两个新的蛋白质结构域的鉴定暨生长分化因子3功能的初步探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分为2个部分,第一部分是蛋白质结构域的鉴定,第二部分是关于GDF3的初步功能分析以及外源重组表达的研究。
     在第一部分中,通过生物信息学的方法鉴定了两个新的结构域。NCD3G[GPCRs家族3中的9个半胱氨酸结构域],是一个在GPCRs(G蛋白耦联受体)家族3中鉴定到的新蛋白质结构域。它存在于除γ-氨基丁酸转氨酶受体以外的所有GPCRs家族3的成员(包括亲代谢性谷氨酸盐受体,钙敏受体,信息素受体和味觉受体)蛋白中。序列分析显示NCD3G含有9个高度保守的半胱氨酸残基,形成4个β折叠和3对二硫键。通过同源模建,我们获得了NCD3G的结构模型,它显示该结构域包含两个重复的A1模体,并提示NCD3G很可能在GPCRs跨膜信号传导过程中起到非常重要的作用,而且它位于细胞膜外,可成为潜在的药物作用靶点。CARDP是我们在多种细菌、古生菌的表面蛋白、膜蛋白和分泌蛋白中发现的一种新的蛋白质结构域,它包含有多个高度保守的甘氨酸、亮氨酸、酸性氨基酸残基和酰胺残基,具有六个β折叠区。CARDP可能在细胞基质粘附和底物结合的过程中发挥着重要作用。
     在第二部分中,我们运用RT-PCR,原位杂交和免疫组化等技术分析了GDF3在正常组织,肿瘤细胞株及肝癌样本,以及3T3-L1分化过程中的表达情况。结果表明GDF3在大鼠海马组织的各区中表达有差异,在小脑的浦肯野氏细胞中有大量表达。对16例人的肝癌样本的检测表明,癌组织中GDF3表达有上调趋势,特别在大多数第三期癌症样本中GDF3高表达。对15种细胞株的检测表明,肿瘤细胞株中的GDF3表达明显增加。我们检测了前脂肪细胞的分化过程中GDF3的表达,结果显示GDF3在处于分化过程中的前脂肪细胞中高表达,在分化前的前脂肪细胞和分化完成后的脂肪细胞中没有表达,我们的结果提示了GDF3对于中枢神经系统、肿瘤和脂肪细胞分化可能有重要的作用,但其具体机制需进一步研究。
The dissertation consists of two parts: the first part describes the identification of NCD3G and CARDP, two novel protein domains; the second part describes the expression of GDF3 in brain, tumor cells and 3T3-L1, and the reconstruction of prokaryotic and eukaryotic vector for GDF3.
    In the first part, we identified two novel domains using bioinformatic tools. NCD3G is conserved in family 3 GPCRs, including metabotropic glutamate receptors, calcium sensing receptors, pheromone receptors and taste receptors, with the exception of GABAB receptors. Sequence analysis indicates that NCD3G domain contains nine highly conserved cysteine residues, four β strands and three disulfide bridges. Structural modeling suggests that NCD3G maybe consists of two A1 repeats and the conserved residues are related with certain familial diseases. NCD3G may play important role in the signal transduction, and it may be a target for the development of new drug candidates. CARDP is a novel domain shared by various bacterial and archael surface-, membrane-and secreted proteins with several highly conserved glycine, leucine, acidic residues and acylamino acids. Several lines of evidence suggest that the CARDP domain may have essential functions in cell-matrix adhesion and substance binding.
    In the second part, we analyzed the expression of GDF3 in some tissues and cell lines by RT-PCR, in situ hybridization and immunostaining on the mRNA and protein level. GDF3 is differently distributed in hippocampus CA2 and CA1 region, and it is expressed highly in Purkinje cells in cerebellum. The expression of GDF3 is upregulated in 16 liver cancer tissues, especially in the third phase of liver cancer patients. GDF3 is highly expressed in the tumor cell lines. During the differentiation of 3T3-L1, the expression of GDF3 changed significantly. Our results suggest that GDF3 may play important roles in the central nervous system, tumorogenesis and the differentiation of
    3T3-L1, and it needs further study. In order to obtain active GDF3, we constructed prokaryotic and eukaryotic vectors to express recombinant GDF3 in vitro, it will be helpful for the function study and application of GDF3.
