basis for the basic research and clinical application of hepatic progenitor cells derived from fetal liver.
     The research is divided into two parts:in the first part of the experiment, by transplantation of hepatocyte isolated from wild-type strains mice into Fah-/-mice, we observe the role of liver regeneration environment of Fah-/- mice in stimulating the proliferation of transplanted hepatocytes, and preparing for the next study that is transplantation of hFLSC. Furthermore, though we knew that the injury of liver cell of Fah-/- mouse is the major factor which cause the proliferation and repopulation of exogenous cells, however, its pathological changes, particularly analyzing the characteristics of liver cell injury by electron microscopy has not been reported. In our research, we obtained the liver of Fah-/- mouse at different time after the withdrawal of drug, then HE staining and electron microscopy were performed on liver section, in order to observe preliminarily the pathological changes of Fah-/- mouse liver after the liver injury. In the second part of the experiment, in order to obtain immunodeficiency FAH knockout mouse strains which is prepared for the latter hFLSC transplantation, the Fah-/- mice was hybridized with Rag2-/- immunodeficient mice, Fah-/- Rag2-/- mouse strain was established, the result of flow cytometry showed that Fah-/- Rag2-/- mouse lose the function of T cells and B cell, it can be used in hFLSC transplantation. HFLSC cells were cultured in vitro and transplanted into Fah-/-Rag2-/-mice through spleen, mouse livers were obtained at different time points of, the implantation, homing and the efficiency of repopulation of hFLSC were detected by the method of immunohistochemistry, the capability of hepatic differentiation is evaluated.
     The first part of the study show that after the withdrawl of NTBC, Fah-/- mice showed spikes, bowing, body weight decreased significantly mice died after 6-7 weeks after drug withdrawal; and Fah-/- mice with normal feeding NTBC all survive healthily, their weight growth stably, and have normal reproductive capacity. We successfully achieved the liver repopulation of wild-type mouse's hepatocyte in Fah-/-mouse after the withdrawal of the drug. The result of immnuohistochemistry of Fah protein showed that wild-type hepatocyte with the expression of Fah protein was detected in the Fah-/- mice liver after 1 week of liver cell transplantation. As time passed by, the degree of liver repopulation of transplanted hepatocyte gradually increased, the yield level is 22±6%in 3rd week, In the 4th weeks, the liver repopulate about 38±11%, in the 6th week, the liver is repopulated 67±8%, in the 8th week, the liver repopulate about 78±17%. In the 8th week, the Fah-/- mice liver is almost rebuilt completely by transplanted hepatocytes. The transplanted hepatocytes engraft into the Fah-/- mouse liver structure, but does not damage the liver lobule structure, chimeric liver's board structure and the hepatic lobules was normal, without the formation of pathological nodular hyperplasia. HE staining and electron microscopy further demonstrated that the progressive, irreversible damage of Fah-/- mouse hepatocyte is the internal mechanism of promoting the proliferation of transplanted hepatocytes.
     In the second part of the study, first of all, we have successfully established a Fah-/- Rag2-/- mouse strains:using CD3, CD 19 as markers, flow cytometry detects the changes in number of T cells (CD3+), B cells (CD 19+) in the bone marrow cells of Fah-/-Rag2-/-, compared with Fah-/- mice. The results show that the function of T cells and B cells are lost in Fah-/-Rag2-/-mouse. Secondly, hFLSC was transplanted into Fah-/-Rag2-/-mice, in 1,3,5,6,8 weeks, through the immnuohistochemistry of Fah enzyme, hFLSC can be detected, because the expression of Fah enzyme is a good sign for the detection of transplanted cells (Fah-/-). We further apply the immnuohistochemistry of liver cell functional protein-albumin, we preliminarily evaluate the ability of hepatocyte differentiation of hFLSC in the liver of Fah-/-Rag2-/- mice. The preliminary resulst shows that hFLSC could engrafte into the liver of Fa h-/-Rag2-/- mice, but its repopulation of the liver is less efficient, mice cannot restore the normal liver function.
     The results of this study show that:Fah-/- mice is an ideal model for the study of liver cell transplantation. The progressive, irreversible damage of Fah-/- mouse hepatocyte is the internal mechanism of promoting the proliferation of transplanted hepatocytes. Hepatocyte progenitor cells from human fetal liver (4.5-6 weeks) may be one of the candidate cells, but its efficiency may be related to the cell's mature degree. Hepatocyte differentiation induced in vitro may be necessary before its clinical application.
