慢病毒介导α-反义寡核苷酸对β-地中海贫血小鼠的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景针对β-地中海贫血的α珠蛋白链相对过剩这一主要病理基础,有研究报道应用反义寡核苷酸技术调控人α-珠蛋白基因表达,结果显示α-反义寡核苷酸能有效地抑制体外培养的重型β-地中海贫血红系细胞α-珠蛋白基因表达,改善珠蛋白基因α/β+γ的比例失衡。然而,对于人α-反义寡核苷酸治疗β-地中海贫血的体内试验研究尚未见报道。
     目的建立人源化水平较高的人源非肥胖糖尿病/重症联合免疫缺陷(NOD/SCID)小鼠模型,在此基础上建立人源β-地中海贫血小鼠模型,并构建介导人α-反义寡核苷酸的慢病毒载体,探讨慢病毒载体介导α-反义寡核苷酸对人源β-地中海贫血小鼠模型的作用。
     方法1、将人正常骨髓或脐血单个核细胞分别移植给经不同方案和剂量预处理的NOD/SCID小鼠,移植后小鼠腹腔注射重组人细胞因子。观察小鼠存活情况,移植6周后检测小鼠骨髓及外周血人-CD45+细胞比例。
     2、将β-地中海贫血患者的骨髓单个核细胞,经尾静脉输注给经全身照射预处理的NOD/SCID小鼠,移植后小鼠腹腔注射重组人细胞因子。观察小鼠体重等一般状况,移植5周后取小鼠骨髓及外周血,检测人CD45+细胞比例,并行血红蛋白电泳、珠蛋白肽链聚丙烯酰胺凝胶电泳、人β-地贫基因分析及透射电镜观察小鼠外周血及骨髓红系细胞内α-珠蛋白链的沉积情况,取小鼠的肝脏和脾脏行大体、普通病理及铁染色检查。
     3、针对人α-反义寡核苷酸序列,通过双限制性内切酶消化和连接的方法构建pGCSIL-vshRNA-GFP载体质粒,接着该质粒转化感受态的大肠杆菌E.coliDH5α,通过PCR及基因测序鉴定阳性克隆,再经Lipofectamine 2000将pGCSIL-vshRNA-GFP,pHelper 1.0和pHelper 2.0三质粒系统共转染293 T细胞包装病毒,通过绿色荧光蛋白的表达测定收集的病毒滴度。此外,同样方法制备随机序列慢病毒载体并包装纯化。
     4、将介导α-反义寡核苷酸的慢病毒载体,感染β-地中海贫血患者骨髓CD34+细胞后,再输注给经全身照射预处理的NOD/SCID小鼠,并以输注未经感染的β-地贫骨髓细胞、感染随机序列慢病毒的β-地贫骨髓细胞、正常骨髓CD34+细胞及空白小鼠为对照。观察小鼠体重等一般状况,移植6周后,取小鼠骨髓及外周血,检测人CD45+细胞比例,并行血红蛋白电泳及人β-地贫基因分析,取小鼠的肝脏和脾脏行大体、普通病理及铁染色检查。
     结果1、全身照射(加或不加环磷酰胺)骨髓移植组和全身照射(加或不加环磷酰胺)脐血移植组小鼠输注人单个核细胞数分别为(0.656 0±0.008 9)×106和(4.077 5±0.845 0)×106。全身照射/环磷酰胺组死亡率均为100%,全身照射组死亡率均为33.3%,且全身照射剂量越大,死亡率越高。移植6周后,小鼠骨髓中人CD45+细胞的比例,全身照射脐血移植组13号和6号小鼠分别为59.61%和21.46%,而全身照射骨髓移植组2号和8号小鼠其比例均为0,空白对照组小鼠比例均为0。
     2、β-地中海贫血患者骨髓细胞移植NOD/SCID小鼠5周后,检测小鼠骨髓和外周血人CD45+细胞比例分别为:β-地贫/HbE骨髓移植组:7.21%、4.08%(+47天),7.37%、6.03%(+61天),β-地贫骨髓移植组:8.17%、3.43%(+36天),16.82%、8.89%(+45天)。移植组小鼠血红蛋白电泳可见HbA2条带,肽链分析显示α链的条带要比β链的条带浓和宽,β-地贫基因检测结果与供者相符,部分红系细胞内出现电子致密物(过剩α-珠蛋白肽链)沉积。移植组小鼠脾脏长度与其体重的比值比空白对照组的大[(0.5762±0.0451)vs(0.3628±0.0340)mm/g,P=0.000],肝脾出现较明显的铁沉积。
     3、重组质粒的外源基因PCR鉴定正确,基因测序结果与所需要的α-ASON序列完全一致,浓缩后慢病毒滴度为5×109TU/ml。
     4、慢病毒所感染的β-地贫骨髓细胞移植NOD/SCID小鼠,移植后6周各组小鼠与移植前体重比较:正常骨髓移植组和空白对照组体重增加或显著增加,而其余小鼠体重减轻或不增加。移植后6周各移植组小鼠骨髓和外周血能检测到人CD45+细胞(0.01-8.39%),且输注β-地中海贫血患者细胞(不论是否输注慢病毒感染细胞)的小鼠可检测到与供者相符的人β-地贫突变基因,输注β-地贫患者细胞的小鼠脾脏长度与其体重的比值比正常骨髓移植及空白对照组的大([0.6848±0.0886)v(s0.5573±0.0088)mm/g,P=0.016]。在α-ASON-LV感染β-地贫骨髓细胞移植组,肝脾(尤其脾)铁沉积比β-地贫骨髓移植组和NC-GFP-LV感染β-地贫骨髓细胞移植组的程度轻。
     结论在输注造血干细胞数量达阈剂量的基础上,尽可能提高预处理的强度,并使用人细胞因子可提高人源NOD/SCID小鼠模型的人源化水平。将β-地中海贫血患者骨髓单个核细胞移植给NOD/SCID小鼠,可建立人源化β-地中海贫血小鼠模型。所构建介导α-反义寡核苷酸的慢病毒载体感染人β-地贫骨髓细胞植入NOD/SCID小鼠,有可能减轻人源β-地中海贫血小鼠模型的铁沉积。慢病毒载体介导α-反义寡核苷酸对人源β-地中海贫血小鼠模型的作用有待进一步研究。
Objective To generate humanizedβ-thalassemia mice models and construct recombinant lentiviral(LV) vectors carrying humanα-antisense oligonucleotide, to explore the role of lentiviral vectors carrying humanα-antisense oligonucleotide in humanizedβ-thalassemia mice models.
     Methods 1.The human bone marrow or cord blood mononuclear cells were transplanted into NOD/SCID mice pretreated with the different schemes and dosage. After transplantation, human recombinant growth factors consisting of rhEPO and rhGM-CSF were injected into the mice intraperitoneally. The survival status of the mice was recorded to calculate death rate. Six weeks after the transplantation, flow cytometric detection of human cells in murine tissues (bone marrow and blood) was performed with monoclonal antibodies against human CD45.