引文
[1] R. Jaenicke, Folding and association of proteins, Prog Biophys Mol Biol 49 (1987) 117-237.
    [2] L. Holm, C. Sander, Parser for protein folding units, Proteins 19 (1994) 256-268.
    [3] E.S. Lander, E. al., Initial sequencing and analysis of the human genome, Nature 409 (2001) 860-921.
    [4] J. Liu, H. Hegyi, T.B. Acton, GT. Montelione, B. Rost, Automatic target selection for structural genomics on eukaryotes, Proteins 56 (2004) 188-200.
    [5] J.E. Dueber, B.J. Yeh, K. Chak, W.A. Lim, Reprogramming control of an allosteric signaling switch through modular recombination, Science 301 (2003) 1904-1908.
    [6] A. Bernal, U. Ear, N. Kyrpides, Genomes OnLine Database (GOLD): a monitor of genome projects world-wide, Nucleic Acids Res 29 (2001) 126-127.
    [7] D. Eisenberg, E.M. Marcotte, I. Xenarios, T.O. Yeates, Protein function in the post-genomic era, Nature 405 (2000) 823-826.
    [8] A. Heger, L. Holm, Towards a covering set of protein family profiles, Prog Biophys Mol Biol 73 (2000) 321-337.
    [9] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, Basic local alignment search tool, J Mol Biol 215 (1990) 403-410.
    [10] A. Bateman, L. Coin, R. Durbin, R.D. Finn, V. Hoilich, S. Griffiths-Jones, A. Khanna, M. Marshall, S. Moxon, E.L. Sonnhammer, D.J. Studholme, C. Yeats, S.R. Eddy, The Pfam protein families database, Nucleic Acids Res 32 (2004) D138-141.
    
    [11] L.Y. Geer, M. Domrachev, D.J. Lipman, S.H. Bryant, CD ART: protein homology by domain architecture, Genome Res 12 (2002) 1619-1623.
    
    [12] J. Liu, B. Rost, Sequence-based prediction of protein domains, Nucleic Acids Res 32 (2004) 3522-3530.
    [13] B. Busetta, Y. Barrans, The prediction of protein domains, Biochim Biophys Acta 790 (1984) 117-124.
    [14] F. Vonderviszt, I. Simon, A possible way for prediction of domain boundaries in globular proteins from amino acid sequence, Biochem Biophys Res Commun 139 (1986) 11-17.
    [15] T. Kikuchi, G Nemethy, H.A. Scheraga, Prediction of the location of structural domains in globular proteins, J Protein Chem 7 (1988) 427-471.
    
    [16] L. Holm, C. Sander, Mapping the protein universe, Science 273 (1996) 595-603.
    [17] L. Wernisch, M. Hunting, S.J. Wodak, Identification of structural domains in proteins by a graph heuristic, Proteins 35 (1999) 338-352.
    
    [18] W.R. Taylor, Protein structural domain identification, Protein Eng 12 (1999) 203-216.
    [19] R.A. George, J. Heringa, SnapDRAGON: a method to delineate protein structural domains from sequence data, J Mol Biol 316 (2002) 839-851.
    [20] R.L. Marsden, L.J. McGuffin, D.T. Jones, Rapid protein domain assignment from amino acid sequence using predicted secondary structure, Protein Sci 11 (2002) 2814-2824.
    [21] H.M. Berman, J. Westbrook, Z. Feng, G Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne, The Protein Data Bank, Nucleic Acids Res 28 (2000) 235-242.
    [22] J. Gracy, P. Argos, Automated protein sequence database classification. II. Delineation Of domain boundaries from sequence similarities, Bioinformatics 14 (1998) 174-187.