引文
[1]Alison MR, Islam S, Lim SM Cell Therapy for liver disease. Current opinion in molecular thepeutics, 2009,11(4):364-374
    [2]Alison MR, Choong C, Lim S, et al. Application of liver stem cells for cell therapy. Seminars in cell &developmental biology,2007,18(6):819-826
    [3]陈积圣,商昌珍.肝干细胞移植及其应用前景.新医学,2008,39(11):704-705
    [4]朱吉.肝干细胞在不同肝损伤小鼠模型中的植入研究:[硕士学位论文].第二军医大学,理学硕士.2006
    [5]Sancho-Bru P, Najimi M, Caruso M, et al. Stem and progenitor cells for liver repopulation:can we standardize the process from bench to bedsides? Gut,2009,58(4):594-603
    [6]Fisher RA, Strom SC. Human hepatocyte transplantation:worldwide results. Transplantation, 2006,82:441-449
    [7]Stuart Forbes, Pamela Vig, Richard Poulsom, Howard Thomas, Malcolm Alison. Hepatic Stem Cells.The Journal of Pathology,2002,197(4):510-518
    [8]E. Gaudio, G. Carpino, V. Cardinale, A. Franchitto, P. Onori, D. Alvaro. New insights into liver stem cells. Digestive and Liver Disease,2009,41:455-462
    [9]Cantz T, Manns MP, Ott M. Stem cells in liver regeneration and therapy. Cell Tissue Res 2008, 331:271-282
    [10]Oertel M, Shafritz DA. Stem cells, cell transplantation and liver repopulation. Biochim Biophys Acta 2008,1782:61-74
    [11]何文艳.肝干细胞的基础及应用研究.热带病于寄生虫学,2008,6(1):53-56
    [12]Dhivya Haridass, Nidhi Narain, Michael ott. Hepatocyte transplantation:waiting for stem cells. Current Opinion in Organ Transplantation,2008,13:627-632
    [13]H. Yamamoto, G. Quinn, A. Asari, H. Yamanokuchi, T. Teratani, M. Terada et al. Differentiation of embryonic stem cells into hepatocytes:biological functions and therapeutic application. Hepatology, 2003,37:983-993.
    [14]T. Teratani, H. Yamamoto, K. Aoyagi, H. Sasaki, A. Asari and G. Quinn et al. Direct hepatic fate specification from mouse embryonic stem cells. Hepatology,2005,41:836-846
    [15]J. Heo, V.M. Factor, T. Uren, Y. Takahama, J.S. Lee and M. Major,et al. Hepatic precursors derived from murine embryonic stem cells contribute to regeneration of injured liver.Hepatology,2006,44: 1478-1486
    [16]Kazutoshi Takahashil, Shinya Yamanaka. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell,2006,126(4):663-676
    [17]DuBois AM. The embryonic liver. In:Rouiller CH, ed. The Liver. New York:Academic Press,1963
    [18]Wilson JW, Groat CS, Leduc EH. Histogenesis of the liver. Ann NY Acad Sci,1963;111:8-22
    [19]Le Douarin NM. An experimental analysis of liver development. Med Biol,1975,53:427-455
    [20]Lemaigre F, Zaret KS. Liver development update:new embryo models, cell lineage control, and morphogenesis. Curr Opin Genet Dev,2004,14:582-590
    [21]Zhao R, Duncan SA. Embryonic development of the liver. HEPATOLOGY,2005,41:956-967
    [22]Jung J, Zheng M, Goldfarb M, Zaret KS. Initiation of mammalian liver development from endoderm by fibroblasts growth factors. Science,1999,284:1998-2003
    [23]Rossi JM, Dunn NR, Hogan BLM, Zaret KS. Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes Dev,2001,15:1998-2009
    [24]Meehan RR, Barlow DP, Hill RE, Hogan BL, Hastie ND. Pattern of serum protein gene expression in mouse visceral yolk sac and fetal liver. EMBO J,1984,3:1881-1885
    [25]Tee LB, Kirilak Y, Huang WH, Smith PG, Morgan RH, Yeoh GC. Dual phenotypic expression of hepatocytes and bile ductular markers in developing and preneoplastic rat liver. Carcinogenesis,1996, 17:251-259
    [26]Fausto N. Hepatocyte differentiation and liver progenitor cells. Curr Opin Cell Biol,1990, 2:1036-1041