     2.The bone marrow mononuclear cells ofβ-thalassemia patients were transplanted into the sublethally irradiated NOD/SCID mice. After transplantation, human recombinant growth factors consisting of rhEPO and rhGM-CSF were injected into the mice intraperitoneally. Five weeks after the transplantation, flow cytometric detection of human cells in murine tissues (bone marrow and blood) was performed with monoclonal antibodies against human CD45. Electrophoresis of hemoglobin, analysis of hemoglobin chains and detection ofβ-thalassemia gene mutations were performed in murine tissues (bone marrow or blood). Theα-globin chain precipitates in erythroid cells were observed in electron microscopy.In addition,spleen and liver of the mice were removed, observed,embedded,and sectioned.Specimens were stained with hematoxylin and eosin and iron stains (Prussian blue).
     3.According to the humanα-antisense oligonucleotide sequence, pGCSIL- vshRNA-GFP plasmid was constructed by double restriction enzyme digestion and ligation, and then the plasmid was transformed into E.coliDH5α. Purified pGCSIL-vshRNA-GFP plasmids from the positive clones was confirmed by PCR and sequencing. 293T cells were cotransfected with lentiviral vector pGCSIL-vshRNA-GFP, pHelper 1.0 and pHelper 2.0 by Lipofectamine 2000 to produce lentivirus. The titer of virus was tested according to the expression level of green fluorescent protein. In addition, with the same methods, recombinant lentiviral vectors for NC sequence were constructed.
     4.The bone marrow CD34+ cells ofβ-thalassemia patients were transduced by lentiviral vectors carrying humanα-antisense oligonucleotide. Then the transduced cells were transplanted into the sublethally irradiated NOD/ SCID mice by tail vein injection,while non- transducedβ-thalassemia cells,β-thalassemia cells transduced by NC-GFP-LV and normal bone marrow cells were used as controls. After transplantation, the general conditions such as body weight of the mice were observed. Six weeks after the transplantation, flow cytometric detection of human cells in murine tissues (bone marrow and blood) was performed with monoclonal antibodies against human CD45. Electrophoresis of hemoglobin and detection ofβ-thalassemia gene mutations were performed in murine tissues (bone marrow or blood). In addition, spleen and liver of the mice were removed, observed, embedded, and sectioned. Specimens were stained with hematoxylin and eosin and iron stains.
     Results 1.The death rates of the mice in TBI/CY bone marrow transplantation group and TBI/CY cord blood transplantation group were all 100%.While the death rates of the mice in TBI bone marrow transplantation group and TBI cord blood transplantation group were all 33.3%. In TBI cord blood transplantation group, the percentage of human CD45+ cells in the bone marrow of the No. 13 and the No.6 mouse was 59.61% and 21.46%, respectively at week 6 after transplantation. While in TBI bone marrow transplantation group and control group, the percentage of that of each mouse was 0, respectively.