    [23] R.A. George, J. Heringa, Protein domain identification and improved sequence similarity searching using PSI-BLAST, Proteins 48 (2002) 672-681.
    [24] F. Servant, C. Bru, S. Carrere, E. Courcelle, J. Gouzy, D. Peyruc, D. Kahn, ProDom: automated clustering of homologous domains, Brief Bioinform 3 (2002) 246-251.
    [25] J. Gracy, P. Argos, DOMO: a new database of aligned protein domains, Trends Biochem Sci 23 (1998) 495-497.
    [26] S.F. Altschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, D.J. Lipman, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res 25 (1997) 3389-3402.
    [27] I. Letunic, L. Goodstadt, N.J. Dickens, T. Doerks, J. Schultz, R. Mott, F. Ciccarelli, R.R. Copley, C.P. Ponting, P. Bork, Recent improvements to the SMART domain-based sequence annotation resource, Nucleic Acids Res 30 (2002) 242-244.
    [28] D.H. Haft, J.D. Selengut, O. White, The TIGRFAMs database of protein families, Nucleic Acids Res 31 (2003) 371-373.
    [29] R.L. Tatusov, N.D. Fedorova, J.D. Jackson, A.R. Jacobs, B. Kiryutin, E.V. Koonin, D.M. Krylov, R. Mazumder, S.L. Mekhedov, A.N. Nikolskaya, B.S. Rao, S. Smirnov, A.V. Sverdlov, S. Vasudevan, Y.I. Wolf, J.J. Yin, D.A. Natale, The COG database: an updated version includes eukaryotes, BMC Bioinformatics 4 (2003) 41.
    [30] J. Gough, K. Karplus, R. Hughey, C. Chothia, Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure, J Mol Biol 313 (2001) 903-919.
    [31] J. Liu, B. Rost, CHOP: parsing proteins into structural domains, Nucleic Acids Res 32 (2004) W569-571.
    [32] S.J. Wheelan, A. Marchler-Bauer, S.H. Bryant, Domain size distributions can predict domain boundaries, Bioinformatics 16 (2000) 613-618.
    [33] J.D. Thompson, D.G Higgins, T.J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res 22 (1994) 4673-4680.
    [34] L. Goodstadt, C.P. Ponting, CHROMA: consensus-based colouring of multiple alignments for publication, Bioinformatics 17 (2001) 845-846.
    [35] J.A. Cuff, M.E. Clamp, A.S. Siddiqui, M. Finlay, G.J. Barton, JPred: a consensus secondary structure prediction server, Bioinformatics 14 (1998) 892-893.
    [36] J. Bockaert, J.P. Pin, Molecular tinkering of G protein-coupled receptors: an evolutionary success, Embo J 18 (1999) 1723-1729.
    [37] N. Kunishima, Y. Shimada, Y. Tsuji, T. Sato, M. Yamamoto, T. Kumasaka, S. Nakanishi, H. Jingami, K. Morikawa, Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor, Nature 407 (2000) 971-977.
    [38] D. Tsuchiya, N. Kunishima, N. Kamiya, H. Jingami, K. Morikawa, Structural views of the ligand-binding cores of a metabotropic glutamate receptor complexed with an antagonist and both glutamate and Gd3+, Proc Natl Acad Sci U S A 99 (2002) 2660-2665.
    [39] D. Douguet, G Labesse, Easier threading through web-based comparisons and cross-validations, Bioinformatics 17 (2001) 752-753.
    [40] L.A. Kelley, R.M. MacCallum, M.J. Sternberg, Enhanced genome annotation using structural profiles in the program 3D-PSSM, J Mol Biol 299 (2000) 499-520.
    [41] J. Shi, T.L. Blundell, K. Mizuguchi, FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties, J Mol Biol 310 (2001) 243-257.
    [42] L.J. McGuffin, K. Bryson, D.T. Jones, The PSIPRED protein structure prediction server, Bioinformatics 16 (2000) 404-405.
    [43] K. Karplus, C. Barrett, R. Hughey, Hidden Markov models for detecting remote protein homologies, Bioinformatics 14 (1998) 846-856.