    [27]Brill S, Zvibel I, Reid LM. Maturation dependent changes in the regulation of liver-specific gene expression in embryonal versus adult primary cultures. Differentiation,1995,59:95-102
    [28]Shiojiri N, Lemire JM, Fausto N. Cell lineages and oval cell progenitors in rat liver development. Cancer Res,1991,51:2611-2620
    [29]Hixson DC, Faris RA, Thompson NL. An antigenic portrait of the liver during carcinogenesis. Pathobiology,1990,58:65-77
    [30]Marceau N, Blouin M-J, Noel M, Torok N, Loranger A. The role of bipotential progenitor cells in liver ontogenesis and neoplasia. In:Sirica AE, ed. The Role of Cell Types in Hepatocarcinogenesis. Boca Raton, FL:CRC Press,1992:121-149
    [31]Tanimizi N, Miyajima A. Notch signaling controls hepatoblast differentiation by altering the expression of liver-enriched transcription factors. J Cell Sci,2004,117:3165-3174
    [32]Petkov PM, Zavadil J, Goetz D, Chu T, Carver R, Rogler CE, et al. Gene expression pattern in hepatic stem/progenitor cells during rat fetal development using complementary DNA microarrays. Hepatology,2004,39:617-627
    [33]Dabeva MD, Petkov PM, Sandhu J, Oren R, Laconi E, Hurston E, et al. Proliferation and differentiation of fetal liver epithelial progenitor cells after transplantation into adult rat liver. Am J Pathol,2000,156:2017-2031
    [34]Sandhu JS, Petkov PM, Dabeva MD, Shafritz DA. Stem cell properties and repopulation of the rat liver by fetal liver epithelial progenitor cells. Am J Pathol 2001,159:1323-1334
    [35]Oertel M, Menthena A, Dabeva MD, et al. Cell competition leads to a high level of normal liver reconstitution by transplanted fetal liver stem/progenitor cells. Gastroenterology 2006; 130:507-520
    [36]Michael Oertel, Anuradha Menthena, Yuan-qing Chen, et al. Purification of fetal liver stem/ progenitor cells containing all the repopulation potential for normal adult rat liver. Gatroenterology, 2008,134(3):823-832
    [37]He'le'ne Strick-Marchand, Serban Morosan, Pierre Charneau, et al. Bipotential mouse embryonic liver stem cell lines contribute to liver regeneration and differentiate as bile ducts and hepatocytes. PNAS,2004,101(22):8360-8365
    [38]Jaswinderpal S,Sandhu,Petko M.Petkov,et al.Stem cell properties and repopulation of the rat liver by fetal liver epithelial progenitor cells. Am J Pathol,2001,159:1323-1334
    [39]Cantz T, Zuckerman DM, Burda MR, Dandri M, Go'ricke B, Thalhammer S, Heckl WM, Manns MP, Petersen J, Ott M:Quantitative gene expression analysis reveals transition of fetal liver progenitor cells to mature hepatocytes after transplantation in uPA/RAG-2 mice. Am J Pathol,2003,162:37-45
    [40]Malhi H, Irani AN, Gagandeep S, Gupta S. Isolation of human progenitor liver epithelial cells with extensive replication capacity and differentiation into mature hepatocytes. J Cell Sci,2002,115: 2679-2688
    [41]Schmelzer E, Zhang L, Bruce A, Wauthier E, Ludlow J, Yao HL, Moss N, et al. Human hepatic stem cells from fetal and postnatal donors. J Exp Med,2007,204:1973-1987
    [42]Dan YY, Riehel K.J, Lazaro C, Teoh N, Haque J, Campbell JS, et al. Isolation of multipotent progenitor cells from human fetal liver capable of differentiating into liver and mesenchymal lineages. ProcNatl Acad Sci USA,2006,103:9912-9917
    [43]Nowak G, Ericzon BG, Nava S, Jaksch M, Westgren M, Sumitran Holgersson S. Identification of expandable human hepatic progenitors which differentiate in mature hepatic cellsin vivo. Gut,2005, 54:972-979
    [44]Terblanche J, Hickman R. Animal Models of Fulminant Hepatic Failure[J]. Dig Dis Sci,1991, 36(6):770—774.