     2.Five weeks after transplantation, in theβ-thalassemia/HbE bone marrow transplantation group, the percentages of human CD45+ cells in murine tissues (bone marrow and blood) were 7.21% and 4.08% in +47 day, 7.37% and 6.03% in +61 day,respectively. And in theβ-thalassemia bone marrow transplantation group , those were 8.17% and 3.43% in +36 day, 16.82% and 8.89% in +45 day,respectively. There were HbA2 bands in hemoglobin electrophoresis of the transplantation group mice. Theirα-globin chain bands were thicker and wider than theβ-chain in hemoglobin chains analysis. In the transplantation group mice, the results ofβ-thalassemia gene mutations correspond with the donor. There wereα-globin chain precipitates in some erythroid cells.The ratios of the spleen length to body weight of the transplantation group mice were greater than those of control group[(0.5762±0.0451)vs(0.3628±0.0340)mm/g,P=0.000]. The iron deposition was observed in liver and spleen of the transplantation group mice.
     3.The exogenous gene sequence of the recombinant plasmids was completely in accordance with that of the humanα-antisense oligonucleotide. The titer of concentrated virus was 5×109TU/ml.
     4.Six weeks after the transplantation, the mice transplanted with normal bone marrow cells and blank mice became heavier, and other mice lost or maintained their weight. In bone marrow and blood of the mice being transplanted with human bone marrow cells, human CD45+ cells could be detected. In mice being transplanted withβ-thalassemia bone marrow cells (non-transduced or transduced by LV), the results ofβ-thalassemia gene mutations correspond with the donor. The ratio of the spleen length to body weight of the mice being transplanted withβ-thalassemia bone marrow cells (non-transduced or transduced by LV) were greater than that of other mice([0.6848±0.0886)v(s0.5573±0.0088)mm/g,P=0.016]. The iron deposition observed in liver and spleen of the mice being transplanted withα-ASON- LV-transducedβ-thalassemia bone marrow cells was less than that of the mice transplanted with non-transduced or NC-GFP-LV-transducedβ-thalassemia bone marrow cells.
     Conclusions The method whichβ-thalassemia bone marrow cells were transplanted into the sublethally irradiated NOD/SCID mice can generate humanizedβ-thalassemia mice models succesfully. The iron deposition of humanizedβ-thalassemia mice models was possibly reduced by lentiviral vectors carrying humanα-antisense oligonucleotide. The role of lentiviral vectors carrying humanα-antisense oligonucleotide in humanizedβ-thalassemia mice need to be observed continually.
引文
1 Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse.Nature,1983,301(5900):527–530.
    2 Hesselton RM, Greiner DL, Mordes JP, et al. High levels of human peripheral blood mononuclear cell engraftment and enhanced susceptibility to human immunodeficiency virus type 1 infection in NOD/LtSz-scid/scid mice. J Inf Dis,1995,172:974-982.
    3于文俊,杨文华,史哲新,等.NOD/SCID小鼠在实验血液学研究中的应用.中国实验血液学杂志,2008,16(4):964-968.
    4 Yonou H, Yokose T, Kamijo T, et al. Establishment of a novel species- and tissue-specific metastasis model of human prostate cancer in humanized non-obese diabetic/severe combined immunodeficient mice engrafted with human adult lung and bone. Cancer Res, 2001,61(5):2177-2182.
    5 Bente DA, Melkus MW, Garcia JV, et al. Dengue fever in humanized NOD/SCID mice. J Virol, 2005,79(21):13797-13799.
    6 Lan P, Tonomura N, Shimizu A, et al. Reconstitution of a functional human immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+ cell transplantation. Blood, 2006,108(2):487-492.
    7 Watanabe S, Terashima K, Ohta S, et al. Hematopoietic stem cell-engrafted NOD/SCID/IL2Rgamma null mice develop human lymphoid systems and induce long-lasting HIV-1 infection with specific humoral immune responses. Blood, 2007,109(1):212-218.
    8 King M, Pearson T, Shultz LD, et al. Development of new-generation HU-PBMC-NOD/SCID mice to study human islet alloreactivity. Ann N Y Acad Sci, 2007,1103:90-93.
    9 Lin C, Chen S, Yang L, et al. Evaluation of TCR Vbeta subfamily T cell expansion in NOD/SCID mice transplanted with human cord blood hematopoietic stem cells. Hematology, 2007,12(4):325-330.
    10 Tonomura N, Habiro K, Shimizu A, et al. Antigen-specific human T-cell responses and T cell-dependent production of human antibodies in a humanized mouse model. Blood, 2008,111(8):4293-4296.
    11 Suzuki K, Hiramatsu H, Fukushima-Shintani M, et al. Efficient assay for evaluating human thrombopoiesis using NOD/SCID mice transplanted with cord blood CD34+ cells. Eur J Haematol, 2007,78(2):123-130.
    12 Salam M A, Nakao R, Yonezawa H, et al. Human T-cell responses to oral streptococci in human PBMC-NOD/SCID mice.Oral Microbiol Immunol, 2006,21(3):169-176.
    13赖颖晖,赖永榕,卢玉英,等.人胎儿血造血干/祖细胞的生物学特性及其移植实验.中国组织工程研究与临床康复,2006,10(29):160-163.