    [44] G Labesse, J. Mornon, Incremental threading optimization (TITO) to help alignment and modelling of remote homologues, Bioinformatics 14 (1998) 206-211.
    [45] R.L. Dunbrack, Jr., M. Karplus, Backbone-dependent rotamer library for proteins. Application to side-chain prediction, J Mol Biol 230 (1993) 543-574.
    [46] A. Sali, T.L. Blundell, Comparative protein modelling by satisfaction of spatial restraints, J Mol Biol 234 (1993) 779-815.
    [47] N. Guex, M.C. Peitsch, SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling, Electrophoresis 18 (1997) 2714-2723.
    [48] J. Gracy, L. Chiche, J. Sallantin, Improved alignment of weakly homologous protein sequences using structural information, Protein Eng 6 (1993) 821-829.
    [49] D. Eisenberg, R. Luthy, J.U. Bowie, VERIFY3D: assessment of protein models with three-dimensional profiles, Methods Enzymol 277 (1997) 396-404.
    [50] J.L. Bodmer, P. Schneider, J. Tschopp, The molecular architecture of the TNF superfamily, Trends Biochem Sci 27 (2002) 19-26.
    [51] J. Hu, O. Hauache, A.M. Spiegel, Human Ca2+ receptor cysteine-rich domain. Analysis of function of mutant and chimeric receptors, J Biol Chem 275 (2000) 16382-16389.
    [52] S.H. Pearce, D. Trump, C. Wooding, GM. Besser, S.L. Chew, D.B. Grant, D.A. Heath, I.A. Hughes, C.R. Paterson, M.P. Whyte, et al., Calcium-sensing receptor mutations in familial benign hypercalcemia and neonatal hyperparathyroidism, J Clin Invest 96 (1995) 2683-2692.
    [53] T. Nakayama, M. Minato, M. Nakagawa, M. Soma, H. Tobe, N. Aoi, K. Kosuge, M. Sato, Y. Ozawa, K. Kanmatsuse, S. Kokubun, A novel mutation in Ca2+-sensing receptor gene in familial hypocalciuric hypercalcemia, Endocrine 15 (2001) 277-282.
    [54] K. Ray, B.C. Hauschild, P.J. Steinbach, P.K. Goldsmith, 0. Hauache, A.M. Spiegel, Identification of the cysteine residues in the amino-terminal extracellular domain of the human Ca(2+) receptor critical for dimerization. Implications for function of monomeric Ca(2+) receptor, J Biol Chem 274 (1999) 27642-27650.
    [55] M. Bai, S. Trivedi, E.M. Brown, Dimerization of the extracellular calcium-sensing receptor (CaR) on the cell surface of CaR-transfected HEK293 cells, J Biol Chem 273 (1998) 23605-23610.
    [56] Y. Tsuji, Y. Shimada, T. Takeshita, N. Kajimura, S. Nomura, N. Sekiyama, J. Otomo, J. Usukura, S. Nakanishi, H. Jingami, Cryptic dimer interface and domain organization of the extracellular region of metabotropic glutamate receptor subtype 1, J Biol Chem 275 (2000) 28144-28151.
    [57] S. Baumgartner, K. Hofmann, R. Chiquet-Ehrismann, P. Bucher, The discoidin domain family revisited: new members from prokaryotes and a homology-based fold prediction, Protein Sci 7 (1998) 1626-1631.
    [58] G Kelly, S. Prasannan, S. Daniell, K. Fleming, G Frankel, G Dougan, I. Connerton, S. Matthews, Structure of the cell-adhesion fragment of intimin from enteropathogenic Escherichia coli, Nat Struct Biol 6 (1999) 313-318.
    [59] E. Little, P. Bork, R.F. Doolittle, Tracing the spread of fibronectin type III domains in bacterial glycohydrolases, J Mol Evol 39 (1994) 631-643.
    [60] N.D. Rawlings, A.J. Barrett, Families of cysteine peptidases, Methods Enzymol 244 (1994) 461-486.