    [45]Hernandez M unoz R, Diaz—M unoz M. Chagoya de Sanchez V. Possible Role of Cell Redox Starcon Collagen M etabolism in Carbon Tetrochloride—induced Cirrhosis as Evidenced by Adenosine Admimistration to Rats. Biochim Biophys Acta,1994,1200(1):93-99
    [46]Mcmillan JM, Jollow DJ. Galactosaminc:Hepatotoxicity Effect of Galactosaminc on Glutathione Resynthesis in Rat Primary Hepatocyte Cultures. Toxicol Appl Pharmacol,1992,115(2):234-240.
    [47]Ryhanen I, Ala Kokko, Savolainen FR. The Effect of M alotilatc on Type 111 and Type n Collagen Lamina and Fibronectin Metabolism in the Rat. J Hipatol,1996,24(3):283-288
    [48]Heckel JL, Sandgren EP, Degen JL, Palmiter RD, Brinster RL:Neonatal bleeding in transgenic mice expressing urokinase-type plasminogen activator. Cell 1990,62:447-456
    [49]Grompe M, al-Dhalimy M, Finegold M, et al. Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. Genes Dev,1993,7(12A): 2298-2307
    [50]Overturf K, Al-Dhalimy M, Ou CN, Finegold M, Grompe M. Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes. Am J Pathol 1997; 151:1273-1280.
    [51]苏娟.人肝源性干细胞系的建立及其生物学特性研究:[博士学位论文].第二军医大学,理学博士.2004
    [52]Hisaya Azuma, Nicole Paulk, Aarati Ranade,et al. Robust expansion of human hepatocytes in Fah-/-/Rag2-/-/Il2rg-/-mice. Nature biotechnology,2007,25(8):903-910
    [53]Seglen PO. Preparation of isolated rat liver cells. Methods Cell Biology,1976,13:29-83
    [54]Mahieu-Caputo D, Allain JE, Branger J, et al.Repopulation of athymic mouse liver by cryopreserved early human fetal hepatoblasts. Hum Gene Therapy,2004,15:1219-1228
    [55]Nowak G, Ericzon BG, Nava S, et al. Identification of expandable human hepatic progenitors which differentiate into mature hepatic cells in vivo. Gut,2005,54:972-979
    [56]Dan YY, Riehle KJ, Lazaro C, et al. Isolation of multipotent progenitor cells from human fetal liver capable of differentiating into liver and mesenchymal lineages. Proc Natl Acad Sci USA 2006, 103:9912-9917
    [57]Inada M, Follenzi A, Cheng K, et al. Phenotype reversion in fetal human liver epithelial cells identifies the role of an intermediate meso-endodermal stage before hepatic maturation. J Cell Sci 2008, 121:1002-1013
    [58]Hendryk Aurich, Malte Sgodda, Petra KaltwaBer, Martina Vetter, Anja Weise, Thomas Liehr, Marc Brulport, Jan G. Hengstler, Matthias M Dollinger, Wolfgang E, Fleig and Bruno Christ. Cells from human adipose tissue in vitro promotes Hepatocyte differentiation of mesenchymal stem hepatic integration in vivo. Gut,2009,58:570-581
    [59]Dhivya Haridass, Qinggong Yuan, Pablo D.Becker,et al. Repopulation efficiencies of adult hepatocytes, fetal liver progenitor cells, and embryonic stem cell-derived hepatic cells in albumin -promoter-enhancer urokinase-type plaminogen activator mice. The American journal of pathology,2009,175(4):1-9
    [60]Natan Krohn, Sorabh Kapoor, Yuta Enami, Antonia Follenzi, Sriram Bandi, Brigid Joseph, Sanjeev Gupta. Hepatocyte Transplantation-Induced Liver Inflammation Is Driven by Cytokines-Chemokines Associated With Neutrophils and Kupffer Cells. Gastroenterology,2009,136:1806-1817
    [1]Nicolas Brezillon, Dina Kremsdorf, Mary C. Weiss. Cell therapy for the diseased liver:from stem cell biology to novel models for hepatotropic human pathogens,2008,1 (2-3):113-130