    14 Cashman JD, Eaves CJ. Human growth factor-enhanced regeneration of transplantable human hematopoietic stem cells in nonobese diabetic/severe combined immunodeficient mice. Blood, 1999,93(2):481-487.
    15 Perez LE, Rinder HM, Wang C, et al. Xenotransplantation of immunodeficient mice with mobilized human blood CD34+ cells provides an in vivo model for human megakaryocytopoiesis and platelet production. Blood, 2001,97(6):1635-1643.
    16 Ramírez M, Regidor C, Marugán I, et al. Engraftment kinetics of human CD34+ cells from cord blood and mobilized peripheral blood co- transplanted into NOD/SCID mice. Bone Marrow Transplant, 2005, 35(3): 271-275.
    17马俐君,胡晓霞,周虹,等.不同时相移植人骨髓间充质干细胞对人脐血CD34+细胞植入NOD /SC ID小鼠的影响.中国实验血液学杂志, 2008,16 (2):355–359.
    18 Tijssen MR,van Hennik PB, di Summa1 F, et al.Transplantation of human peripheral blood CD34-positive cells in combination with ex vivo generated megakaryocytes results in fast platelet formation in NOD/SCID mice. Leukemia, 2008, 22(1):203–208.
    19吴祖泽,贺福初,裴雪涛.造血调控.上海:上海医科大学出版社, 2000:240.
    20 Bridenbaugh S, Kenins L, Bouliong-Pillai E, et al. Clinical stem-cell sources contain CD8+CD3+ T-cell receptor-negative cells that facilitate bone marrow repopulation with hematopoietic stem cells. Blood, 2008, 111(3): 1735-3178.
    21 Bhatia M, Wang JC, Kapp U,et al. Purification of primitive human hematopoietic cells capable of repopulating?immune-deficient?mice. Proc Natl Acad Sci U S A,1997, 94(10):5320-5325.
    22 Greiner DL, Hesselton RA, Shultz LD. SCID Mouse Models of Human Stem Cell Engraftment. Stem Cells, 1998,16(3):166-177.
    23 Ural SH, Sammel MD, Blakemore KJ . Determination of engraftment potential of human cord blood stem-progenitor cells as a function of donor cell dosage and gestational age in the NOD/SCID mouse model.Am J Obstet Gynecol,2005,193(3):990-994.
    24林晨,谭玉波,白雪,等.人源化NOD/SCID小鼠免疫细胞的动态变化与鉴定.中国病理生理杂志, 2007,23(5):986–990.
    25 Hogan CJ, Shpall EJ, McNulty O, et al. Engraftment and development of human CD34(+)- enriched cells from umbilical cord blood in NOD/ LtSz-scid/scid mice.Blood,1997,90(1):85-96.
    26 Robert-Richard E,Ged C,Ortet J,et al.Human cell engraftment after busulfan or irradiation conditioning of NOD/SCID mice. Haematologica, 2006, 91(10): 1384.
    27张颢,龚伟,孟磊,等.人脐带间充质干细胞对NOD /SCID小鼠造血重建的影响.解放军医学杂志,2008,33(1):39-41,51.
    28 Ballen K, Becker PS, Greiner D, et al.Effect of ex vivo cytokine treatment on human cord blood engraftment in NOD-scid mice.Br J Haematol, 2000,108(3):629-40.
    29 Ueda T,Tsuji K, Yoshino H,et al. Expansion of human NOD/SCID- repopulating cells by stem cell factor, Flk2/Flt3 ligand, thrombopoietin, IL-6, and soluble IL-6 receptor. J Clin Invest, 2000,105(7):1013-1021.
    30 Heike Y, Ohira T, Takahashi M,et al. Long-term human hematopoiesis in SCID-hu mice bearing transplanted fragments of adult bone and bone marrow cells. Blood, 1995,86(2):524-30.
    1李才主编.人类疾病动物模型的复制.北京:人民卫生出版社, 2008.
    2刘容容,马劼,陈萍,等.脂质体转染反义寡核苷酸对重型β-地中海贫血红系细胞α-珠蛋白的调控作用.中华血液学杂志,2009,30(6):385-389.
    3龙桂芳,张俊武主编.血红蛋白与血红蛋白病.广西科学技术出版社,2003.
    4 Moi P, Sadelain M.Towards the genetic treatment of beta-thalassemia: new disease models, new vectors, new cells. Haematologica,2008, 93(3): 325-30.
    5 Skow LC, Burkhart BA, Johnson FM, et al. A mouse model for beta- thalassemia. Cell, 1983,34:1043-1052.
    6 Ciavatta DJ , Ryan TM, Farmer SC,et al. Mouse model of human beta zero thalassemia: targeted deletion of the mouse beta maj- and beta min-globin genes in embryonic stem cells. Proc Natl Acad Sci U S A , 1995, 92 (20) :9259-9263.
    7 Yang B, Kirby S, Lewis J,et al. A mouse model for beta 0-thalassemia. Proc Natl Acad Sci U S A,1995, 92(25): 11608-11612.