    [61] J.C. Loftus, J.W. Smith, M.H. Ginsberg, Integrin-mediated cell adhesion: the extracellular face, J Biol Chem 269 (1994) 25235-25238.
    [62] GE. Gilbert, J.D. Baleja, Membrane-binding peptide from the C2 domain of factor VIII forms an amphipathic structure as determined by NMR spectroscopy, Biochemistry 34 (1995) 3022-3031.
    [63] M. Bycroft, A. Bateman, J. Clarke, S.J. Hamill, R. Sandford, R.L. Thomas, C. Chothia, The structure of a PKD domain from polycystin-1: implications for polycystic kidney disease, Embo J 18 (1999) 297-305.
    [1] X. H. Feng, and R. Derynck, Specificity and Versatility in TGF- Signaling Through Smads, Annu Rev Cell Dev Biol (2005).
    [2] M. P. Schlunegger, and M. G. Grutter, An unusual feature revealed by the crystal structure at 2.2 A resolution of human transforming growth factor-beta 2, Nature 358 (1992) 430-434.
    [3] S. Daopin, K. A. Piez, Y. Ogawa, and D. R. Davies, Crystal structure of transforming growth factor-beta 2: an unusual fold for the superfamily, Science 257 (1992) 369-373.
    [4] N. Q. McDonald, and W. A. Hendrickson, A structural superfamily of growth factors containing a cystine knot motif, Cell 73 (1993) 421-424.
    [5] L. Attisano, and J. L. Wrana, Signal transduction by the TGF-beta superfamily, Science 296 (2002) 1646-1647.
    [6] D. A. Clark, and R. Coker, Transforming growth factor-beta (TGF-beta), Int J Biochem Cell Biol 30 (1998) 293-298.
    [7] A. B. Roberts, S. J. Kim, T. Noma, A. B. Glick, R. Lafyatis, R. Lechleider, S. B. Jakowlew, A. Geiser, M. A. O'Reilly, D. Danielpour, and et al., Multiple forms of TGF-beta: distinct promoters and differential expression, Ciba Found Symp 157 (1991) 7-15; discussion 15-28.
    [8] D. A. Lawrence, Transforming growth factor-beta: a general review, Eur Cytokine Netw 7 (1996) 363-374.
    
    [9] D. A. Lawrence, Latent-TGF-beta: an overview, Mol Cell Biochem 219 (2001) 163-170.
    [10] M. Kawabata, T. Imamura, and K. Miyazono, Signal transduction by bone morphogenetic proteins, Cytokine Growth Factor Rev 9 (1998) 49-61.
    
    [11] L. F. Lin, D. H. Doherty, J. D. Lile, S. Bektesh, and F. Collins, GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons, Science 260 (1993) 1130-1132.
    
    [12] J. Milbrandt, F. J. de Sauvage, T. J. Fahrner, R. H. Baloh, M. L. Leitner, M. G. Tansey, P. A. Lampe, R. O. Heuckeroth, P. T. Kotzbauer, K. S. Simburger, J. P. Golden, J. A. Davies, R. Vejsada, A. C. Kato, M. Hynes, D. Sherman, M. Nishimura, L. C. Wang, R. Vandlen, B. Moffat, R. D. Klein, K. Poulsen, C. Gray, A. Garces, E. M. Johnson, Jr., and et al., Persephin, a novel neurotrophic factor related to GDNF and neurturin, Neuron 20 (1998) 245-253.
    [13] P. T. Kotzbauer, P. A. Lampe, R. O. Heuckeroth, J. P. Golden, D. J. Creedon, E. M. Johnson, Jr., and J. Milbrandt, Neurturin, a relative of glial-cell-line-derived neurotrophic factor, Nature 384 (1996) 467-470.
    [14] R. H. Baloh, M. G. Tansey, P. A. Lampe, T. J. Fahrner, H. Enomoto, K. S. Simburger, M. L. Leitner, T. Araki, E. M. Johnson, Jr., and J. Milbrandt, Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRalpha3-RET receptor complex, Neuron 21 (1998) 1291-1302.