    [2]Amar Deep Sharma, Tobias Cantz, Michael P.Manns, Michael Ott. The role of Stem Cells in Physiology, Pathophysiology, and Therapy of the liver. Stem Cell Reviews and Reports,2006, 2(1):51-58
    [3]Shoji Hata, Misako Nanae, Hiroshi Nishina. Liver development and regeneration:From laboratory study to clinical therapy. Develop Growth Differ,2007,47:163-170
    [4]Michael Oertel, David A.Shafritz. Stem cells, Cell Transplantation and Liver repopulation. Biochim Biophys Acta,2008,1782(2):61-74
    [5]Strom SC, Chowdhury JR, Fox U. Hepatocyte transplantation for the treatment of human disease. Semin Liver Dis,1999,19(1):39-48
    [6]Ohashi K, Park F, Kay MA. Hepatocyte transplantation:Clinic and experimental application. Journal of Molecular Medine,2001,79(11):617-630
    [7]Flohr TR, Bonatti H Jr, Brayman KL, Pruett TL. The use of stem cells in liver disease. Current Opinion in Organ Transplant,2009,14(1):64-71
    [8]Sandhu JS, Petkov PM, Dabeva MD, et al. Stem cell properties and repopulation of the rat liver by fetal liver epithelial progenitor cells. Am J Pathol,2001,159(4):1323-1334
    [9]Dhivya Haridass, Nidhi Narain, Michael ott. Hepatocyte transplantation:waiting for stem cells. Current Opinion in Organ Transplantation,2008,13:627-632
    [10]朱吉.肝干细胞在不同肝损伤小鼠模型中的植入研究:[硕士学位论文].第二军医大学,理学硕士.2006
    [11]曲相如,孙景春,卢秀花,胡婷婷,曹姗姗,曹霞.实验性肝损伤动物模型的制备和评价.中国实验诊断学,2009,13(10):1477-1479
    [12]Yazigi, Nada A, Carrick, Terri L, et al. Expansion of transplanted hepatocytes during liver regeneration. Transplantation,1997,64(6):816-820
    [13]Kei Moriya, Masahide Yoshikawa, Ko Saito, Yukiteru Ouji, Mariko Nishiofuku, Noriko Hayashi, Shigeaki Ishzaka, Hiroshi Fukui. Embryonic stem cells develop into hepatocytes after intrasplenic transplantation in CCl4-treated mice. World J Gastroenterol,2007,13(6):866-873
    [14]Hernandez M unoz R, DiazM unoz M, Chagoya de Sanchez V. Possible Role of Cell Redox State r c on Collagen M etabolism in CarbonTetrochloride-induced Cirrhosis as Evidenced by Adenosine Admimistration to Rats. Biochim Biophys Acta,1994,1200(1):93-99
    [15]Shiga A, Kakamu S. Acute toxicity of pierisin-1, a cytotoxic protein from Pieris rapae, in mouse and rat. J Toxicol Sci,2006,31:123-137
    [16]吕明德,黄洁夫.腹腔注射四氯化碳配合营养控制制备犬肝硬化模型.中华实验外科杂志,1993,10(1):58-59
    [17]李艳辉.实验性肝损伤模型的建立和评价.放射学实践,2006,21(10):1075-1077
    [18]Mcmillan JM, Jollow DJ. Galactosaminc:Hepatotoxicity Effect of Galactosaminc on Glutathione Resynthesis in Rat Primary Hepatocyte Cultures. Toxicol Appl Pharmacol,1992,115(2):234-240
    [19]Schanne FAX, Pfau RG, Farber J1. Galactosamine—induced(Tell Death in Primary Cuhures of Rat Hcpatocyles. Am J Pathol,1980,100(1):25-38
    [20]Kasravi FB, Wang L, Wang XD, el al. Bacterial Translocation in Acute Liver Injury by Dgalactosamine. Hepatology,1996,23(1):97-103
    [21]Masahito Nagaki, Takashi kano, Yasutoshi Muto, Tetsuya Yamada, Hiroo Ohnishi, Hisataka Moriwaki. Effects of intraperitoneal transplantation of microcarrier-attached hepatocytes on D-galactosamine-induced acute liver failure in rats. Journal of Gastroenterology,1990,25(1):1435-5922
    [22]Ryhanen I, Ala Kokko I, Savolainen FR. The Effect of M alotilatc on Type Ⅲ and Type Ⅳ Collagen Lamina and Fibronectin Metabolism in the Rat. J Hipatol,1996,24(3):283-285
