血管外膜激活促进移植性血管病新内膜形成及发展的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移植性血管病(transplant vasculopathy, TV)是一种增殖性血管疾病,是影响移植器官长期存活的最主要因素。TV与动脉粥样硬化(atherosclerosis,AS)及血管成形术后再狭窄(restenosis, RS)有许多相同的诱发因素和病理表现。传统观点认为TV的病理表现主要包括平滑肌细胞(smooth muscle cells,SMCs)迁移、增殖,炎症细胞浸润,巨噬细胞及SMCs中脂质聚集,细胞外基质(extracellular matrix, ECM)生成增多以及新内膜形成。因此,人们对于血管疾病的研究主要集中在内皮和平滑肌功能失调,而血管外膜一直未成为关注的焦点。
     动脉血管壁分为三层:内膜、中膜和外膜。每一层都有特殊的组织学、生物化学和功能特点。因此,每一层都以特定的方式来维持血管稳态,调节血管对于应激和损伤的反应。与内膜和中膜相比,外膜一直被认为仅仅是一层支撑组织,为平滑肌层提供营养。近年来,血管外膜在血管疾病如AS和RS中的作用日益受到重视。有资料提示血管外膜对于血管的结构和功能调节起着直接或间接的重要调控作用。成纤维细胞是血管外膜最主要的细胞类型,越来越多的实验研究证明外膜成纤维细胞在新内膜形成和血管重塑过程中并非是被动的旁观者,而是对多种刺激具有反应的积极的参与者。当受到细胞因子、损伤和牵拉等刺激时,外膜成纤维细胞可以被激活导致细胞表型转化、迁移、增殖以及合成细胞外基质。些重要的细胞因子如转化生长因子-β1(transforming growth factor beta 1,TGF-β1)和内皮素-1(endothelin-1, ET-1)都能诱导成纤维细胞转化为肌成纤维细胞(myofibroblast,MF),从而可以穿过破损的中膜参与新内膜的形成。血管外膜成纤维细胞也能够分泌多种细胞因子如TGF-β1、单核细胞趋化蛋白-1 (monocyte chemoattrant protein-1, MCP-1)、白细胞介素(interleukin, IL)、ET-1、肿瘤坏死因子α(tumor necrosis factor alpha, TNFα)、基质金属蛋白酶(matrix metalloproteinases, MMPs)及尼克酰胺腺嘌呤二核苷酸磷酸氧化酶(nicotinamide adenine dinucleotide phosphate oxidase, NADPH oxidase)等。外膜反应普遍存在于各种血管疾病中。在猪的血管成形术模型中,血管周围组织炎症反应要先于新内膜的形成。我们实验室的前期研究工作也发现在载脂蛋白E基因敲除(apolipoprotein E knockout,apoE(-/-))小鼠AS模型中,外膜成纤维细胞在AS早期被激活,并且早于内膜病灶的形成,能够诱导单核细胞游走进入血管壁的MCP-1最早表达于外膜成纤维细胞。有研究表明在猪球囊损伤模型中血管外膜有大量的α平滑肌肌动蛋白(α-smooth muscle actin,α-SMA)免疫反应阳性细胞。Li等在兔球囊损伤模型中将β-半乳糖苷酶基因转入颈动脉外膜成纤维细胞用以标记细胞,成功地在体直接证明外膜成纤维细胞能迁移到新内膜并参与新内膜的形成。在颈动脉动-静脉移植中,外膜成纤维细胞增殖,表型转化为肌成纤维细胞并向内膜迁移均早于新内膜的形成。大量研究表明仅仅是外膜损伤也能引起新内膜和/或动脉粥样硬化病灶的形成。近年来,基因疗法成为当前治疗心血管疾病的一个研究“热点”,而动脉外膜因其在血管外围更有利于药物输送和基因治疗。Dourron等设计了一种新型的含有成纤维细胞活化启动子并能表达NADPH氧化酶抑制序列gp91ds (Ad-PDGFβR-gp91ds/eGFP)的复制缺陷性腺病毒,该腺病毒转入大鼠颈总动脉外膜后有效抑制了整个血管O2-产生和新内膜形成。
     尽管人们在血管疾病中对血管外膜作用机制研究取得了一些进展,但血管外膜的许多生物学机制及其与血管疾病发生的关系仍不清楚,尤其是在移植性血管病中的作用并不清楚,目前国内外的报道也非常少。
     目的:
     本实验利用袖套管技术将大鼠胸主动脉移植到腹主动脉建立移植性血管病模型,通过在体动物实验以及体外培养移植血管外膜成纤维细胞,观察血管外膜细胞表型转化、增殖、迁移以及多种细胞因子在mRNA和蛋白水平表达的动态变化,进一步探讨血管外膜以及外膜成纤维细胞激活在移植性血管病新内膜形成及发展中的作用机制。在以上实验基础上,本研究进一步探讨应用RNA干扰技术特异性地抑制NADPH氧化酶亚基p47phox的表达,从而下调NADPH氧化酶的活性,观察其对移植血管外膜成纤维细胞增殖和迁移的抑制作用,为移植性血管病以血管外膜成纤维细胞为作用靶点进行基因治疗提供实验依据。
     本课题分以下三个部分进行研究:
     第一部分:移植性血管病大鼠模型的建立
     方法:
     以Sprague-Dawley (SD)大鼠的胸主动脉为供体血管,利用袖套管技术移植到Wistar大鼠腹主动脉作为异系移植实验组,以SD大鼠对SD大鼠同系移植作为对照组。在血管移植后3,7,14天,取出移植的胸主动脉,进行苏木素-伊红(HE)染色及Weigert弹力纤维染色,应用Image-Pro Plus 5.0计算机图像分析系统检测移植血管的内膜和中膜增生情况及内膜/中膜厚度比值。
     结果:
     手术成功率为90%,移植血管的通畅率达100%。同系移植对照组在各个时间点未出现内膜的明显增生,而异系移植实验组在移植后7天出现内膜增生,术后14天内膜厚度显著增加。对照组和实验组移植血管中膜均未见明显增厚。异系移植实验组内膜/中膜厚度比值在移植后7天开始增高,14天时达到顶峰。
     结论:
     利用袖套管技术进行SD和Wistar大鼠间的血管移植符合移植性血管病的病理形态改变,并且操作简单,费用小,重复性好,可以用于研究移植性血管病的病理机制及干预治疗。
     第二部分:在体动物实验研究血管外膜激活在移植性血管病新内膜形成及发展中的作用
     方法:
     在血管移植后3,7,14天,取出移植的胸主动脉。用免疫组织化学方法观察不同时间点血管外膜和内膜波形蛋白(vimentin),α平滑肌肌动蛋白(α-SMA),T细胞抗原受体CD3,细胞核增殖抗原Ki-67,核因子-κB (nuclear factorκB,NF-κB), MCP-1,细胞间粘附分子-1(intercellular adhesion molecule-1, ICAM-1),血管细胞粘附分子-1(vascular cell adhesion molecule-1,VCAM-1),基质金属蛋白酶-7 (MMP-7), TGF-β1,硝基酪氨酸及p47phox等细胞因子蛋白水平表达的动态变化;用荧光原位杂交技术检测gp91phox mRNA的表达水平;用荧光实时定量聚合酶链反应(quantitative real-time reverse transcriptase polymerase chain reaction,QRT-PCR)检测移植血管外膜MCP-1,IL-1β,TNFα, ICAM-1, VCAM-1, MMP-7, TGF-β1, gp91phox和p47phox等细胞因子mRNA的表达水平。
     结果:
     1.免疫组织化学检测显示异系移植实验组和同系移植对照组在血管移植后不同时间点,移植血管外膜及内膜或新内膜的大部分细胞呈现vimentin阳性,中膜几乎无阳性细胞。异系移植实验组在术后3天移植血管外膜部分细胞即呈现α-SMA阳性,随着时间延长α-SMA阳性细胞数量逐渐增加,术后7天和14天新内膜细胞也开始表达α-SMA,而同系移植对照组血管外膜及内膜细胞几乎无α-SMA阳性表达;两组移植血管中膜α-SMA始终呈强阳性表达。
     2.异系移植实验组和同系移植对照组在血管移植后不同时间点移植血管外膜及内膜或新内膜T细胞抗原受体CD3阳性细胞不超过4%,说明增生的细胞主要是外膜成纤维细胞,新内膜形成可能主要与外膜成纤维细胞有关。
     3.Ki-67免疫组织化学结果显示在术后3天异系移植实验组外膜成纤维细胞开始出现增殖,内膜细胞仅有少量细胞增殖,在术后7天和14天外膜成纤维细胞及内膜细胞均显著增生;同系移植对照组术后外膜仅出现少量细胞增生。两组移植血管中膜平滑肌细胞未见增生细胞,中膜厚度也未见明显改变。
     4.免疫组织化学结果显示在术后3天异系移植实验组外膜成纤维细胞开始出现NF-κB, MCP-1, ICAM-1,VCAM-1,MMP-7, TGF-β1,硝基酪氨酸,p47phox的表达,内膜有少量阳性细胞,在术后7天和14天外膜成纤维细胞及内膜细胞细胞因子表达均显著增加;同系移植对照组仅NF-κB, MCP-1、ICAM-1、VCAM-1、硝基酪氨酸在术后外膜出现少量阳性表达细胞,内膜未检测到阳性细胞。
     5.荧光原位杂交技术显示在术后3天异系移植实验组外膜成纤维细胞检测到gp91phox mRNA表达,在术后7天和14天外膜成纤维细胞gp91phox mRNA表达显著增加,内膜仅有少量gp91phox mRNA表达;同系移植对照组未检测到gp91phoxmRNA表达。
     6.QRT-PCR结果显示与同系移植对照组相比,异系移植实验组外膜成纤维细胞MCP-1, IL-1β, TNFα, ICAM-1, VCAM-1, MMP-7, TGF-β1, gp91phox和p47phoxmRNA均在术后3天开始表达,术后14天达到顶峰。
     结论:
     1.在移植性血管病早期新内膜形成前,动脉外膜首先被激活,主要表现为外膜成纤维细胞被激活,开始表达α-SMA,表型转化为肌成纤维细胞,增殖活性增强,合成释放多种活性细胞因子,促进移植性血管病新内膜形成及发展。
     2.动脉外膜炎症是移植性血管病新内膜形成及发展过程中的早期事件之一,有可能促进血管新内膜的形成。
     3.氧化应激贯穿于移植性血管病新内膜形成及发展整个过程中,可能是血管外膜成纤维细胞被激活的原因之一,并进而促进移植性血管病新内膜形成及发展。
     第三部分:体外培养大鼠血管外膜成纤维细胞研究其在移植性血管病新内膜形成及发展中的作用
     方法:
     异系移植实验组和同系移植对照组在血管移植后14天分别取出移植胸主动脉,将血管外膜剥离,用组织块培养法体外培养血管外膜成纤维细胞,取3-6代细胞用于实验。用免疫细胞荧光染色检测vimentin,α-SMA及结蛋白desmin的表达;用细胞计数试剂盒(Cell Counting Kit-8, CCK-8)及5-溴-2-脱氧尿嘧啶(5'-bromo-2'-deoxyuridine, BrdU)掺入法检测细胞增殖活性的变化;用流式细胞仪PI染色法检测细胞周期;用插入式24孔Transwell小室及划痕实验检测细胞的迁移能力;用逆转录聚合酶链反应(reverse transcriptase polymerase chain reaction,RT-PCR)检测MCP-1, IL-1β, TNFα, ICAM-1, VCAM-1, MMP-7, TGF-β1, gP91phox和p47phox等细胞因子mRNA的表达水平;用Western blot方法检测MCP-1,ICAM-1, TGF-β1,和p47phox等细胞因子蛋白的表达水平;设计合成靶向NADPH氧化酶亚基p47phox基因的小分子干扰RNA (small interfering RNA, siRNA),并进行筛选得到具有高效干扰效率的siRNA,转染异系移植实验组体外培养血管外膜成纤维细胞,观察其对血管外膜成纤维细胞NADPH氧化酶的抑制作用及其对外膜成纤维细胞增殖和迁移活性的抑制作用。
     结果:
     1.用组织块培养法培养的异系移植实验组和同系移植对照组血管外膜细胞,4~7天后可见细胞从组织块边缘游出,贴壁生长,10~14天后达到90%细胞融合。异系移植实验组血管外膜细胞呈现vimentin(+)、desmin(-)、约90%的细胞呈现α-SMA(+);同系移植对照组血管外膜细胞呈现vimentin(+)、desmin(-)、90%以上的细胞呈现α-SMA(-)。
     2.血清浓度为1%时,异系移植实验组和同系移植对照组培养血管外膜成纤维细胞细胞增殖活性无显著性差异,血清浓度为5%和10%时,异系移植实验组血管外膜成纤维细胞增殖活性显著高于同系移植对照组;血清浓度为10%时,BrdU掺入法也得到相同结果。流式细胞仪PI染色法显示异系移植实验组血管外膜成纤维细胞S期及G2/M期所占百分比显著高于同系移植对照组。
     3.插入式24孔Transwell小室实验显示异系移植实验组迁移到Transwell小室PET膜下表面的成纤维细胞数明显高于同系移植对照组;划痕实验也显示异系移植实验组血管外膜成纤维细胞的愈合速率要明显高于同系移植对照组。
     4.RT-PCR检测显示异系移植实验组血管外膜成纤维细胞MCP-1,IL-1β,TNFα,ICAM-1,VCAM-1,MMP-7,TGF-β1, gp91phox和p47phox等细胞因子mRNA的表达水平均明显高于同系移植对照组。
     5.Western blot方法检测显示异系移植实验组血管外膜成纤维细胞MCP-1,ICAM-1,TGF-β1和p47phox等细胞因子蛋白的表达水平也明显高于同系移植对照组。
     6. p47phox-siRNA-2#转染异系移植实验组体外培养血管外膜成纤维细胞48小时后可有效抑制p47phox基因在mRNA水平的表达,从而抑制NADPH氧化酶,并可以显著降低成纤维细胞的增殖和迁移活性。
     结论:
     1.约90%的异系移植实验组血管外膜细胞转化为肌成纤维细胞,而同系移植对照组90%以上的细胞为成纤维细胞。
     2.异系移植实验组血管外膜成纤维细胞的增殖及迁移能力明显高于同系移植对照组。
     3.异系移植实验组血管外膜成纤维细胞合成和释放多种活性细胞因子的能力明显高于同系移植对照组。
     4.氧化应激参与血管外膜成纤维细胞的激活,激活的成纤维细胞又可以生成更多的超氧阴离子,形成正反馈效应。
     5.NADPH氧化酶亚基p47phox基因siRNA可显著抑制成纤维细胞的增殖和迁移活性,从而可作为移植性血管病抑制新内膜形成的基因治疗新靶点。
Transplant vasculopathy (TV) is a vascular proliferative disease. TV occurs in organ transplants and is the most significant obstacle to successful long-term survival. TV has many causative factors and pathologic manifestations in common with atherosclerosis and post-angioplasty restenosis (RS).Conventional understanding of the pathologic manifestations of TV includes migration and proliferation of smooth muscle cells (SMCs), infiltration with inflammatory cells, lipid aggregation in macrophages and SMCs, increased production of the extracellular matrix (ECM), and neointima formation. Accordingly, studies on vascular diseases have focused on the endothelia and smooth muscle dysfunction; less attention has been paid to the vascular adventitia.