    [15] H. Enomoto, P. A. Crawford, A. Gorodinsky, R. O. Heuckeroth, E. M. Johnson, Jr., and J. Milbrandt, RET signaling is essential for migration, axonal growth and axon guidance of developing sympathetic neurons, Development 128 (2001) 3963-3974.
    [16] R. Andres, A. Forgie, S. Wyatt, Q. Chen, F. J. de Sauvage, and A. M. Davies, Multiple effects of artemin on sympathetic neurone generation, survival and growth, Development 128 (2001) 3685-3695.
    [17] R. H. Baloh, M. G. Tansey, J. P. Golden, D. J. Creedon, R. O. Heuckeroth, C. L. Keck, D. B. Zimonjic, N. C. Popescu, E. M. Johnson, Jr., and J. Milbrandt, TrnR2, a novel receptor that mediates neurturin and GDNF signaling through Ret, Neuron 18 (1997) 793-802.
    [18] D. M. Kingsley, The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms, Genes Dev 8 (1994) 133-146.
    [19] J. Fang, W. Yin, E. Smiley, S. Q. Wang, and J. Bonadio, Molecular cloning of the mouse activin beta E subunit gene, Biochem Biophys Res Commun 228 (1996) 669-674.
    [20] A. F. Schier, Nodal signaling in vertebrate development, Annu Rev Cell Dev Biol 19 (2003) 589-621.
    [21] A. C. McPherron, and S. J. Lee, GDF-3 and GDF-9: two new members of the transforming growth factor-beta superfamily containing a novel pattern of cysteines, J Biol Chem 268 (1993) 3444-3449.
    [22] A. A. Caricasole, R. H. van Schaik, L. M. Zeinstra, C. D. Wierikx, R. J. van Gurp, M. van den Pol, L. H. Looijenga, J. W. Oosterhuis, M. F. Pera, A. Ward, D. de Bruijn, P. Kramer, F. H. de Jong, and A. J. van den Eijnden-van Raaij, Human growth-differentiation factor 3 (hGDF3): developmental regulation in human teratocarcinoma cell lines and expression in primary testicular germ cell tumours, Oncogene 16 (1998) 95-103.
    [23] B. A. Witthuhn, and D. A. Bernlohr, Upregulation of bone morphogenetic protein GDF-3/Vgr-2 expression in adipose tissue of FABP4/aP2 null mice, Cytokine 14 (2001) 129-135.
    [24] W. Wang, Y. Yang, Y. Meng, and Y. Shi, GDF-3 is an adipogenic cytokine under high fat dietary condition, Biochem Biophys Res Commun 321 (2004) 1024-1031.
    [25] C. Chen, S. M. Ware, A. Sato, D. E. Houston-Hawkins, R. Habas, M. M. Matzuk, M. M. Shen, and C. W. Brown, The Vgl-related protein Gdf3 acts in a Nodal signaling pathway in the pre-gastrulation mouse embryo, Development 133 (2006) 319-329.
    [26] A. J. Levine, and A. H. Brivanlou, GDF3, a BMP inhibitor, regulates cell fate in stem cells and early embryos, Development 133 (2006) 209-216.
    [27] S. Soderstrom, and T. Ebendal, Localized expression of BMP and GDF mRNA in the rodent brain, J Neurosci Res 56 (1999) 482-492.
    [28] J. Strelau, A. Schober, A. Sullivan, L. Schilling, and K. Unsicker, Growth/differentiation factor-15 (GDF-15), a novel member of the TGF-beta superfamily, promotes survival of lesioned mesencephalic dopaminergic neurons in vitro and in vivo and is induced in neurons following cortical lesioning, J Neural Transm Suppl (2003) 197-203.
    [29] A. M. Sullivan, J. Opacka-Juffry, G. Hotten, J. Pohl, and S. B. Blunt, Growth/differentiation factor 5 protects nigrostriatal dopaminergic neurones in a rat model of Parkinson's disease, Neurosci Lett 233 (1997) 73-76.