    [23]Pietrangelo A, Gualdi R, Casalgrandi G, el al. Molecular and Cellar Aspects of Iron—induced Hepatic Cirrhosis in Rodents. J Clinical Invest,1995,95(11):1824-1831
    [24]王宪波,刘平,陆雄,等.二甲基亚硝胺大鼠肝纤维化形成中门脉压力的动态变化.世界华人消化杂志,2002,10(4):401-405
    [25]Knox W.E, Edwards SW. Enzymes involved in conversion of tyrosine to acetoacetate. Methods Enzymol,19552:287-300
    [26]Lindstedt S, Holme E, Lock E.A, Hjalmarson O, Strandvik B. Treatment ofhereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. Lancet,1992,340:813-817
    [27]Grompe M, Lindstedt S, al-Dhalimy M, Kennaway N.G, Papaconstantinou J, Torres-Ramos C.A, Ou C.N, and Finegold M. Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type 1. Nat.Genet,1995,10:453-460
    [28]Overturf K, Al-Dhalimy M, Ou CN, Finegold M, Grompe M. Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes. American Journal Patholophy,1997, 151:1273-1280
    [29]Wang X, Al-Dhalimy M, Lagasse E, Fineg old M, Grompe M. Liver repopulation and correction of metabolic liver disease by transplanted adult mouse pancreatic cells. American Journal Patholophy, 2001,158:571-579
    [30]Hisaya Azuma, Nicole Paulk, Aarati Ranade,et al. Robust expansion of human hepatocytes in Fah-/-/Rag2-/-/Il2rg-/-mice. Nature biotechnology,2007,25(8):903-910
    [31]Sandgren E.P., Palmiter R.D., Heckel J.L., Daugherty C.C., Brinster R.L., and Degen J.L.1991. Complete hepatic regeneration after somatic deletion of an albumin-plasminogen activator transgene. Cell 66:245-256.
    [32]Rhim JA, Sandgren EP, Degen JL, Palmiter RD, Brinster RL. Replacement of diseased mouse liver by hepatic cell transplantation. Science,1994,263:1149-1152
    [33]Jamal HZ, Weglarz TC, Sandgren EP. Cryopreserved mouse hepatocytes retain regenerative capacity in vivo. Gastroenterology,2000,118:390-394
    [34]Weglarz TC, Degen JL, Sandgren EP. Hepatocyte transplantation into diseased mouse liver. Kinetics of parenchymal repopulation and identification of the proliferative capacity of tetraploid and octaploid hepatocytes. Am J Pathol,2000,157:1963-1974.
    [35]Brinster RL. Embryo culture, stem cells and experimental modification of the embryonic genome. An interview with Professor Ralph Brinster. Interview by Juan Arechaga. Int J Dev Biol, 1998;42:861-878
    [36]Rhim J.A., Sandgren E.P., Degen J.L., Palmiter R.D., and Brinster R.L.1994. Replacement of disease mouse liver by hepatic cell transplantation. Science,263:1149-1152
    [37]Rhim JA, Sandgren EP, Palmiter RD, Brinster RL. Complete reconstitution of mouse liver with xenogeneic hepatocytes. Proc Natl Acad Sci USA,1995,92:4942-4946
    [38]Dandri M, Burda MR, Torok E, et al. Repopulation of mouse liver with human hepatocytes and in vivo infection with hepatitis B virus. Hepatology,2001,33:981-988
    [39]Laconi E, Oren R, Mukhopadhyay DK, et al. Long-term, neartotal liver replacement by transplantation of isolated hepatocytes in rats treated with retrorsine. Am J Pathol,1998,153:319-329
    [40]Oren R, Dabeva MD, Karnezis AN, et al. Role of thyroid hormone in stimulating liver repopulation in the rat by transplanted hepatocytes. Hepatology,1999,30:903-913