    8 Bohl D, Bosch A, Cardona A, et al. Improvement of erythropoiesis in beta-thalassemic mice by continuous erythropoietin delivery from muscle. Blood, 2000, 95 (9) : 2793-2798.
    9 Payen E, Bettan M, Rouyer-Fessard P, et al. Improvement of mouse beta-thalassemia by electrotransfer of erythropoietin cDNA.Exp Hematol, 2001, 29 (3) : 295-300.
    10 Miccio A, Cesari R, Lotti F,et al. In vivo selection of genetically modifiederythroblastic progenitors leads to long-term correction ofβ-thalassemia. Proc Natl Acad Sci U S A, 2008,105 (30),10547–10552.
    11 He Z,Russell JE. Dynamic posttranscriptional regulation of epsilon-globin gene expression in vivo. Blood, 2007,109(2):795-801.
    12 Rivella S, May C, Chadburn A, et al. A novel murine model of Cooley anemia and its rescue by lentiviral-mediated human beta-globin gene transfer. Blood, 2003,101(8):2932-9.
    13 Xie SY, Ren ZR, Zhang JZ,et al. Restoration of the balanced alpha/ beta-globin gene expression in beta654-thalassemia mice using combined RNAi and antisense RNA approach. Hum Mol Genet, 2007, 16(21): 2616-25.
    14刘容容,赖永榕,马劼.脂质体转染反义脱氧寡核苷酸对K562细胞α珠蛋白基因表达及细胞增殖的影响.中国实验血液学杂志,2007,15(5):1065-1069.
    15赖颖晖,赖永榕,王明月,等.人骨髓及脐血单个核细胞移植构建人源化非肥胖糖尿病/重症联合免疫缺陷小鼠模型:可以提高其人源化水平吗?.中国组织工程研究与临床康复,2009,13(32):6249-6254.
    16 Noort WA, Wilpshaar J, Hertogh CD,et al. Similar myeloid recovery despite superior overall engraftment in NOD/SCID mice after transplantation of human CD34+ cells from umbilical cord blood as compared to adult sources. Bone Marrow Transplant,2001, 28(2):163–171.
    17 Puthenveetil G, Scholes J, Carbonell D, et al.Successful correction of the human beta-thalassemia major phenotype using a lentiviral vector.Blood, 2004,104(12):3445-53.
    18 Hesselton RM, Greiner DL, Mordes JP et al. High levels of human peripheral blood mononuclear cell engraftment and enhanced susceptibilityto human immunodeficiency virus type 1 infection in NOD/LtSz-scid/scid mice. J Inf Dis,1995,172:974-982.
    19于文俊,杨文华,史哲新,等.NOD/SCID小鼠在实验血液学研究中的应用.中国实验血液学杂志,2008,16(4):964-968.
    20 Hogan C J, Shpall E J, McNulty O, et al. Engraftment and Development of Human CD34+-Enriched Cells From Umbilical Cord Blood in NOD/ LtSz-scid/scid Mice. Blood, 1997,90(1): 85 - 96.
    21 Cashman JD, Eaves CJ. Human growth factor-enhanced regeneration of transplantable human hematopoietic stem cells in nonobese diabetic/severe combined immunodeficient mice. Blood,1999,93(2):481-487.
    22 Heike Y, Ohira T, Takahashi M,et al. Long-term human hematopoiesis in SCID-hu mice bearing transplanted fragments of adult bone and bone marrow cells. Blood,1995,86(2):524-30.
    1龙桂芳,张俊武主编.血红蛋白与血红蛋白病.广西科学技术出版社,2003.
    2刘容容,马劼,陈萍,等.脂质体转染反义寡核苷酸对重型β-地中海贫血红系细胞α-珠蛋白的调控作用.中华血液学杂志,2009,30(6):385-389.
    3刘容容,赖永榕,马劼.脂质体转染反义脱氧寡核苷酸对K562细胞α珠蛋白基因表达及细胞增殖的影响.中国实验血液学杂志, 2007,15(5):1065-1069.
    4萨姆布鲁克等著.分子克隆实验指南(第二版).北京:科学出版社,1999.
    5 Shinar E, Rachmilewitz EA. Oxidative denaturation of red blood cells in thalassemia. Semin Hematol, 1990, 27(1):70-82.
    6 Thein SL. Pathophysiology of {beta} thalassemia--A guide to molecular therapies. Hematology Am Soc Hematol Educ Program, 2005:31-7.
    7陈金中,薛京伦主编.载体学与基因操作.北京:科学出版社,2007.
    8杨丹,卓忠雄.基因治疗载体研究进展.临床超声医学杂志,2006, 8(5):296-7.
    9 May C, Rivella S, Callegari J, et al. Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature,2000,406:82-6.
    10 Chen W, Wu X, Levasseur DN,et al.Lentiviral vector transduction of hematopoietic stem cells that mediate long-term reconstitution of lethally irradiated mice. Stem Cells, 2000,18(5):352-9.