     Arterial walls are heterogeneous three-layered structures composed of an intima, media, and adventitia. Each layer exhibits specific histological, biochemical, and functional characteristics, and, as such, each contributes in unique ways to maintaining vascular homeostasis and to regulating the vascular response to stress or injury. Compared with intima and media, the adventitia has been considered to be exclusively a supporting tissue that can provide nourishment to muscle layers. Recently, increasing attention has been paid to its role in a variety of vascular diseases, including AS and RS. Some studies have suggested that the vascular adventitia acts as an important regulator to modulate, directly or indirectly, the structure and function of the vascular wall. As the major cell type in the vascular adventitia, increasing studies showed that adventitial fibroblast was not a passive bystander but a active participant in response to diverse stimulations and thus contributed to neointima formation and vascular remodeling. Activation of the adventitial fibroblasts in response to cytokines, injury and stretch has been shown to stimulate phenotypic differentiation, migration, proliferation and synthesis of ECM. Well-known cytokines such as transforming growth factor beta (TGF-β1) and endothelin-1 (ET-1) can induce the transition of fibroblasts into myofibroblasts (MFs) which can traverse the ruptured media and participate in neointimal formation after balloon injury. Vascular adventitial fibroblasts can also secret a variety of cytokines, such as TGF-β1, monocyte chemoattrant protein-1 (MCP-1), interleukin (IL), ET-1, tumor necrosis factor alpha (TNFa), matrix metalloproteinases (MMPs) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Adventitia reactions are common in various vascular diseases. Porcine models showed that the inflammatory response after angioplasty occurred throughout the entire perivascular tissue before neointimal formation. A previous study from our research team showed that adventitial fibroblasts were activated in the early stage of atherosclerosis, and that the earliest expression of MCP-1 which is capable of regulating the transmigration of monocytes into the vessel wall occurred in the adventitial fibroblasts before the formation of intimal lesions in apoE knockout mice. It was reported that abundant a-smooth muscle actin (a-SMA) immunoreactive cells were present in the adventitia in porcine after balloon injury. Li et al. tracked the rat carotid adventitial fibroblasts which transduced withβ-galactosidase and convincingly demonstrated directly in vivo the ability of adventitial fibroblasts to contribute to neointimal growth by migrating into the neointima over time after balloon injury. In carotid artery-vein grafts, neointima formation was proceded by proliferation, differentiation into myofibroblasts and migration into neointima of adventitial fibroblasts. Neointima formation and/or atherosclerotic lesions have been observed in response to adventitial injury in various animal models. Recently, genge therapy has become a'hot spot'for preventing and treating cardiovascular diseases and the outer location of the adventitial fibroblast makes it suitable for drug delivery and gene therapy. Dourron et al. designed a novel replication-deficient adenovirus containing a fibroblast-active promoter that drives expression of the NADPH oxidase inhibitory sequence gp91ds (Ad-PDGFPR-gp91ds/eGFP). When this was delivered to the adventitia of the rat common carotid artery, it effectively reduced overall vascular 02·-and neointima formation. Though people carried out a lot of experiments and made some progress on the biological mechanism of vascular adventitia in vascular diseases, much mechanism especially in TV is still unclear. And there are few reports about it at present.
     Objectives:
     In the present study we constructed a successful allograft model in the rat via a cuff technique. In order to study the role of the activated vascular adventitia in the neointima formation and development in transplant vasculopathy, we observed the vascular adventitia especially the adventitial fibroblast phenotype differentiation, proliferation, migration and the mRNA and protein levels of various cytokines at the given time points after grafting both in vivo and in vitro. Furthermore, we investigated the inhibitive effect on the proliferation and migration of adventitial fibroblast by down-regulating the NADPH oxidase activity via RNA interference to silence the expression of p47phox, one subunit of NADPH oxidase. And the study will provide theory basis for gene therapy targeting at vascular adventitial fibroblast in preventing and treating the transplant vasculopathy. This study has been divided into three parts as following:
     Part I:Construction of a transplant vasculopathy animal model in the rat
     Method:
     The procedure was carried out using an improved cuff technique. Thoracic aortas from SD rats transplanted into the abdominal aortas of Wistar rats worked as allografts, and isografts (SD to SD) were control. Grafts were removed on days 3,7, and 14 for HE staining and Weigert staining. The thicknesses of the neointima and media and intimal/medial thickness ratio were measured using a computer-assisted morphometry system (Image-Pro Plus 5.0).
     Result:
     After transplantation, the animal survival rate was about 90%and the patency rate was 100%. No detectable neointimal hyperplasia was found in 3-,7-and 14-day isografts as well as 3-day allografts. The neointima was initially found in 7-day allografts and significantly increased in 14-day allografts. The intimal thickness and intimal/medial thickness ratio were increased in 7-day allografts and peaked in 14-day allografts. Markedly reduced medial thickness in the process was not observed.
     Conclusion:
     We constructed a successful transplant vasculopathy animal model in the rat. It was characterized by simple operation, less cost and favorable repeatability. Thus, it can be used to study allograft pathologic mechanism.
     PartⅡ:The study on the role of the vascular adventitial activation in the neointima formation and development in transplant vasculopathy in vivo
     Method:
     At given time points, allografts and isografts were removed. Paraffin-embedded sections were stained with immunohistochemistry to observe the changes in the expression of vimentin,α-SMA, Ki-67, NF-κB, MCP-1, ICAM-1, VCAM-1, MMP-7, TGF-β1, nitrotyrosine and p47phox in the vascular adventitia and intima/neointima. Fluorescence in situ hybridization (FISH) was performed to examine the expression of the mRNA for gp91phox. The mRNA levels of MCP-1, IL-1β, TNFα, ICAM-1, VCAM-1, MMP-7, TGF-β1, gp91phox and p47phox expressed in the grafts adventitia were quantified by quantitative real-time reverse transcriptase polymerase chain reaction (QRT-PCR) using SYBR Green technology.
     Result:
     1. Vimentin-positive cells were mainly in the adventitia and intima or neointima in both isografts and allografts. a-SMA was expressed only in the media and was barely detectable in the adventitia or intima in isografts. In allografts, expression of a-SMA in the media was similar to that in isografts, but a-SMA-positive cells were first found mainly in adventitial fibroblasts after 3 days and gradually increased till 14 days. The neointima began to express a-SMA in 7-and 14-day allografts.
     2. In our experiment, no more than 4%of CD3-positive T cells were found in the adventitia in both isografts and allografts in any given time points after grafting, indicating that most of the proliferative cells were adventitial fibroblasts which might contribute to the neointima formation.