    [41]Laconi S, Pillai S, Porcu PP, Shafritz DA, Pani P, Laconi E. Massive liver replacement by transplanted hepatocytes in the absence of exogenous growth stimuli in rats treated with retrorsine. Am J Pathol,2001,158:771-777
    [42]Debeva. MD, Shafritz DA. Hepatic stem cells and liver repopulation. Semin Liver Dis.2003, 23(4):349
    [43]Terblanche J, Hickman R. Animal Models of Fulminant Hepatic Failure. Dig Dis Sci,1991, 36(6):770-774
    [44]陈钟,丁义涛,徐庆祥,等.犬急性肝衰竭一种新模型的建立.中国普通外科杂志.2003,12(3):206-208
    [45]陈钟,黄华,吴振宇.等.肝切除与药物诱导大鼠急性肝衰竭模型的比较.中国普通外科杂志,2005,14(1):32-35
    [46]阴祯宏,马红,刘乃慧,等.大鼠胆管阻塞性肝纤维化模型的建立.实验动物科学与管理,2002,19(2):1-3
    [47]DuBois AM. The embryonic liver. In:Rouiller CH, ed. The Liver. New York:Academic Press,1963
    [48]Wilson JW, Groat CS, Leduc EH. Histogenesis of the liver. Ann NY Acad Sci,1963;111:8-22
    [49]Le Douarin NM. An experimental analysis of liver development. Med Biol,1975,53:427-455
    [50]Lemaigre F, Zaret KS. Liver development update:new embryo models, cell lineage control, and morphogenesis. Curr Opin Genet Dev,2004,14:582-590
    [51]Zhao R, Duncan SA. Embryonic development of the liver. Hepatology,2005,41:956-967
    [52]Jung J, Zheng M, Goldfarb M, Zaret KS. Initiation of mammalian liver development from endoderm by fibroblasts growth factors. Science,1999,284:1998-2003
    [53]Rossi JM, Dunn NR, Hogan BLM, Zaret KS. Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes Dev,2001,15:1998-2009
    [54]Meehan RR, Barlow DP, Hill RE, Hogan BL, Hastie ND. Pattern of serum protein gene expression in mouse visceral yolk sac and fetal liver. Embo J,1984,3:1881-1885
    [55]Tee LB, Kirilak Y, Huang WH, Smith PG, Morgan RH, Yeoh GC. Dual phenotypic expression of hepatocytes and bile ductular markers in developing and preneoplastic rat liver. Carcinogenesis,1996, 17:251-259
    [56]Fausto N. Hepatocyte differentiation and liver progenitor cells. Curr Opin Cell Biol,1990, 2:1036-1041
    [57]Brill S, Zvibel I, Reid LM. Maturation dependent changes in the regulation of liver-specific gene expression in embryonal versus adult primary cultures. Differentiation,1995,59:95-102
    [58]Shiojiri N, Lemire JM, Fausto N. Cell lineages and oval cell progenitors in rat liver development. Cancer Res,1991,51:2611-2620
    [59]Hixson DC, Faris RA, Thompson NL. An antigenic portrait of the liver during carcinogenesis. Pathobiology,1990,58:65-77
    [60]Marceau N, Blouin M-J, Noel M, Torok N, Loranger A. The role of bipotential progenitor cells in liver ontogenesis and neoplasia. In:Sirica AE, ed. The Role of Cell Types in Hepatocarcinogenesis. Boca Raton, FL:CRC Press,1992:121-149
    [61]Tanimizi N, Miyajima A. Notch signaling controls hepatoblast differentiation by altering the expression of liver-enriched transcription factors. J Cell Sci,2004,117:3165-3174
    [62]Petkov PM, Zavadil J, Goetz D, Chu T, Carver R, Rogler CE, et al. Gene expression pattern in hepatic stem/progenitor cells during rat fetal development using complementary DNA microarrays. Hepatology,2004,39:617-627
    [63]Dabeva MD, Petkov PM, Sandhu J, Oren R, Laconi E, Hurston E, et al. Proliferation and differentiation of fetal liver epithelial progenitor cells after transplantation into adult rat liver. Am J Pathol,2000,156:2017-2031.