    11 Tomioka R, Rockland KS. Improved Golgi-like visualization in retrogradely projecting neurons after EGFP-adenovirus infection in adultrat and monkey. J Histochem Cytochem, 2006;54(5):539-548.
    12 Dijon M, Torne-Celer C, Moreau T, et al. Expression and recombination of the EGFP and EYFP genes in lentiviral vectors carrying two heterologous promoters. Cytotherapy, 2005;7(5):417-426.
    13 Naldini L,Blomer U,Gage FH,et a1.Efficient transfer,integration,and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector.Proc Natl Acad Sci USA,1996,92(21):11382-11388.
    14 Zuferey R,Nagy D,Mandel RJ,et a1.Mutiply attenuated lentiviral vector achieved eficient gene delivery in vivo.Nat Biotechnol,1997,15(9):871-875.
    15 Miyoshi H,Smith KA,Mosier DE,et a1.Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors.Science,1999,29:283(5402):682-686.
    16 Kafri T,Blomer U,Peterson DA,et a1.Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors.Nat Genet, 1997,17(3):314~31.
    17 Kaul M,Yu H ,Ron Y, et al . Regulated lentiviral packaging cell line devoid of most viral cis-acting sequences . Virology ,1998 ,249 (1):167-174.
    18 Kafri T , van Praag H , Ouyang L , et al . A packaging cell line for lentivirus vectors . J Virol ,1999 ,73(1):576-584.
    1刘容容,赖永榕,马劼.脂质体转染反义脱氧寡核苷酸对K562细胞α珠蛋白基因表达及细胞增殖的影响.中国实验血液学杂志,2007,15(5):1065-1069.
    2刘容容,马劼,陈萍,等.脂质体转染反义寡核苷酸对重型β-地中海贫血红系细胞α-珠蛋白的调控作用.中华血液学杂志,2009,30(6):385-389.
    3陈金中,薛京伦主编.载体学与基因操作.北京:科学出版社,2007.
    4裴雪涛主编.干细胞实验指南.北京:科学出版社,2006.
    5秦超,莫雪安,陆锐,等.免疫磁珠法分离和纯化重症肌无力患者骨髓CD34+造血干细胞.中国神经免疫学和神经病学杂志,2004, 11(4):191-192,196.
    6梁宏刚,张开明.免疫磁珠法分选骨髓CD34+细胞:纯度影响因素的分析.中国组织工程研究与临床康复,2009,13(40):7825-7828.
    7邓宇斌,李树浓,汪小敏.羟基淀粉沉淀对免疫磁珠法分离脐血CD34+细胞及造血祖细胞增殖功能的影响.临床血液学杂志,2001, 14(4):163-165.
    8 Ramezani A, Hawley RG. Strategies to insulate lentiviral vector-expressed transgenes. Methods Mol Biol,2010,614:77-100.
    9 Mátrai J, Chuah MK, VandenDriessche T. Recent advances in lentiviral vector development and applications.Mol Ther,2010 ,18(3):477-90.
    10 Santoni de Sio FR, Cascio P, Zingale A,et al. Proteasome activity restricts lentiviral gene transfer into hematopoietic stem cells and is down-regulated by cytokines that enhance transduction.Blood,2006 ,107(11):4257-65.
    11 Salmon P, Kindler V, Ducrey O, et al. High-level transgene expression in human hematopoietic progenitors and differentiated blood lineages aftertransduction with improved lentiviral vectors.Blood,2000,96(10):3392-8.
    12 Shinar E, Rachmilewitz EA. Oxidative denaturation of red blood cells in thalassemia. Semin Hematol, 1990, 27(1):70-82.
    13 May C, Rivella S, Chadburn A, et al. Successful treatment of murine beta-thalassemia intermedia by transfer of the human beta-globin gene. Blood,2002 Mar 15;99(6):1902-8.
    14 Rivella S, May C, Chadburn A, et al. A novel murine model of Cooley anemia and its rescue by lentiviral-mediated human beta-globin gene transfer.Blood,2003,101(8):2932-9.
    15 Li W, Xie S, Guo X,et al.A novel transgenic mouse model produced from lentiviral germline integration for the study of beta-thalassemia gene therapy. Haematologica,2008 ,93(3):356-62.
    16 Puthenveetil G, Scholes J, Carbonell D, et al.Successful correction of the human beta-thalassemia major phenotype using a lentiviral vector.Blood,2004, 104(12):3445-53.
    17 Xie SY, Ren ZR, Zhang JZ,et al.Restoration of the balanced alpha/ beta-globin gene expression in beta654-thalassemia mice using combined RNAi and antisense RNA approach.Hum Mol Genet,2007, 16(21): 2616-25.
    18曾溢滔主编.人类血红蛋白.北京:科学出版社,2002.
    1龙桂芳,张俊武主编.血红蛋白与血红蛋白病.广西科学技术出版社,2003.
    2 Shinar E, Rachmilewitz EA. Oxidative denaturation of red blood cells in thalassemia. Semin Hematol, 1990, 27(1):70-82.
    3左伋主编.医学遗传学,第四版.北京:人民卫生出版社.2004.