     3. Immunostaing for Ki-67 showed that in allografts, about 20%of adventitial fibroblasts and only a few intimal endothelial cells were proliferative after 3 days, and the number of proliferative cells was significantly increased in the adventitia and neointima after 7 and 14 days. Proliferative cells were barely detectable in all three layers in isografts. Surprisingly, there were neither obvious proliferative cells nor evident changes in the thickness in the media during the TV development.
     4. In the allografts, the expression of NF-κB, MCP-1, ICAM-1, VCAM-1, MMP-7, TGF-β1, nitrotyrosine and p47phox were first found in the adventitia and intima/neointima 3 days after grafting, and significantly increased in the adventitia and neointima after 7 and 14 days. In the isografts, only a few cells positive for NF-κB, MCP-1, ICAM-1, VCAM-1 and nitrotyrosine were found in the adventitia and positive cells were barely detectable in the intima or neointima.
     5.In the allografts, the expression of gp91phox mRNA were first found in the adventitia 3 days after grafting, and significantly increased after 7 and 14 days. Only a few positive cells were observed in the intima. However, the expression of gp91phox mRNA were barely detectable in the isografts.
     6. Compared with isografts, the mRNA levels of MCP-1, IL-1β, TNFα, ICAM-1, VCAM-1, MMP-7, TGF-β1, gp91phox and p47phox in the adventitia were increased 3 days after grafting, and peaked at 14 days.
     Conclusion:
     1. In the early stage of TV, vascular adventitia especially the adventitial fibroblast was activated before the neointima formation. This process was characterized by the phenotypic differentiation into myofibroblast withα-SMA expression, the increased capacity of proliferation and synthesis of various active cytokines. Thus, we hypothesized that adventitial fibroblast might contribute to the neointima formation after its activation in the development of TV.
     2. Vascular adventitial inflammation is an early event in the neointima formation and development in TV.
     3. Oxidative stress occured through the development of TV might be one of the causes of the activation of vascular adventitia especially the adventitial fibroblast and be involved in the neointima formation and development in TV.
     PartⅢ:The study on the role of the adventitial fibroblasts in the neointima formation and development in transplant vasculopathy in vitro
     Method:
     Allografts and isografts were removed 14 days after grafting. Adventitia was carefully stripped from isografts and allografts, and then cultured by the tissue explant method, respectively. Cells at passages 3 to 6 were used for further study. Immunofluorescence staining for vimentin, a-SMA and desmin was used to identify the cultured adventitial cells.The proliferation of cells was examined by CCK-8 kit and BrdU incorporation assay. PI staining by flow cytometry was used to examine the cell cycle of cultured cells. Cell migration assay was carried out using 24 well ThinCertTM cell culture inserts and scratch method. The mRNA levels of MCP-1, IL-1β, TNFα, ICAM-1, VCAM-1, MMP-7, TGF-β1, gp91phox and p47phox expressed in the cultured adventitial cells were quantified by reverse transcriptase polymerase chain reaction (RT-PCR) and the protein levels of MCP-1, ICAM-1, TGF-β1 and p47phox were quantified by Western blot. We designed and synthesized siRNAs targeting p47phox, one subunit of NADPH oxidase, and then screened one siRNA with high efficiency. p47phox siRNA was transfected into cultured adventitial fibroblasts from allografts to observe its inhibition effect on NADPH oxidase activity and cell proliferation and migration capacity.
     Result:
     1. Adventitia was cultured by the tissue explant method. About 4-7 days, small amounts of cells started to immigrate out of the explants and adhere to the flask bottom and for 10~14 days they reached 90%confluence. More than 90%cells from isografts are vimentin (+),desmin (-) andα-SMA (-), while about 90%cells from allografts are vimentin (+), desmin (-) andα-SMA(+).
     2. Compared with isografts, there is no significant difference between the two groups in the proliferation capacity of the cultured adventitial cells when cultured with 1%serum, but the proliferation capacity of the cultured adventitial cells from allografts were significantly increased when cultured with 5%or 10%serum. The same result was gained by the method of BrdU incorporation assay when cultured with 10%serum. PI staining by flow cytometry also showed the percentage of S and G2/M phase of the cultured adventitial cells from allografts was much higher than that from isografts.
     3. Both 24 well ThinCertTM cell culture inserts and scratch method demonstrated that the migration capacity of the cultured adventitial cells from allografts were significantly increased compared with that from isografts.
     4. Compared with isografts, the mRNA levels of MCP-1, IL-1β, TNFα, ICAM-1, VCAM-1, MMP-7, TGF-β1,gp91phox and p47phox in the cultured adventitial cells from allografts were significantly increased.
     5. Compared with isografts, the protein levels of MCP-1, ICAM-1, TGF-β1 and p47phox in the cultured adventitial cells from allografts were significantly increased.
     6. After 48 hours of the transfection of p47phox-siRNA-2#, the mRNA level of p47phox was effectively inhibited. Furthermore, the NADPH oxidase activity and the proliferation and migration capacity of the cultured adventitial cells from allografts were significantly decreased.
     Conclusion:
     1. About 90%cells from allografts differentiated into myofibroblasts while more than 90%cells from isografts were fibroblasts.
     2. Compared with isografts, the proliferation and migration capacity of the cultured adventitial cells from allografts were significantly increased.
     3. Compared with isografts, the synthesis and release of various active cytokines by the cultured adventitial cells from allografts were significantly increased.
     4. Oxidative stress was involved in the activation of adventitial fibroblasts, while activated adventitial fibroblasts might produce more superoxide anion and thus a positive feedback might be formed between them.
     5. p47phox siRNA effectively inhibited the proliferation and migration capacity of adventitial fibroblasts, and thus might be a new target for the gene therapy to attenuate the neointima formation in TV.
引文
1. Mitchell RN. Allograft arteriopathy:pathogenesis update. Cardiovasc Pathol 2004; 13(1):33-40.
    2. Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med 1999; 340(2): 115-26.
    3. Mennander A, Tiisala S, Halttunen J, Yilmaz S, Paavonen T, Hayry P. Chronic rejection in rat aortic allografts. An experimental model for transplant arteriosclerosis. Arterioscler Thromb 1991; 11(3):671-80.
    4. Zou Y, Dietrich H, Hu Y, Metzler B, Wick G, Xu Q. Mouse model of venous bypass graft arteriosclerosis. Am J Pathol 1998; 153(4):1301-10.
    5. Gu X, Xiang J, Zhou Y, Qian S, Chen Z. Improved cuff technique for cervical heart transplantation in mice. Microsurgery 2007; 27(4):317-9.
    6. Hayry P, Mennander A, Yilmaz S, Ustinov J, Raisanen A, Lautenschlager I, Lemstrom K, Bruggeman CA, Paavonen T. Cellular and molecular mechanisms in allograft arteriosclerosis. Transplant Proc 1992; 24(6):2359-61.
    7. Oishi H, Okada Y, Kikuchi T, Hoshikawa Y, Sado T, Noda M, Endo C, Sakurada A, Matsumura Y, Kondo T. Transbronchial human interleukin-10 gene transfer reduces acute inflammation associated with allograft rejection and intragraft interleukin-2 and tumor necrosis factor-alpha gene expression in a rat model of lung transplantation. J Heart Lung Transplant; 29(3):360-7.
    8. Reuter S, Reiermann S, Worner R, Schroter R, Edemir B, Buck F, Henning S, Peter-Katalinic J, Vollenbroker B, Amann K, Pavenstadt H, Schlatter E, Gabriels G IF/TA-related metabolic changes--proteome analysis of rat renal allografts. Nephrol Dial Transplant.
    9. Qin L, Guan HG, Zhou XJ, Yin J, Lan J, Qian HX. Blockade of 4-1BB/4-1BB ligand interactions prevents acute rejection in rat liver transplantation. Chin Med J (Engl); 123(2):212-5.
    10. Fujiki M, Esquivel CO, Martinez OM, Strober S, Uemoto S, Krams SM. Induced tolerance to rat liver allografts involves the apoptosis of intragraft T cells and the generation of CD4(+)CD25(+)FoxP3(+) T regulatory cells. Liver Transpl; 16(2): 147-54.
    11. Sun H, Lu X, Wu S, Sun W. The effects of C-reactive protein, interleukin-6, and tumor necrosis factor-alpha in rat allograft adventitial inflammation and allograft arteriosclerosis. Transplant Proc 2009; 41(9):3909-12.
    12. Zhao J, Li P, Zhang Y, Wang X, Ao Q, Gao S. The inhibitory effect of astilbin on the arteriosclerosis of murine thoracic aorta transplant. J Huazhong Univ Sci Technolog Med Sci 2009; 29(2):212-4.
    13. Murphy GJ, Nicholson ML. Rapamycin has no effect on fibrosis-associated gene expression or extracellular matrix accumulation when administered to animals with established or early allograft vasculopathy. J Thorac Cardiovasc Surg 2003; 126(6): 2058-64.
    14. Murphy GJ, Bicknell GR, Nicholson ML. Microemulsion cyclosporin inhibits vascular remodelling and attenuates associated changes in profibrotic gene expression in an experimental model of allograft vasculopathy. Br J Surg 2002; 89(8):1055-61.
    15. Fukada J, Schena S, Tack I, Ruiz P, Kurimoto Y, Pang M, Aitouche A, Abe T, Striker LJ, Pham SM. FK409, a spontaneous nitric oxide releaser, attenuates allograft vasculopathy in a rat aortic transplant model. Circ Res 2000; 87(1):66-72.
    1. Mitchell RN. Allograft arteriopathy:pathogenesis update. Cardiovasc Pathol 2004; 13(1):33-40.
    2. Haddad M, Pflugfelder PW, Guiraudon C, Novick RJ, McKenzie FN, Menkis A, Kostuk WJ. Angiographic, pathologic, and clinical relationships in coronary artery disease in cardiac allografts. J Heart Lung Transplant 2005; 24(9):1218-25.
    3. Hayry P, Mennander A, Yilmaz S, Ustinov J, Raisanen A, Lautenschlager I, Lemstrom K, Bruggeman CA, Paavonen T. Cellular and molecular mechanisms in allograft arteriosclerosis. Transplant Proc 1992; 24(6):2359-61.
    4. Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med 1999; 340(2): 115-26.
    5. Schwartz CJ, Mitchell JR. Cellular infiltration of the human arterial adventitia associated with atheromatous plaques. Circulation 1962; 26:73-8.
    6. Xu F, Ji J, Li L, Chen R, Hu WC. Adventitial fibroblasts are activated in the early stages of atherosclerosis in the apolipoprotein E knockout mouse. Biochem Biophys Res Commun 2007; 352(3):681-8.
    7. Shi Y, Niculescu R, Wang D, Patel S, Davenpeck KL, Zalewski A. Increased NAD(P)H oxidase and reactive oxygen species in coronary arteries after balloon injury. Arterioscler Thromb Vasc Biol 2001; 21(5):739-45.
    8. Scott NA, Cipolla GD, Ross CE, Dunn B, Martin FH, Simonet L, Wilcox JN. Identification of a potential role for the adventitia in vascular lesion formation after balloon overstretch injury of porcine coronary arteries. Circulation 1996; 93(12): 2178-87.