    [64]Sandhu JS, Petkov PM, Dabeva MD, Shafritz DA. Stem cell properties and repopulation of the rat liver by fetal liver epithelial progenitor cells. Am J Pathol 2001,159:1323-1334
    [65]Van Eyken R, Sciot R, Desmet V. Intrahepatic bile duct development in the rat:a cytokeratin-immunohistochemical study. Lab Invest,1988,59:52-59
    [66]Kubota H, Reid LM. Clonogenic hepatoblasts, common precursors for hepatocytic and biliary lineage are lacking classical major histocompatibility complex class I antigen. Proc Natl Acad Sci USA, 2000,97:12132-12137
    [67]Suzuki A, Zheng YW, Kondo R, Kusakabe M, Takada Y, Fukao K, et al. Flow cytometric separation and enrichment of hepatic progenitor cells in the developing mouse liver. Hepatology,2000, 32:1230-1239
    [68]Suzuki A, Zheng Y-W, Kaneko S, Onodera M, Fukao K, Nakauchi H, et al. Clonal identification and characterization of self-renewing pluripotent stem cells in the developing liver. J Cell Biol,2002, 156:173-184
    [69]Watanabe T, Nakagawa K, Ohata S, Kitagawa D, Nishitai G, Seo J, et al. SEK1/MKK4-mediated SAPK/JNK signaling participates in embryonic hepatoblast proliferation via a pathway different from NF-_B-induced anti-apoptosis. Dev Biol,2002,250:332-347
    [70]Nitou M, Sugiyama Y, Ishikawa K, Shiojiri N. Purification of fetal mouse hepatoblasts by magnetic beads coated with monoclonal anti-E-cadherin antibodies and their in vitro culture. Exp Cell Res, 2002,279:330-343
    [71]Tanimizu N, Nishikawa M, Saito H, Tsujimura T, Miyajima A. Isolation of hepatoblasts based on the expression of Dlk/Prefl. J Cell Sci,2003,116:1775-1786
    [72]Nierhoff D, Ogawa A, Oertel M, Chen YQ, Shafritz DA. Purification and characterization of mouse fetal liver epithelial cells with high in vivo repopulation capacity. Hepatology,2005,42:130-139
    [73]Cantz T, Zuckerman DM, Burda MR, Dandri M, Goericke B, Thalhammer S, et al. Quantitative gene expression analysis reveals transition of fetal liver progenitor cells to mature hepatocytes after transplantation in uPA/RAG-2 mice. Am J Pathol,2003,162:37-45
    [74]Rogler LE. Selective bipotential differentiation of mouse embryonic hepatoblasts in vitro. Am J Pathol,1997,150:591-602
    [75]Plescia CP, Rogler CE, Rogler LE. Genomic expression analysis implicates Wnt signaling pathway and extracellular matrix alterations in hepatic specification and differentiation of murine hepatic stem cells.Differentiation,2001,68:254-269
    [76]Amicone L, Spagnoli FM, Spa"th G, Giordano S, Tommasini C, Bernardini S, et al. Transgenic expression in the liver of truncated Met blocks apoptosis and permits immortalization of hepatocytes. EMBOJ,1997,16:495-503
    [77]Spagnoli FM, Amicone L, Tripodi M, Weiss MC. Identification of a bipotential precursor cell in hepatic cell lines derived from transgenic mice expressing cyto-Met in the liver. J Cell Biol, 1998,143:1101-1112
    [78]Strick-Marchand H, Weiss MC. Inducible differentiation and morphogenesis of bipotential liver cell lines from wild-type mouse embryos. Hepatology,2002,36:794-804
    [79]Strick-Marchand H, Morosan S, Charneau P, Kremsdorf D, Weiss MC. Bipotential mouse embryonic liver stem cell lines contribute to liver regeneration and differentiate as bile ducts and hepatocytes. Proc Natl AcadSci USA,2004,101:8360-8365
    [80]Talbot NC, Pursel VG, Rexroad CE Jr, Caperna TJ, Powell AM, Stone RT. Colony isolation and secondary culture of fetal porcine hepatocytes on STO feeder cells. In Vitro Cell Dev Biol Anim, 1994,30A:851-858
    [81]Allain JE, Dagher I. Mahieu-Caputo D, Loux N, Andreoletti M, Westerman K, et al. Immortalization of a primate bipotent epithelial liver stem cell. Proc Natl Acad Sci USA,2002, 99:3639-3644
    [82]Malhi H, Irani AN, Gagandeep S, Gupta S. Isolation of human progenitor liver epithelial cells with extensive replication capacity and differentiation into mature hepatocytes. J Cell Sci,2002, 115:2679-2688
    [83]Lazaro CA, Croager EJ, Mitchell C, Campbell JS, Yu C, Foraker J, et al. Establishment, characterization, and long-term maintenance of cultures of human fetal hepatocytes. Hepatology,2003, 38:1095-1106
    [84]Oertel M, Menthena A, Dabeva MD, Shafritz DA. Cell competition leads to high level of normal liver reconstitution by transplanted fetal liver stem/progenitor cells. Gastroenterology,2006, 130(2):289-291
    [85]Moreno E, Basler K. dMyc transforms cells into super-competitors. Cell,2004,117:117-129
    [86]de la Cova C, Abril M, Bellosta P, Gallant P, Johnston LA. Drosophila myc regulates organ size by inducing cell competition. Cell,2004,117:107-116

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700