    [30] S. A. Hahn, M. Schutte, A. T. Hoque, C. A. Moskaluk, L. T. da Costa, E. Rozenblum, C. L. Weinstein, A. Fischer, C. J. Yeo, R. H. Hruban, and S. E. Kern, DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1, Science 271 (1996) 350-353.
    [31] Z. Yan, X. Deng, and E. Friedman, Oncogenic Ki-ras confers a more aggressive colon cancer phenotype through modification of transforming growth factor-beta receptor III, J Biol Chem 276 (2001) 1555-1563.
    [32] S. Desruisseau, E. Ghazarossian-Ragni, O. Chinot, and P. M. Martin, Divergent effect of TGFbeta1 on growth and proteolytic modulation of human prostatic-cancer cell lines, Int J Cancer 66 (1996) 796-801.
    [33] Y. Katakura, E. Nakata, T. Miura, and S. Shirahata, Transforming growth factor beta triggers two independent-senescence programs in cancer cells, Biochem Biophys Res Commun 255 (1999) 110-115.
    [34] R. R. Perry, Y. Kang, and B. R. Greaves, Relationship between tamoxifen-induced transforming growth factor beta 1 expression, cytostasis and apoptosis in human breast cancer cells, Br J Cancer 72 (1995) 1441-1446.
    [35] S. Ananth, B. Knebelmann, W. Griming, M. Dhanabal, G. Walz, I. E. Stillman, and V. P. Sukhatme, Transforming growth factor beta1 is a target for the von Hippel-Lindau tumor suppressor and a critical growth factor for clear cell renal carcinoma, Cancer Res 59 (1999) 2210-2216.
    [36] E. Rodriguez, S. Mathew, A. B. Mukherjee, V. E. Reuter, G. J. Bosl, and R. S. Chaganti, Analysis of chromosome 12 aneuploidy in interphase cells from human male germ cell tumors by fluorescence in situ hybridization, Genes Chromosomes Cancer 5 (1992) 21-29.
    [37] V. V. Murty, and R. S. Chaganti, A genetic perspective of male germ cell tumors, Semin Oncol 25 (1998) 133-144.
    [38] A. T. Clark, R. T. Rodriguez, M. S. Bodnar, M. J. Abeyta, M. I. Cedars, P. J. Turek, M. T. Firpo, and R. A. Reijo Pera, Human STELLAR, NANOG, and GDF3 genes are expressed in pluripotent cells and map to chromosome 12p13, a hotspot for teratocarcinoma, Stem Cells 22 (2004) 169-179.
    [39] C. J. Giuliano, J. S. Kerley-Hamilton, T. Bee, S. J. Freemantle, R. Manickaratnam, E. Dmitrovsky, and M. J. Spinella, Retinoic acid represses a cassette of candidate pluripotency chromosome 12p genes during induced loss of human embryonal carcinoma tumorigenicity, Biochim Biophys Acta 1731 (2005) 48-56.
    [40] U. I. Ezeh, P. J. Turek, R. A. Reijo, and A. T. Clark, Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma, Cancer 104 (2005) 2255-2265.