    9. Wilcox JN, Okamoto El, Nakahara KI, Vinten-Johansen J. Perivascular responses after angioplasty which may contribute to postangioplasty restenosis:a role for circulating myofibroblast precursors? Ann N Y Acad Sci 2001; 947:68-90; dicussion-2.
    10. Rayner K, Van Eersel S, Groot PH, Reape TJ. Localisation of mRNA for JE/MCP-1 and its receptor CCR2 in atherosclerotic lesions of the ApoE knockout mouse. J Vasc Res 2000; 37(2):93-102.
    11. Libby P, Tanaka H. The molecular bases of restenosis. Prog Cardiovasc Dis 1997; 40(2):97-106.
    12. Hu W, Polinsky P, Sadoun E, Rosenfeld ME, Schwartz SM. Atherosclerotic lesions in the common coronary arteries of ApoE knockout mice. Cardiovasc Pathol 2005; 14(3):120-5.
    13. Shi Y, O'Brien JE, Fard A, Mannion JD, Wang D, Zalewski A. Adventitial myofibroblasts contribute to neointimal formation in injured porcine coronary arteries. Circulation 1996; 94(7):1655-64.
    14. Lafont A, Guzman LA, Whitlow PL, Goormastic M, Cornhill JF, Chisolm GM. Restenosis after experimental angioplasty. Intimal, medial, and adventitial changes associated with constrictive remodeling. Circ Res 1995; 76(6):996-1002.
    15. Wilensky RL, March KL, Gradus-Pizlo I, Sandusky G, Fineberg N, Hathaway DR. Vascular injury, repair, and restenosis after percutaneous transluminal angioplasty in the atherosclerotic rabbit. Circulation 1995; 92(10):2995-3005.
    16. Isner JM, Kearney M, Bortman S, Passeri J. Apoptosis in human atherosclerosis and restenosis. Circulation 1995; 91(11):2703-11.
    17. Faxon DP, Coats W, Currier J. Remodeling of the coronary artery after vascular injury. Prog Cardiovasc Dis 1997; 40(2):129-40.
    18. Andersen HR, Maeng M, Thorwest M, Falk E. Remodeling rather than neointimal formation explains luminal narrowing after deep vessel wall injury: insights from a porcine coronary (re)stenosis model. Circulation 1996; 93(9): 1716-24.
    19. Pasterkamp G, Borst C, Post MJ, Mali WP, Wensing PJ, Gussenhoven EJ, Hillen B. Atherosclerotic arterial remodeling in the superficial femoral artery. Individual variation in local compensatory enlargement response. Circulation 1996; 93(10): 1818-25.
    20. Mintz GS, Popma JJ, Pichard AD, Kent KM, Satler LF, Wong C, Hong MK, Kovach JA, Leon MB. Arterial remodeling after coronary angioplasty:a serial intravascular ultrasound study. Circulation 1996; 94(1):35-43.
    21. Siow RC, Mallawaarachchi CM, Weissberg PL. Migration of adventitial myofibroblasts following vascular balloon injury:insights from in vivo gene transfer to rat carotid arteries. Cardiovasc Res 2003; 59(1):212-21.
    22. Ryan ST, Koteliansky VE, Gotwals PJ, Lindner V. Transforming growth factor-beta-dependent events in vascular remodeling following arterial injury. J Vase Res 2003; 40(1):37-46.
    23. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25(4):402-8.
    24. Isik FF, McDonald TO, Ferguson M, Yamanaka E, Gordon D. Transplant arteriosclerosis in a rat aortic model. Am J Pathol 1992; 141(5):1139-49.
    25. Kouwenhoven EA, JN IJ, de Bruin RW. Etiology and pathophysiology of chronic transplant dysfunction. Transpl Int 2000; 13(6):385-401.
    26. Mitchell RN, Libby P. Vascular remodeling in transplant vasculopathy. Circ Res 2007; 100(7):967-78.
    27. Costanzo MR, Naftel DC, Pritzker MR, Heilman JK,3rd, Boehmer JP, Brozena SC, Dec GW, Ventura HO, Kirklin JK, Bourge RC, Miller LW. Heart transplant coronary artery disease detected by coronary angiography:a multiinstitutional study of preoperative donor and recipient risk factors. Cardiac Transplant Research Database. J Heart Lung Transplant 1998; 17(8):744-53.
    28. Hosenpud JD, Bennett LE, Keck BM, Fiol B, Boucek MM, Novick RJ. The Registry of the International Society for Heart and Lung Transplantation:sixteenth official report-1999. J Heart Lung Transplant 1999; 18(7):611-26.
    29. Russell ME. Cardiac allograft vasculopathy--a changing perspective. Z Kardiol 2000;89 Suppl 9:Ⅸ/6-10.
    30. Billingham ME. Cardiac transplant atherosclerosis. Transplant Proc 1987; 19(4 Suppl 5):19-25.
    31. Uretsky BF, Murali S, Reddy PS, Rabin B, Lee A, Griffith BP, Hardesty RL, Trento A, Bahnson HT. Development of coronary artery disease in cardiac transplant patients receiving immunosuppressive therapy with cyclosporine and prednisone. Circulation 1987; 76(4):827-34.
    32. Barker SG, Tilling LC, Miller GC, Beesley JE, Fleetwood G, Stavri GT, Baskerville PA, Martin JF. The adventitia and atherogenesis:removal initiates intimal proliferation in the rabbit which regresses on generation of a 'neoadventitia'. Atherosclerosis 1994; 105(2):131-44.
    33. Higuchi ML, Gutierrez PS, Bezerra HG, Palomino SA, Aiello VD, Silvestre JM, Libby P, Ramires JA. Comparison between adventitial and intimal inflammation of ruptured and nonruptured atherosclerotic plaques in human coronary arteries. Arq Bras Cardiol 2002; 79(1):20-4.
    34. Sun WY, Lu XS, Bi YW, Wu SM. [Study of adventitial inflammation and inflammatory factors in pathogenesis of allograft arteriosclerosis in rats]. Zhonghua Yi Xue Za Zhi 2009; 89(35):2504-8.
    35. Sun H, Lu X, Wu S, Sun W. The effects of C-reactive protein, interleukin-6, and tumor necrosis factor-alpha in rat allograft adventitial inflammation and allograft arteriosclerosis. Transplant Proc 2009; 41(9):3909-12.
    36. Okamoto E, Couse T, De Leon H, Vinten-Johansen J, Goodman RB, Scott NA, Wilcox JN. Perivascular inflammation after balloon angioplasty of porcine coronary arteries. Circulation 2001; 104(18):2228-35.
    37. Li Q Chen SJ, Oparil S, Chen YF, Thompson JA. Direct in vivo evidence demonstrating neointimal migration of adventitial fibroblasts after balloon injury of rat carotid arteries. Circulation 2000; 101(12):1362-5.
    38. Strauss BH, Rabinovitch M. Adventitial fibroblasts:defining a role in vessel wall remodeling. Am J Respir Cell Mol Biol 2000; 22(1):1-3.
    39. Rey FE, Pagano PJ. The reactive adventitia:fibroblast oxidase in vascular function. Arterioscler Thromb Vase Biol 2002; 22(12):1962-71.
    40. Sartore S, Chiavegato A, Faggin E, Franch R, Puato M, Ausoni S, Pauletto P. Contribution of adventitial fibroblasts to neointima formation and vascular remodeling:from innocent bystander to active participant. Circ Res 2001; 89(12): 1111-21.
    41. Seipelt IM, Pahl E, Seipelt RG, Mavroudis C, Backer CL, Stellmach V, Cornwell M, Crawford SE. Neointimal inflammation and adventitial angiogenesis correlate with severity of cardiac allograft vasculopathy in pediatric recipients. J Heart Lung Transplant 2005; 24(8):1039-45.
    42. Xu X, Lu H, Lin H, Li X, Ni M, Sun H, Li C, Jiang H, Li F, Zhang M, Zhao Y, Zhang Y. Aortic adventitial angiogenesis and lymphangiogenesis promote intimal inflammation and hyperplasia. Cardiovasc Pathol 2009; 18(5):269-78.
    43. Henrichot E, Juge-Aubry CE, Pernin A, Pache JC, Velebit V, Dayer JM, Meda P, Chizzolini C, Meier CA. Production of chemokines by perivascular adipose tissue:a role in the pathogenesis of atherosclerosis? Arterioscler Thromb Vasc Biol 2005; 25(12):2594-9.
    44. Gonzalez MC, Arribas SM, Molero F, Fernandez-Alfonso MS. Effect of removal of adventitia on vascular smooth muscle contraction and relaxation. Am J Physiol Heart Circ Physiol 2001; 280(6):H2876-81.
    45. Laflamme K, Roberge CJ, Grenier G, Remy-Zolghadri M, Pouliot S, Baker K, Labbe R, D'Orleans-Juste P, Auger FA, Germain L. Adventitia contribution in vascular tone:insights from adventitia-derived cells in a tissue-engineered human blood vessel. Faseb J 2006; 20(8):1245-7.
    46. Labinaz M, Pels K, Hoffert C, Aggarwal S, O'Brien ER. Time course and importance of neoadventitial formation in arterial remodeling following balloon angioplasty of porcine coronary arteries. Cardiovasc Res 1999; 41(1):255-66.
    47. Faggin E, Puato M, Zardo L, Franch R, Millino C, Sarinella F, Pauletto P, Sartore S, Chiavegato A. Smooth muscle-specific SM22 protein is expressed in the adventitial cells of balloon-injured rabbit carotid artery. Arterioscler Thromb Vase Biol 1999; 19(6):1393-404.
    48. Serini G, Gabbiana G. Modulation of alpha-smooth muscle actin expression in fibroblasts by transforming growth factor-beta isoforms:an in vivo and in vitro study. Wound Repair Regen 1996; 4(2):278-87.
    49. Gao PJ, Li Y, Sun AJ, Liu JJ, Ji KD, Zhang YZ, Sun WL, Marche P, Zhu DL. Differentiation of vascular myofibroblasts induced by transforming growth factor-betal requires the involvement of protein kinase Calpha. J Mol Cell Cardiol 2003; 35(9):1105-12.
    50. Jiang Z, Yu P, Tao M, Fernandez C, Ifantides C, Moloye O, Schultz GS, Ozaki CK, Berceli SA. TGF-beta-and CTGF-mediated fibroblast recruitment influences early outward vein graft remodeling. Am J Physiol Heart Circ Physiol 2007; 293(1): H482-8.
    51. Shi-Wen X, Chen Y, Denton CP, Eastwood M, Renzoni EA, Bou-Gharios G, Pearson JD, Dashwood M, du Bois RM, Black CM, Leask A, Abraham DJ. Endothelin-1 promotes myofibroblast induction through the ETA receptor via a rac/phosphoinositide 3-kinase/Akt-dependent pathway and is essential for the enhanced contractile phenotype of fibrotic fibroblasts. Mol Biol Cell 2004; 15(6): 2707-19.
    52. Desmouliere A, Rubbia-Brandt L, Grau G, Gabbiani G Heparin induces alpha-smooth muscle actin expression in cultured fibroblasts and in granulation tissue myofibroblasts. Lab Invest 1992; 67(6):716-26.