    4 Rund D, Rachmilewitz E.Beta-thalassemia.N Engl J Med , 2005 , 353(11):1135-46.
    5 Lacerra G, Sierakowska H, Carestia C, et al. Restoration of hemoglobin A synthesis in erythroid cells from peripheral blood of thalassemic patients. Proc Natl Acad Sci U S A, 2000,97(17):9591-6.
    6 Vacek MM, Ma H, Gemignani F, et al. High-level expression of hemoglobin A in human thalassemic erythroid progenitor cells following lentiviral vector delivery of an antisense snRNA. Blood,2003,101(1): 104-11.
    7 May C, Rivella S, Callegari J, et al. Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature,2000,406:82-6.
    8 Sadelain M, Boulad F, Galanello R, et al. Therapeutic options for patients with severe beta-thalassemia: the need for globin gene therapy.Hum Gene Ther, 2007,18(1):1-9.
    9 Rivella S, May C, Chadburn A, et al. A novel murine model of Cooley anemia and its rescue by lentiviral-mediated human beta-globin gene transfer.Blood, 2003,101(8):2932-9.
    10 Li W, Xie S, Guo X,et al.A novel transgenic mouse model produced fromlentiviral germline integration for the study of beta-thalassemia gene therapy. Haematologica, 2008 ,93(3):356-62.
    11 Puthenveetil G, Scholes J, Carbonell D, et al.Successful correction of the human beta-thalassemia major phenotype using a lentiviral vector.Blood, 2004,104(12):3445-53.
    12 Miccio A, Cesari R, Lotti F,et al. In vivo selection of genetically modified erythroblastic progenitors leads to long-term correction ofβ-thalassemia. Proc Natl Acad Sci U S A, 2008,105 (30),10547–10552.
    13 He Z,Russell JE. Dynamic posttranscriptional regulation of epsilon-globin gene expression in vivo. Blood, 2007,109(2):795-801.
    14 Felfly H, Trudel M.Long-term correction of beta-thalassemia with minimal cellular requirement and transplantation modalities. Mol Ther, 2007 , 15(9): 1701-9.
    15 Zoueva OP, Rodgers GP. Inhibition of beta protein 1 expression enhances beta-globin promoter activity and beta-globin mRNA levels in the human erythroleukemia (K562) cell line.Exp Hematol, 2004 ,32(8):700-8.
    16 Bank A, Dorazio R, Leboulch P.A phase I/II clinical trial of beta-globin gene therapy for beta-thalassemia. Ann N Y Acad Sci, 2005,1054:308-16.
    17 Persons DA, Hargrove PW, Allay ER, et al. The degree of phenotypic correction of murine beta -thalassemia intermedia following lentiviral-mediated transfer of a human gamma-globin gene is influenced by chromosomal position effects and vector copy number. Blood, 2003,101(6):2175-83.
    18 Hanawa H, Hargrove PW, Kepes S,et al.Extended beta-globin locus control region elements promote consistent therapeutic expression of a gamma-globin lentiviral vector in murine beta-thalassemia.Blood, 2004,104(8):2281-90.
    19 Emery DW, Yannaki E, Tubb J, et al. Development of virus vectors for gene therapy of beta chain hemoglobinopathies: flanking with a chromatin insulator reduces gamma-globin gene silencing in vivo.Blood, 2002,100(6):2012-9.
    20 Xie SY, Ren ZR, Zhang JZ,et al. Restoration of the balanced alpha/ beta-globin gene expression in beta654-thalassemia mice using combined RNAi and antisense RNA approach.Hum Mol Genet, 2007 , 16(21): 2616-25.
    21刘容容,赖永榕,马劼.脂质体转染反义脱氧寡核苷酸对K562细胞α珠蛋白基因表达及细胞增殖的影响.中国实验血液学杂志, 2007,15(5):1065-1069.
    22刘容容,马劼,陈萍,等.脂质体转染反义寡核苷酸对重型β-地中海贫血红系细胞α-珠蛋白的调控作用.中华血液学杂志,2009,30(6):385-389.
    23 Voon HP, Wardan H, Vadolas J.siRNA-mediated reduction of alpha- globin results in phenotypic improvements in beta-thalassemic cells. Haematologica, 2008,93(8):1238-42.
    24 Moi P, Sadelain M.Towards the genetic treatment of beta-thalassemia: new disease models, new vectors, new cells. Haematologica. 2008, 93(3): 325-30.
    25 Skow LC, Burkhart BA, Johnson FM, et al. A mouse model for beta-thalassemia. Cell, 1983,34:1043-1052.
    26 Ciavatta DJ , Ryan TM, Farmer SC,et al. Mouse model of human beta zero thalassemia: targeted deletion of the mouse beta maj- and beta min-globin genes in embryonic stem cells. Proc Natl Acad Sci U SA , 1995, 92(20) :9259-9263.