    53. Serini G, Bochaton-Piallat ML, Ropraz P, Geinoz A, Borsi L, Zardi L, Gabbiani G The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-betal. J Cell Biol 1998; 142(3):873-81.
    54. Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB. Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol 1999; 277(1 Pt 1):C1-9.
    55. Shi Y, O'Brien JE, Jr., Ala-Kokko L, Chung W, Mannion JD, Zalewski A. Origin of extracellular matrix synthesis during coronary repair. Circulation 1997; 95(4): 997-1006.
    56. Zalewski A, Shi Y. Vascular myofibroblasts. Lessons from coronary repair and remodeling. Arterioscler Thromb Vasc Biol 1997; 17(3):417-22.
    57. Scholzen T, Gerdes J. The Ki-67 protein:from the known and the unknown. J Cell Physiol 2000; 182(3):311-22.
    58. Linden MD, Torres FX, Kubus J, Zarbo RJ. Clinical application of morphologic and immunocytochemical assessments of cell proliferation. Am J Clin Pathol 1992; 97(5 Suppl 1):S4-13.
    59. Kenagy RD, Fukai N, Min SK, Jalikis F. Kohler TR, Clowes AW. Proliferative capacity of vein graft smooth muscle cells and fibroblasts in vitro correlates with graft stenosis. J Vase Surg 2009; 49(5):1282-8.
    60. Shi Y, Pieniek M, Fard A, O'Brien J, Mannion JD, Zalewski A. Adventitial remodeling after coronary arterial injury. Circulation 1996; 93(2):340-8.
    61. Patel S, Shi Y, Niculescu R, Chung EH, Martin JL, Zalewski A. Characteristics of coronary smooth muscle cells and adventitial fibroblasts. Circulation 2000; 101(5): 524-32.
    62. Smith RS, Smith TJ, Blieden TM, Phipps RP. Fibroblasts as sentinel cells. Synthesis of chemokines and regulation of inflammation. Am J Pathol 1997; 151(2): 317-22.
    63. De Meyer GR, Van Put DJ, Kockx MM, Van Schil P, Bosmans R, Bult H, Buyssens N, Vanmaele R, Herman AG Possible mechanisms of collar-induced intimal thickening. Arterioscler Thromb Vase Biol 1997; 17(10):1924-30.
    64. Moreno PR, Purushothaman KR, Fuster V, O'Connor WN. Intimomedial interface damage and adventitial inflammation is increased beneath disrupted atherosclerosis in the aorta:implications for plaque vulnerability. Circulation 2002; 105(21):2504-11.
    65. Vink A, Schoneveld AH, van der Meer JJ, van Middelaar BJ, Sluijter JP, Smeets MB, Quax PH, Lim SK, Borst C, Pasterkamp G, de Kleijn DP. In vivo evidence for a role of toll-like receptor 4 in the development of intimal lesions. Circulation 2002; 106(15):1985-90.
    66. Garcia-Trapero J, Carceller F, Dujovny M, Cuevas P. Perivascular delivery of neomycin inhibits the activation of NF-kappaB and MAPK pathways, and prevents neointimal hyperplasia and stenosis after arterial injury. Neurol Res 2004; 26(8): 816-24.
    67. Yamashita A, Shoji K, Tsuruda T, Furukoji E, Takahashi M, Nishihira K, Tamura S, Asada Y. Medial and adventitial macrophages are associated with expansive atherosclerotic remodeling in rabbit femoral artery. Histol Histopathol 2008; 23(2): 127-36.
    68. Isik FF, Coughlin SR, Nelken NA, Clowes AW, Gordon D'. JE gene expression in an animal model of acute arterial graft rejection. J Surg Res 1996; 60(1):224-31.
    69. Mulvihill NT, Foley JB, Murphy RT, Curtin R, Crean PA, Walsh M. Risk stratification in unstable angina and non-Q wave myocardial infarction using soluble cell adhesion molecules. Heart 2001; 85(6):623-7.
    70. Schaeffer C, Diab-Assef M, Plateroti M, Laurent-Huck F, Reimund JM, Kedinger M, Foltzer-Jourdainne C. Cytokine gene expression during postnatal small intestinal development:regulation by glucocorticoids. Gut 2000; 47(2):192-8.
    71. Rectenwald JE, Moldawer LL, Huber TS, Seeger JM, Ozaki CK. Direct evidence for cytokine involvement in neointimal hyperplasia. Circulation 2000; 102(14): 1697-702.
    72. Porter KE, Turner NA, O'Regan DJ, Ball SG. Tumor necrosis factor alpha induces human atrial myofibroblast proliferation, invasion and MMP-9 secretion:inhibition by simvastatin. Cardiovasc Res 2004; 64(3):507-15.
    73. Loppnow H, Werdan K, Reuter G, Flad HD. The interleukin-1 and interleukin-1 converting enzyme families in the cardiovascular system. Eur Cytokine Netw 1998; 9(4):675-80.
    74. Dinarello CA. Biologic basis for interleukin-1 in disease. Blood 1996; 87(6): 2095-147.
    75. Wang X, Romanic AM, Yue TL, Feuerstein GZ, Ohlstein EH. Expression of interleukin-1 beta, interleukin-1 receptor, and interleukin-1 receptor antagonist mRNA in rat carotid artery after balloon angioplasty. Biochem Biophys Res Commun 2000; 271(1):138-43.
    76. Thome SA, Abbot SE, Stevens CR, Winyard PG, Mills PG, Blake DR. Modified low density lipoprotein and cytokines mediate monocyte adhesion to smooth muscle cells. Atherosclerosis 1996; 127(2):167-76.
    77. Pinchuk IV, Beswick EJ, Saada JI, Suarez G, Winston J, Mifflin RC, Di Mari JF, Powell DW, Reyes VE. Monocyte chemoattractant protein-1 production by intestinal myofibroblasts in response to staphylococcal enterotoxin a:relevance to staphylococcal enterotoxigenic disease. J Immunol 2007; 178(12):8097-106.
    78. Dobreva I, Waeber G, James RW, Widmann C. Interleukin-8 secretion by fibroblasts induced by low density lipoproteins is p38 MAPK-dependent and leads to cell spreading and wound closure. J Biol Chem 2006; 281(1):199-205.
    79. An SJ, Boyd R, Wang Y, Qiu X, Wang HD. Endothelin-1 expression in vascular adventitial fibroblasts. Am J Physiol Heart Circ Physiol 2006; 290(2):H700-8.
    80. An SJ, Boyd R, Zhu M, Chapman A, Pimentel DR, Wang HD. NADPH oxidase mediates angiotensin II-induced endothelin-1 expression in vascular adventitial fibroblasts. Cardiovasc Res 2007; 75(4):702-9.
    81. Massague J, Seoane J, Wotton D. Smad transcription factors. Genes Dev 2005; 19(23):2783-810.
    82. Javelaud D, Mauviel A. Mammalian transforming growth factor-betas:Smad signaling and physio-pathological roles. Int J Biochem Cell Biol 2004; 36(7):1161-5.
    83. Moustakas A, Pardali K, Gaal A, Heldin CH. Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation. Immunol Lett 2002; 82(1-2):85-91.
    84. Annes JP, Munger JS, Rifkin DB. Making sense of latent TGFbeta activation. J Cell Sci 2003; 116(Pt 2):217-24.
    85. Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. Faseb J 2004; 18(7):816-27.
    86. Gibbons GH, Pratt RE, Dzau VJ. Vascular smooth muscle cell hypertrophy vs. hyperplasia. Autocrine transforming growth factor-beta 1 expression determines growth response to angiotensin Ⅱ. J Clin Invest 1992; 90(2):456-61.
    87. Brenmoehl J, Miller SN, Hofmann C, Vogl D, Falk W, Scholmerich J, Rogler G. Transforming growth factor-beta 1 induces intestinal myofibroblast differentiation and modulates their migration. World J Gastroenterol 2009; 15(12):1431-42.
    88. Huang M, Sharma S, Zhu LX, Keane MP, Luo J, Zhang L, Burdick MD, Lin YQ, Dohadwala M, Gardner B, Batra RK, Strieter RM, Dubinett SM. IL-7 inhibits fibroblast TGF-beta production and signaling in pulmonary fibrosis. J Clin Invest 2002; 109(7):931-7.
    89. Wells RG, Kruglov E, Dranoff JA. Autocrine release of TGF-beta by portal fibroblasts regulates cell growth. FEBS Lett 2004; 559(1-3):107-10.
    90. Shi Y, O'Brien JE, Jr., Fard A, Zalewski A. Transforming growth factor-beta 1 expression and myofibroblast formation during arterial repair. Arterioscler Thromb Vasc Biol 1996; 16(10):1298-305.
    91. Guo SJ, Wu LY, Shen WL, Chen WD, Wei J, Gao PJ, Zhu DL. Gene profile for differentiation of vascular adventitial myofibroblasts. Sheng Li Xue Bao 2006; 58(4): 337-44.
    92. Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 1993; 122(1):103-11.
    93. Roy SG, Nozaki Y, Phan SH. Regulation of alpha-smooth muscle actin gene expression in myofibroblast differentiation from rat lung fibroblasts. Int J Biochem Cell Biol 2001; 33(7):723-34.
    94. Strutz F, Zeisberg M, Renziehausen A, Raschke B, Becker V, van Kooten C, Muller G TGF-beta 1 induces proliferation in human renal fibroblasts via induction of basic fibroblast growth factor (FGF-2). Kidney Int 2001; 59(2):579-92.
    95. Ellis I, Grey AM, Schor AM, Schor SL. Antagonistic effects of TGF-beta 1 and MSF on fibroblast migration and hyaluronic acid synthesis. Possible implications for dermal wound healing. J Cell Sci 1992; 102 (Pt 3):447-56.
    96. Acharya PS, Majumdar S, Jacob M, Hayden J, Mrass P, Weninger W, Assoian RK, Pure E. Fibroblast migration is mediated by CD44-dependent TGF beta activation. J Cell Sci 2008; 121(Pt 9):1393-402.
    97. Wells RG Fibrogenesis. V. TGF-beta signaling pathways. Am J Physiol Gastrointest Liver Physiol 2000; 279(5):G845-50.
    98. Sanchez-Elsner T, Botella LM, Velasco B, Langa C, Bernabeu C. Endoglin expression is regulated by transcriptional cooperation between the hypoxia and transforming growth factor-beta pathways. J Biol Chem 2002; 277(46):43799-808.
    99. Jiang YL, Dai AG, Li QF, Hu RC. Transforming growth factor-betal induces transdifferentiation of fibroblasts into myofibroblasts in hypoxic pulmonary vascular remodeling. Acta Biochim Biophys Sin (Shanghai) 2006; 38(1):29-36. 100. Nabel EG, Shum L, Pompili VJ, Yang ZY, San H, Shu HB, Liptay S, Gold L, Gordon D. Derynck R, et al. Direct transfer of transforming growth factor beta 1 gene into arteries stimulates fibrocellular hyperplasia. Proc Natl Acad Sci U S A 1993; 90(22):10759-63.
    101. Wolf YG, Rasmussen LM, Ruoslahti E. Antibodies against transforming growth factor-beta 1 suppress intimal hyperplasia in a rat model. J Clin Invest 1994; 93(3): 1172-8.
    102. Ranjzad P, Salem HK, Kingston PA. Adenovirus-mediated gene transfer of fibromodulin inhibits neointimal hyperplasia in an organ culture model of human saphenous vein graft disease. Gene Ther 2009; 16(9):1154-62.
    103. Wolff RA, Malinowski RL, Heaton NS, Hullett DA, Hoch JR. Transforming growth factor-betal antisense treatment of rat vein grafts reduces the accumulation of collagen and increases the accumulation of h-caldesmon. J Vasc Surg 2006; 43(5): 1028-36.
    104. Stenmark KR, Davie N, Frid M, Gerasimovskaya E, Das M. Role of the adventitia in pulmonary vascular remodeling. Physiology (Bethesda) 2006; 21: 134-45.
    105. Shi Y, Patel S, Niculescu R, Chung W, Desrochers P, Zalewski A. Role of matrix metalloproteinases and their tissue inhibitors in the regulation of coronary cell migration. Arterioscler Thromb Vasc Biol 1999; 19(5):1150-5.
    106. Eghbali M. Cardiac fibroblasts:function, regulation of gene expression, and phenotypic modulation. Basic Res Cardiol 1992; 87 Suppl 2:183-9.
    107. Weber KT, Brilla CG, Janicki JS. Myocardial fibrosis:functional significance and regulatory factors. Cardiovasc Res 1993; 27(3):341-8.
    108. Mohazzab KM, Kaminski PM, Wolin MS. NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium. Am J Physiol 1994; 266(6 Pt 2):H2568-72.
    109. Hamilton CA, Miller WH, Al-Benna S, Brosnan MJ, Drummond RD, McBride MW, Dominiczak AF. Strategies to reduce oxidative stress in cardiovascular disease. Clin Sci (Lond) 2004; 106(3):219-34.
    110. Paravicini TM, Chrissobolis S, Drummond GR, Sobey CG. Increased NADPH-oxidase activity and Nox4 expression during chronic hypertension is associated with enhanced cerebral vasodilatation to NADPH in vivo. Stroke 2004; 35(2):584-9.
    111. Ermak G, Davies KJ. Calcium and oxidative stress:from cell signaling to cell death. Mol Immunol 2002; 38(10):713-21.
    112. Chen K, Chen J, Li D, Zhang X, Mehta JL. Angiotensin II regulation of collagen type I expression in cardiac fibroblasts:modulation by PPAR-gamma ligand pioglitazone. Hypertension 2004; 44(5):655-61.
    113. Wang HD, Johns DG, Xu S, Cohen RA. Role of superoxide anion in regulating pressor and vascular hypertrophic response to angiotensin Ⅱ. Am J Physiol Heart Circ Physiol 2002; 282(5):H1697-702.
    114. Wang HD, Xu S, Johns DG, Du Y, Quinn MT, Cayatte AJ, Cohen RA. Role of NADPH oxidase in the vascular hypertrophic and oxidative stress response to angiotensin II in mice. Circ Res 2001; 88(9):947-53.
    115. Wang HD, Pagano PJ, Du Y, Cayatte AJ, Quinn MT, Brecher P, Cohen RA. Superoxide anion from the adventitia of the rat thoracic aorta inactivates nitric oxide. Circ Res 1998; 82(7):810-8.
    116. Di Wang H, Hope S, Du Y, Quinn MT, Cayatte A, Pagano PJ, Cohen RA. Paracrine role of adventitial superoxide anion in mediating spontaneous tone of the isolated rat aorta in angiotensin H-induced hypertension. Hypertension 1999; 33(5): 1225-32.
    117. Pagano PJ, Ito Y, Tornheim K, Gallop PM, Tauber AI, Cohen RA. An NADPH oxidase superoxide-generating system in the rabbit aorta. Am J Physiol 1995; 268(6 Pt 2):H2274-80.
    118. Shen WL, Gao PJ, Che ZQ, Ji KD, Yin M, Yan C, Berk BC, Zhu DL. NAD(P)H oxidase-derived reactive oxygen species regulate angiotensin-Ⅱ induced adventitial fibroblast phenotypic differentiation. Biochem Biophys Res Commun 2006; 339(1): 337-43.
    119. Jacobson GM, Dourron HM, Liu J, Carretero OA, Reddy DJ, Andrzejewski T, Pagano PJ. Novel NAD(P)H oxidase inhibitor suppresses angioplasty-induced superoxide and neointimal hyperplasia of rat carotid artery. Circ Res 2003; 92(6): 637-43.
    120. Paravicini TM, Gulluyan LM, Dusting GJ, Drummond GR. Increased NADPH oxidase activity, gp91phox expression, and endothelium-dependent vasorelaxation during neointima formation in rabbits. Circ Res 2002; 91(1):54-61.
    121. Szocs K, Lassegue B, Sorescu D, Hilenski LL, Valppu L, Couse TL, Wilcox JN, Quinn MT, Lambeth JD, Griendling KK. Upregulation of Nox-based NAD(P)H oxidases in restenosis after carotid injury. Arterioscler Thromb Vase Biol 2002; 22(1): 21-7.
    122. West N, Guzik T, Black E, Channon K. Enhanced superoxide production in experimental venous bypass graft intimal hyperplasia:role of NAD(P)H oxidase. Arterioscler Thromb Vase Biol 2001; 21(2):189-94.
    123. Dourron HM, Jacobson GM, Park JL, Liu J, Reddy DJ, Scheel ML, Pagano PJ. Perivascular gene transfer of NADPH oxidase inhibitor suppresses angioplasty-induced neointimal proliferation of rat carotid artery. Am J Physiol Heart Circ Physiol 2005; 288(2):H946-53.
    124. Kasuga M. Insulin resistance and pancreatic beta cell failure. J Clin Invest 2006; 116(7):1756-60.
    1. Stenmark KR, Davie N, Frid M, Gerasimovskaya E, Das M. Role of the adventitia in pulmonary vascular remodeling. Physiology (Bethesda) 2006; 21:134-45.
    2. Sartore S, Chiavegato A, Faggin E, Franch R, Puato M, Ausoni S, Pauletto P. Contribution of adventitial fibroblasts to neointima formation and vascular remodeling:from innocent bystander to active participant. Circ Res 2001; 89(12): 1111-21.
    3. Kingston PA, Sinha S, David A, Castro MG, Lowenstein PR, Heagerty AM. Adenovirus-mediated gene transfer of a secreted transforming growth factor-beta type II receptor inhibits luminal loss and constrictive remodeling after coronary angioplasty and enhances adventitial collagen deposition. Circulation 2001; 104(21): 2595-601.
    4. Kingston PA, Sinha S, Appleby CE, David A, Verakis T, Castro MG, Lowenstein PR, Heagerty AM. Adenovirus-mediated gene transfer of transforming growth factor-beta3, but not transforming growth factor-betal, inhibits constrictive remodeling and reduces luminal loss after coronary angioplasty. Circulation 2003; 108(22):2819-25.
    5. Wilcox JN, Scott NA. Potential role of the adventitia in arteritis and atherosclerosis. Int J Cardiol 1996; 54 Suppl:S21-35.
    6. Strauss BH, Rabinovitch M. Adventitial fibroblasts:defining a role in vessel wall remodeling. Am J Respir Cell Mol Biol 2000; 22(1):1-3.
    7. Scott NA, Cipolla GD, Ross CE, Dunn B, Martin FH, Simonet L, Wilcox JN. Identification of a potential role for the adventitia in vascular lesion formation after balloon overstretch injury of porcine coronary arteries. Circulation 1996; 93(12): 2178-87.
    8. Wilcox JN, Okamoto EI, Nakahara KI, Vinten-Johansen J. Perivascular responses after angioplasty which may contribute to postangioplasty restenosis:a role for circulating myofibroblast precursors? Ann N Y Acad Sci 2001; 947:68-90; dicussion-2.
    9. Serini G, Gabbiana G. Modulation of alpha-smooth muscle actin expression in fibroblasts by transforming growth factor-beta isoforms:an in vivo and in vitro study. Wound Repair Regen 1996; 4(2):278-87.
    10. Gao PJ, Li Y, Sun AJ, Liu JJ, Ji KD, Zhang YZ, Sun WL, Marche P, Zhu DL. Differentiation of vascular myofibroblasts induced by transforming growth factor-betal requires the involvement of protein kinase Calpha. J Mol Cell Cardiol 2003; 35(9):1105-12.
    11. Jiang Z, Yu P, Tao M, Fernandez C, Ifantides C, Moloye O, Schultz GS, Ozaki CK, Berceli SA. TGF-beta-and CTGF-mediated fibroblast recruitment influences early outward vein graft remodeling. Am J Physiol Heart Circ Physiol 2007; 293(1): H482-8.
    12. Shi-Wen X, Chen Y, Denton CP, Eastwood M, Renzoni EA, Bou-Gharios G, Pearson JD, Dashwood M, du Bois RM, Black CM, Leask A, Abraham DJ. Endothelin-1 promotes myofibroblast induction through the ETA receptor via a rac/phosphoinositide 3-kinase/Akt-dependent pathway and is essential for the enhanced contractile phenotype of fibrotic fibroblasts. Mol Biol Cell 2004; 15(6): 2707-19.
    13. Desmouliere A, Rubbia-Brandt L, Grau G, Gabbiani G Heparin induces alpha-smooth muscle actin expression in cultured fibroblasts and in granulation tissue myofibroblasts. Lab Invest 1992; 67(6):716-26.
    14. Short M, Nemenoff RA, Zawada WM, Stenmark KR, Das M. Hypoxia induces differentiation of pulmonary artery adventitial fibroblasts into myofibroblasts. Am J Physiol Cell Physiol 2004; 286(2):C416-25.
    15. D'Addario M, Arora PD, Ellen RP, McCulloch CA. Regulation of tension-induced mechanotranscriptional signals by the microtubule network in fibroblasts. J Biol Chem 2003; 278(52):53090-7.
    16. Kainulainen T, Pender A, D'Addario M, Feng Y, Lekic P, McCulloch CA. Cell death and mechanoprotection by filamin a in connective tissues after challenge by applied tensile forces. J Biol Chem 2002; 277(24):21998-2009.
    17. Wang J, Chen H, Seth A, McCulloch CA. Mechanical force regulation of myofibroblast differentiation in cardiac fibroblasts. Am J Physiol Heart Circ Physiol 2003; 285(5):H1871-81.
    18. Serini G, Bochaton-Piallat ML, Ropraz P, Geinoz A, Borsi L, Zardi L, Gabbiani G. The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-betal. J Cell Biol 1998; 142(3):873-81.
    19. Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB. Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol 1999; 277(1 Pt 1):C1-9.
    20. Shi Y, O'Brien JE, Jr., Ala-Kokko L, Chung W, Mannion JD, Zalewski A. Origin of extracellular matrix synthesis during coronary repair. Circulation 1997; 95(4): 997-1006.