    27 Yang B, Kirby S, Lewis J,et al. A mouse model for beta 0-thalassemia. Proc Natl Acad Sci U S A,1995, 92(25):11608-12.
    28 Lewis J, Yang B, Kim R, et al. A common human beta globin splicing mutation modeled in mice. Blood 1998,91:2152-6.
    29 Jamsai D, Zaibak F, Khongnium W, et al. A humanized mouse model for a common beta0-thalassemia mutation. Genomics, 2005,85:453-61.
    30 Jamsai D, Zaibak F, Vadolas J, et al. A humanized BAC transgenic/ knockout mouse model for HbE/beta-thalassemia. Genomics, 2006, 88:309-15.
    31 Vadolas J, Nefedov M, Wardan H,et al. Humanized beta-thalassemia mouse model containing the common IVSI-110 splicing mutation. J Biol Chem, 2006, 281:7399-405.
    32 Vadolas J, Wardan H, Bosmans M, et al. Transgene copy number- dependent rescue of murine beta-globin knockout mice carrying a 183 kb human beta-globin BAC genomic fragment. Biochim Biophys Acta, 2005,1728:150-62.
    33 Larochelle A, Vormoor J, Lapidot T, et al. Engraftment of immune- deficient mice with primitive hematopoietic cells from beta-thalassemia and sickle cell anemia patients: implications for evaluating human gene therapy protocols. Hum Mol Genet, 1995,4: 163-72.
    34陈金中,薛京伦主编.载体学与基因操作.北京:科学出版社,2007.
    35杨丹,卓忠雄.基因治疗载体研究进展.临床超声医学杂志,2006, 8(5):296-7.
    36 Puthenveetil G, Malik P. Gene therapy for hemoglobinopathies: are we there yet?.Curr Hematol Rep,2004,3:298-305.
    37马晓生,吕飞舟,姜建元,等.不同基因载体系统对脐带血间充质干细胞转染效果的初步研究.复旦学报(医学版),2008,35 (3):453–456.
    38 Rivella S, Sadelain M. Therapeutic globin gene delivery using lentiviral vectors. Curr Opin Mol Ther,2002,4:505-14.
    39 Moreau-Gaudry F, Xia P, Jiang G, et al.High-level erythroid-specific gene expression in primary human and murine hematopoietic cells with self-inactivating lentiviral vectors. Blood,2001,98:2664-72.
    40 Rivella S, Lisowski L, Sadelain M. Globin gene transfer: a paradigm for transgene regulation and vector safety. Gene Therapy and Regulation, 2003,2:149-75.
    41 Levasseur DN, Ryan TM, Pawlik KM, et al.Correction of a mouse model of sickle cell disease: lentiviral/antisickling beta-globin gene transduction of unmobilized,purified hematopoietic stem cells. Blood, 2003, 102: 4312-9.
    42 Pawliuk R, Westerman KA, Fabry ME, et al. Correction of sickle cell disease in transgenic mouse models by gene therapy. Science, 2001, 294: 2368-71.
    43 Samakoglu S, Lisowski L, Budak-Alpdogan T, et al. A genetic strategy to treat sickle cell anemia by coregulating globin transgene expression and RNA interference. Nat Biotechnol,2006, 24: 89-94.
    44 Malik P, Arumugam PI. Gene Therapy for beta-thalassemia. Hematology Am Soc Hematol Educ Program, 2005:45-50.
    45 Chen W, Wu X, Levasseur DN,et al.Lentiviral vector transduction of hematopoietic stem cells that mediate long-term reconstitution of lethally irradiated mice. Stem Cells, 2000,18(5):352-9.
    46徐晓明,杨慧,王晓萍.慢病毒载体的构建及优化.中国临床康复,2006,10(91):147-9.
    47 Buzina A, Lo MY, Moffett A,et al.Beta-globin LCR and intron elements cooperate and direct spatial reorganization for gene therapy. PLoS Genet. 2008,4(4):e1000051.
    48 Ramezani A, Hawley TS, Hawley RG. Performance- and safety-enhanced lentiviral vectors containing the human interferon-beta scaffold attachment region and the chicken beta-globin insulator.Blood, 2003,101(12):4717-24.
    49 Lisowski L, Sadelain M.Locus control region elements HS1 and HS4 enhance the therapeutic efficacy of globin gene transfer in beta-thalassemic mice.Blood, 2007,110(13):4175-8.
    50 Ramezani A, Hawley TS, Hawley RG.Combinatorial incorporation of enhancer-blocking components of the chicken beta-globin 5'HS4 and human T-cell receptor alpha/delta BEAD-1 insulators in self-inactivating retroviral vectors reduces their genotoxic potential. Stem Cells, 2008 , 26(12):3257-66.
    51 Desprat R, Bouhassira EE.Gene specificity of suppression of transgene- mediated insertional transcriptional activation by the chicken HS4 insulator. PLoS One, 2009,4(6):e5956.
    52 Zhang F, Thornhill SI, Howe SJ, et al.Lentiviral vectors containing an enhancer-less ubiquitously acting chromatin opening element (UCOE) provide highly reproducible and stable transgene expression in hematopoietic cells.Blood, 2007,110(5):1448-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700