    21. Zalewski A, Shi Y. Vascular myofibroblasts. Lessons from coronary repair and remodeling. Arterioscler Thromb Vase Biol 1997; 17(3):417-22.
    22. Isik FF, Coughlin SR, Nelken NA, Clowes AW, Gordon D. JE gene expression in an animal model of acute arterial graft rejection. J Surg Res 1996; 60(1):224-31.
    23. Rayner K, Van Eersel S, Groot PH, Reape TJ. Localisation of mRNA for JE/MCP-1 and its receptor CCR2 in atherosclerotic lesions of the ApoE knockout mouse. J Vase Res 2000; 37(2):93-102.
    24. Okamoto E, Couse T, De Leon H, Vinten-Johansen J, Goodman RB, Scott NA, Wilcox JN. Perivascular inflammation after balloon angioplasty of porcine coronary arteries. Circulation 2001; 104(18):2228-35.
    25. Hu W, Polinsky P, Sadoun E, Rosenfeld ME, Schwartz SM. Atherosclerotic lesions in the common coronary arteries of ApoE knockout mice. Cardiovasc Pathol 2005; 14(3):120-5.
    26. Xu F, Ji J, Li L, Chen R, Hu WC. Adventitial fibroblasts are activated in the early stages of atherosclerosis in the apolipoprotein E knockout mouse. Biochem Biophys Res Commun 2007; 352(3):681-8.
    27. Smith RS, Smith TJ, Blieden TM, Phipps RP. Fibroblasts as sentinel cells. Synthesis of chemokines and regulation of inflammation. Am J Pathol 1997; 151(2): 317-22.
    28. Chen K, Chen J, Li D, Zhang X, Mehta JL. Angiotensin Ⅱ regulation of collagen type I expression in cardiac fibroblasts:modulation by PPAR-gamma ligand pioglitazone. Hypertension 2004; 44(5):655-61.
    29. Higuchi ML, Gutierrez PS, Bezerra EG, Palomino SA, Aiello VD, Silvestre JM, Libby P, Ramires JA. Comparison between adventitial and intimal inflammation of ruptured and nonruptured atherosclerotic plaques in human coronary arteries. Arq Bras Cardiol 2002; 79(1):20-4.
    30. Sun WY, Lu XS, Bi YW, Wu SM. [Study of adventitial inflammation and inflammatory factors in pathogenesis of allograft arteriosclerosis in rats]. Zhonghua Yi Xue Za Zhi 2009; 89(35):2504-8.
    31. Sun H, Lu X, Wu S, Sun W. The effects of C-reactive protein, interleukin-6, and tumor necrosis factor-alpha in rat allograft adventitial inflammation and allograft arteriosclerosis. Transplant Proc 2009; 41(9):3909-12.
    32. Li G, Chen SJ, Oparil S, Chen YF, Thompson JA. Direct in vivo evidence demonstrating neointimal migration of adventitial fibroblasts after balloon injury of rat carotid arteries. Circulation 2000; 101(12):1362-5.
    33. Rey FE, Pagano PJ. The reactive adventitia:fibroblast oxidase in vascular function. Arterioscler Thromb Vasc Biol 2002; 22(12):1962-71.
    34. Seipelt IM, Pahl E, Seipelt RG, Mavroudis C, Backer CL, Stellmach V, Cornwell M, Crawford SE. Neointimal inflammation and adventitial angiogenesis correlate with severity of cardiac allograft vasculopathy in pediatric recipients. J Heart Lung Transplant 2005; 24(8):1039-45.
    35. Xu X, Lu H, Lin H, Li X, Ni M, Sun H, Li C, Jiang H, Li F, Zhang M, Zhao Y, Zhang Y. Aortic adventitial angiogenesis and lymphangiogenesis promote intimal inflammation and hyperplasia. Cardiovasc Pathol 2009; 18(5):269-78.
    36. Henrichot E, Juge-Aubry CE, Pernin A, Pache JC, Velebit V, Dayer JM, Meda P, Chizzolini C, Meier CA. Production of chemokines by perivascular adipose tissue:a role in the pathogenesis of atherosclerosis? Arterioscler Thromb Vasc Biol 2005; 25(12):2594-9.
    37. Shi Y, Niculescu R, Wang D, Patel S, Davenpeck KL, Zalewski A. Increased NAD(P)H oxidase and reactive oxygen species in coronary arteries after balloon injury. Arterioscler Thromb Vase Biol 2001; 21(5):739-45.
    38. Shi Y, O'Brien JE, Fard A, Mannion JD, Wang D, Zalewski A. Adventitial myofibroblasts contribute to neointimal formation in injured porcine coronary arteries. Circulation 1996; 94(7):1655-64.
    39. Pinchuk IV, Beswick EJ, Saada JI, Suarez G, Winston J, Mifflin RC, Di Mari JF, Powell DW, Reyes VE. Monocyte chemoattractant protein-1 production by intestinal myofibroblasts in response to staphylococcal enterotoxin a:relevance to staphylococcal enterotoxigenic disease. J Immunol 2007; 178(12):8097-106.
    40. Vink A, Schoneveld AH, van der Meer JJ, van Middelaar BJ, Sluijter JP, Smeets MB, Quax PH, Lim SK, Borst C, Pasterkamp G, de Kleijn DP. In vivo evidence for a role of toll-like receptor 4 in the development of intimal lesions. Circulation 2002; 106(15):1985-90.
    41. Dobreva I, Waeber G, James RW, Widmann C. Interleukin-8 secretion by fibroblasts induced by low density Hpoproteins is p38 MAPK-dependent and leads to cell spreading and wound closure. J Biol Chem 2006; 281(1):199-205.
    42. Schaeffer C, Diab-Assef M, Plateroti M, Laurent-Huck F, Reimund JM, Kedinger M, Foltzer-Jourdainne C. Cytokine gene expression during postnatal small intestinal development:regulation by glucocorticoids. Gut 2000; 47(2):192-8.
    43. An SJ, Boyd R, Wang Y, Qiu X, Wang HD. Endothelin-1 expression in vascular adventitial fibroblasts. Am J Physiol Heart Circ Physiol 2006; 290(2):H700-8.
    44. An SJ, Boyd R, Zhu M, Chapman A, Pimentel DR, Wang HD. NADPH oxidase mediates angiotensin II-induced endothelin-1 expression in vascular adventitial fibroblasts. Cardiovasc Res 2007; 75(4):702-9.
    45. Gabbiani G, Ryan GB, Majne G Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 1971; 27(5):549-50.
    46. Andrade ZA, Guerret S, Fernandes AL. Myofibroblasts in schistosomal portal fibrosis of man. Mem Inst Oswaldo Cruz 1999; 94(1):87-93.
    47. Darby I, Skalli O, Gabbiani G. Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest 1990; 63(1):21-9.
    48. Gan Q, Yoshida T, Li J, Owens GK. Smooth muscle cells and myofibroblasts use distinct transcriptional mechanisms for smooth muscle alpha-actin expression. Circ Res 2007; 101(9):883-92.
    49. Shi Y, Pieniek M, Fard A, O'Brien J, Mannion JD, Zalewski A. Adventitial remodeling after coronary arterial injury. Circulation 1996; 93(2):340-8.
    50. Labinaz M, Pels K, Hoffert C, Aggarwal S, O'Brien ER. Time course and importance of neoadventitial formation in arterial remodeling following balloon angioplasty of porcine coronary arteries. Cardiovasc Res 1999; 41(1):255-66.
    51. Faggin E, Puato M, Zardo L, Franch R, Millino C, Sarinella F, Pauletto P, Sartore S, Chiavegato A. Smooth muscle-specific SM22 protein is expressed in the adventitial cells of balloon-injured rabbit carotid artery. Arterioscler Thromb Vasc Biol 1999; 19(6):1393-404.
    52. Carracedo S, Lu N, Popova SN, Jonsson R, Eckes B, Gullberg D. The fibroblast integrin alphal lbetal is induced in a mechanosensitive manner involving activin A and regulates myofibroblast differentiation. J Biol Chem; 285(14):10434-45.
    53. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 2002; 3(5):349-63.
    54. Hellstrand P, Albinsson S. Stretch-dependent growth and differentiation in vascular smooth muscle:role of the actin cytoskeleton. Can J Physiol Pharmacol 2005; 83(10):869-75.
    55. Skelly CL, Meyerson SL, Curi MA, Loth F, Schwartz LB. The hemodynamics of vein grafts:measurement and meaning. Ann Vasc Surg 2001; 15(1):110-22.
    56. Zhu DL, Herembert T, Marche P. Increased proliferation of adventitial fibroblasts from spontaneously hypertensive rat aorta. J Hypertens 1991; 9(12):1161-8.
    57. Zhang Y, Li Y, Wei R, Wang Z, Bu D, Zhao J, Pang Y, Tang C. Urotensin Ⅱ is an autocrine/paracrine growth factor for aortic adventitia of rat. Regul Pept 2008; 151(1-3):88-94.
    58. Arribas SM, Gonzalez C, Graham D, Dominiczak AF, McGrath JC. Cellular changes induced by chronic nitric oxide inhibition in intact rat basilar arteries revealed by confocal microscopy. J Hypertens 1997; 15(12 Pt 2):1685-93.
    59. Chazova I, Loyd JE, Zhdanov VS, Newman JH, Belenkov Y, Meyrick B. Pulmonary artery adventitial changes and venous involvement in primary pulmonary hypertension. Am J Pathol 1995; 146(2):389-97.
    60. Herrmann J, Samee S, Chade A, Rodriguez Porcel M, Lerman LO, Lerman A. Differential effect of experimental hypertension and hypercholesterolemia on adventitial remodeling. Arterioscler Thromb Vasc Biol 2005; 25(2):447-53.
    61. Krick S, Hanze J, Eul B, Savai R, Seay U, Grimminger F, Lohmeyer J, Klepetko W, Seeger W, Rose F. Hypoxia-driven proliferation of human pulmonary artery fibroblasts:cross-talk between HIF-1 alpha and an autocrine angiotensin system. Faseb J 2005; 19(7):857-9.
    62. Mortimer HJ, Peacock AJ, Kirk A, Welsh DJ. p38 MAP kinase:essential role in hypoxia-mediated human pulmonary artery fibroblast proliferation. Pulm Pharmacol Ther2007; 20(6):718-25.
    63. Siow RC, Mallawaarachchi CM, Weissberg PL. Migration of adventitial myofibroblasts following vascular balloon injury:insights from in vivo gene transfer to rat carotid arteries. Cardiovasc Res 2003; 59(1):212-21.
    64. Sun AJ, Gao PJ, Liu JJ, Ji KD, Zhu DL. [Osteopontin enhances migratory ability of cultured aortic adventitial fibroblasts from spontaneously hypertensive rats]. Sheng Li Xue Bao 2004; 56(1):21-4.
    65. Li G, Chen YF, Greene GL, Oparil S, Thompson JA. Estrogen inhibits vascular smooth muscle cell-dependent adventitial fibroblast migration in vitro. Circulation 1999; 100(15):1639-45.
    66. Wallner K, Sharifi BG, Shah PK, Noguchi S, DeLeon H, Wilcox JN. Adventitial remodeling after angioplasty is associated with expression of tenascin mRNA by adventitial myofibroblasts. J Am Coll Cardiol 2001; 37(2):655-61.
    67. Li L, Zhu DL, Shen WL, Gao PJ. Increased migration of vascular adventitial fibroblasts from spontaneously hypertensive rats. Hypertens Res 2006; 29(2):95-103.
    68. Liu J, Yang F, Yang XP, Jankowski M, Pagano PJ. NAD(P)H oxidase mediates angiotensin Ⅱ-induced vascular macrophage infiltration and medial hypertrophy. Arterioscler Thromb Vase Biol 2003; 23(5):776-82.
    69. Azumi H, Inoue N, Takeshita S, Rikitake Y, Kawashima S, Hayashi Y, Itoh H, Yokoyama M. Expression of NADH/NADPH oxidase p22phox in human coronary arteries. Circulation 1999; 100(14):1494-8.
    70. Schwartz CJ, Mitchell JR. Cellular infiltration of the human arterial adventitia associated with atheromatous plaques. Circulation 1962; 26:73-8.
    71. Tieu BC, Lee C, Sun H, Lejeune W, Recinos A,3rd, Ju X, Spratt H, Guo DC, Milewicz D, Tilton RG, Brasier AR. An adventitial IL-6/MCP1 amplification loop accelerates macrophage-mediated vascular inflammation leading to aortic dissection in mice. J Clin Invest 2009; 119(12):3637-51.
    72. Rectenwald JE, Moldawer LL, Huber TS, Seeger JM, Ozaki CK. Direct evidence for cytokine involvement in neointimal hyperplasia. Circulation 2000; 102(14): 1697-702.
    73. Guan Z, Baier LD, Morrison AR. p38 mitogen-activated protein kinase down-regulates nitric oxide and up-regulates prostaglandin E2 biosynthesis stimulated by interleukin-lbeta. J Biol Chem 1997; 272(12):8083-9.
    74. Mulvihill NT, Foley JB, Murphy RT, Curtin R, Crean PA, Walsh M. Risk stratification in unstable angina and non-Q wave myocardial infarction using soluble cell adhesion molecules. Heart 2001; 85(6):623-7.
    75. Frostegard J, Wu R, Haegerstrand A, Patarroyo M, Lefvert AK, Nilsson J. Mononuclear leukocytes exposed to oxidized low density lipoprotein secrete a factor that stimulates endothelial cells to express adhesion molecules. Atherosclerosis 1993; 103(2):213-9.
    76. Ryan ST, Koteliansky VE, Gotwals PJ, Lindner V. Transforming growth factor-beta-dependent events in vascular remodeling following arterial injury. J Vase Res 2003; 40(1):37-46.
    77. Roy SG, Nozaki Y, Phan SH. Regulation of alpha-smooth muscle actin gene expression in myofibroblast differentiation from rat lung fibroblasts. Int J Biochem Cell Biol 2001; 33(7):723-34.
    78. Shi Y, O'Brien JE, Jr., Fard A, Zalewski A. Transforming growth factor-beta 1 expression and myofibroblast formation during arterial repair. Arterioscler Thromb VascBiol 1996; 16(10):1298-305.
    79. Zhou HY, Chen WD, Zhu DL, Wu LY, Zhang J, Han WQ, Li JD, Yan C, Gao PJ. The PDEl A-PKCalpha signaling pathway is involved in the upregulation of alpha-smooth muscle actin by TGF-betal in adventitial fibroblasts. J Vase Res; 47(1): 9-15.
    80. Mallawaarachchi CM, Weissberg PL, Siow RC. Smad7 gene transfer attenuates adventitial cell migration and vascular remodeling after balloon injury. Arterioscler Thromb Vasc Biol 2005; 25(7):1383-7.
    81. Fujiwara M, Muragaki Y, Ooshima A. Keloid-derived fibroblasts show increased secretion of factors involved in collagen turnover and depend on matrix metalloproteinase for migration. Br J Dermatol 2005; 153(2):295-300.
    82. Shi ZD, Ji XY, Qazi H, Tarbell JM. Interstitial flow promotes vascular fibroblast, myofibroblast, and smooth muscle cell motility in 3-D collagen I via upregulation of MMP-1. Am J Physiol Heart Circ Physiol 2009; 297(4):H1225-34.
    83. Hattori N, Mochizuki S, Kishi K, Nakajima T, Takaishi H, D'Armiento J, Okada Y. MMP-13 plays a role in keratinocyte migration, angiogenesis, and contraction in mouse skin wound healing. Am J Pathol 2009; 175(2):533-46.
    84. Mirastschijski U, Haaksma CJ, Tomasek JJ, Agren MS. Matrix metalloproteinase inhibitor GM 6001 attenuates keratinocyte migration, contraction and myofibroblast formation in skin wounds. Exp Cell Res 2004; 299(2):465-75.
    85. Shi Y, Patel S, Niculescu R, Chung W, Desrochers P, Zalewski A. Role of matrix metalloproteinases and their tissue inhibitors in the regulation of coronary cell migration. Arterioscler Thromb Vasc Biol 1999; 19(5):1150-5.
    86. Wang HD, Johns DG, Xu S, Cohen RA. Role of superoxide anion in regulating pressor and vascular hypertrophic response to angiotensin Ⅱ. Am J Physiol Heart Circ Physiol 2002; 282(5):H1697-702.
    87. Wang HD, Xu S, Johns DG, Du Y, Quinn MT, Cayatte AJ, Cohen RA. Role of NADPH oxidase in the vascular hypertrophic and oxidative stress response to angiotensin Ⅱ in mice. Circ Res 2001; 88(9):947-53.
    88. Wang HD, Pagano PJ, Du Y, Cayatte AJ, Quinn MT, Brecher P, Cohen RA. Superoxide anion from the adventitia of the rat thoracic aorta inactivates nitric oxide. Circ Res 1998; 82(7):810-8.
    89. Di Wang H, Hope S, Du Y, Quinn MT, Cayatte A, Pagano PJ, Cohen RA. Paracrine role of adventitial superoxide anion in mediating spontaneous tone of the isolated rat aorta in angiotensin II-induced hypertension. Hypertension 1999; 33(5): 1225-32.
    90. Pagano PJ, Ito Y, Tornheim K, Gallop PM, Tauber AI, Cohen RA. An NADPH oxidase superoxide-generating system in the rabbit aorta. Am J Physiol 1995; 268(6 Pt 2):H2274-80.
    91. Haurani MJ, Pagano PJ. Adventitial fibroblast reactive oxygen species as autacrine and paracrine mediators of remodeling:bellwether for vascular disease? Cardiovasc Res 2007; 75(4):679-89.
    92. Chamseddine AH, Miller FJ, Jr. Gp91phox contributes to NADPH oxidase activity in aortic fibroblasts but not smooth muscle cells. Am J Physiol Heart Circ Physiol 2003; 285(6):H2284-9.
    93. Shen WL, Gao PJ, Che ZQ, Ji KD, Yin M, Yan C, Berk BC, Zhu DL. NAD(P)H oxidase-derived reactive oxygen species regulate angiotensin-II induced adventitial fibroblast phenotypic differentiation. Biochem Biophys Res Commun 2006; 339(1): 337-43.
    94. Mugge A, Elwell JH, Peterson TE, Hofmeyer TG, Heistad DD, Harrison DG. Chronic treatment with polyethylene-glycolated superoxide dismutase partially restores endothelium-dependent vascular relaxations in cholesterol-fed rabbits. Circ Res 1991; 69(5):1293-300.
    95. Seshiah PN, Weber DS, Rocic P, Valppu L, Taniyama Y, Griendling KK. Angiotensin Ⅱ stimulation of NAD(P)H oxidase activity:upstream mediators. Circ Res 2002; 91(5):406-13.
    96. Mohazzab KM, Kaminski PM, Wolin MS. NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium. Am J Physiol 1994; 266(6 Pt 2):H2568-72.
    97. Ambasta RK, Kumar P, Griendling KK, Schmidt HH, Busse R, Brandes RP. Direct interaction of the novel Nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase. J Biol Chem 2004; 279(44): 45935-41.
    98. Paravicini TM, Gulluyan LM, Dusting GJ, Drummond GR. Increased NADPH oxidase activity, gp91phox expression, and endothelium-dependent vasorelaxation during neointima formation in rabbits. Circ Res 2002; 91(1):54-61.
    99. Szocs K, Lassegue B, Sorescu D, Hilenski LL, Valppu L, Couse TL, Wilcox JN, Quinn MT, Lambeth JD, Griendling KK. Upregulation of Nox-based NAD(P)H oxidases in restenosis after carotid injury. Arterioscler Thromb Vasc Biol 2002; 22(1): 21-7.
    100. West N, Guzik T, Black E, Channon K. Enhanced superoxide production in experimental venous bypass graft intimal hyperplasia:role of NAD(P)H oxidase. Arterioscler Thromb Vasc Biol 2001; 21(2):189-94.
    101. Liu JQ, Zelko IN, Erbynn EM, Sham JS, Folz RJ. Hypoxic pulmonary hypertension:role of superoxide and NADPH oxidase (gp91phox). Am J Physiol Lung Cell Mol Physiol 2006; 290(1):L2-10.
    102. Weaver M, Liu J, Pimentel D, Reddy DJ, Harding P, Peterson EL, Pagano PJ. Adventitial delivery of dominant-negative p67phox attenuates neointimal hyperplasia of the rat carotid artery. Am J Physiol Heart Circ Physiol 2006; 290(5):HI 933-41.
    103. Jacobson GM, Dourron HM, Liu J, Carretero OA, Reddy DJ, Andrzejewski T, Pagano PJ. Novel NAD(P)H oxidase inhibitor suppresses angioplasty-induced superoxide and neointimal hyperplasia of rat carotid artery. Circ Res 2003; 92(6): 637-43.
    104. Dourron HM, Jacobson GM, Park JL, Liu J, Reddy DJ, Scheel ML, Pagano PJ. Perivascular gene transfer of NADPH oxidase inhibitor suppresses angioplasty-induced neointimal proliferation of rat carotid artery. Am J Physiol Heart Circ Physiol 2005; 288(2):H946-53.
    105. Sharp PA, Zamore PD. Molecular biology. RNA interference. Science 2000; 287(5462):2431-3.
    106. Kawasaki H, Taira K. Short hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Res 2003; 31(2):700-7.
    107. Caplen NJ, Fleenor J, Fire A, Morgan RA. dsRNA-mediated gene silencing in cultured Drosophila cells:a tissue culture model for the analysis of RNA interference. Gene 2000; 252(1-2):95-105.
    108. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391(6669):806-11.
    109. Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi:double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000; 101(1):25-33.
    110.de Fougerolles A, Novobrantseva T. siRNA and the lung:research tool or therapeutic drug? Curr Opin Pharmacol 2008; 8(3):280-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700