    1. Tsukazaki T, Chiang TA, Davison AF,et al: a FYVE domain protein that recruits smad2 to the TGFβ receptor. Cell. 95:779,1998
    2. Tang Y, Katuri V, Dillner A, et al: Disruption of transforming growth factor-8 signaling in ELF 8-spectrin-deficient mice. Science. 299:574-577, 2003
    3. Shi Y, Massague J: Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell. 113:685-700,2003
    4. Inman GJ, Nicolas FJ, Hill CS: Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity. Mol Cell 10:283-294, 2002
    5. Penheiter SG, Mitchell H, Garamszegi N, et al: Internalization-dependent and -independent requirements for transforming growth factor beta receptor signaling via the Smad pathway. Mol Cell Biol 22:4750-4759, 2002
    6. Hayes S, Chawla A, Corvera S: TGF beta receptor internalization into EEA1-enriched early endosomes: Role in signaling to Smad2. J Cell Biol 158:1239-1249, 2002
    7. Di Guglielmo GM, Le Roy C, Goodfellow AF, et al: Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol 5:410-421, 2003
    8. Chen W, Kirkbride KC, How T, et al: Beta-arrestin 2 mediates endocytosis of type III TGF-beta receptor and down-regulation of its signaling. Science 301:1394-1397, 2003
    9. Derynck R, Zhang YE: Smad-dependent and Smad-independent pathways in TGF-β family signaling. Nature. 425:577-584, 2003
    10. Hanahan D, Weinberg RA: The hallmarks of cancer. Cell 100:57-70, 2000
    11. Elliott RL, Blobe GC: Role of transforming growth factor beta in human cancer. Journal of clinical oncology. 23:2078-2093, 2005
    12. Frolik CA, Dart LL, Meyers CA, et al: Purification and initial characterization of a type beta transforming growth factor from human placenta. Proc Natl Acad Sci U S A 80:3676-3680, 1983
    13. Hannon GJ, Beach D: P15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature 371:257-261,1994
    14. Datto MB, Li Y, Panus JF, et al: Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci U S A 92:5545-5549,1995
    15. Polyak K, Kato JY, Solomon MJ, et al: P27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev 8:9-22,1994
    16. Pietenpol JA, Stein RW, Moran E, et al: TGF-beta 1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains. Cell 61:777-785,1990
    17. Hu PP, Shen X, Huang D, et al: The MEK pathway is required for stimulation of p21(WAF1/CIP1) by transforming growth factor-beta. J Biol Chem 274:35381-35387,1999
    18. Villanueva A, Garcia C, Paules AB, et al: Disruption of the antiproliferative TGF-beta signaling pathways in human pancreatic cancer cells. Oncogene 17:1969-1978,1998
    19. Grady WM, Myeroff LL, Swinler SE, et al: Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. Cancer Res 59:320-324, 1999
    20. Nicolas FJ, Hill CS: Attenuation of the TGF-beta-Smad signaling pathway in pancreatic tumor cells confers resistance to TGF-beta-induced growth arrest. Oncogene 22:3698-3711, 2003
    21. Kim WS, Park C, Jung YS, et al: Reduced transforming growth factor-beta type II receptor (TGF-beta RII) expression in adenocarcinoma of the lung. Anticancer Res 19:301-306,1999
    22. Chen C, Wang XF, Sun L: Expression of transforming growth factor beta (TGFbeta) type III receptor restores autocrine TGFbeta1 activity in human breast cancer MCF-7 cells. J Biol Chem 272:12862-12867,1997
    23. Kleeff J, Ishiwata T, Maruyama H, et al: The TGF-beta signaling inhibitor Smad7 enhances tumorigenicity in pancreatic cancer. Oncogene 18:5363-5372, 1999
    24. Ewen ME, Oliver CJ, Sluss HK, et al: p53-dependent repression of CDK4 translation in TGF-beta-induced G1 cell-cycle arrest. Genes Dev 9:204-217, 1995
    25. Alexandrow MG, Kawabata M, Aakre M, et al: Overexpression of the c-Myc oncoprotein blocks the growth-inhibitory response but is required for the mitogenic effects of transforming growth factor beta 1. Proc Natl Acad Sci U S A 92:3239-3243, 1995
    26. Datto MB, Hu PP, Kowalik TF, et al: The viral oncoprotein E1A blocks transforming growth factor beta-mediated induction of p21/WAF1/Cip1 and p15/INK4B. Mol Cell Biol 17:2030-2037, 1997
    27. Kretzschmar M, Doody J, Timokhina I, et al: A mechanism of repression of TGFbeta/Smad signaling by oncogenic Ras. Genes Dev 13:804-816,1999
    28. Sun Y, Liu X, Eaton EN, et al: Interaction of the Ski oncoprotein with Smad3 regulates TGF-beta signaling. Mol Cell 4:499-509,1999
    29. Stroschein SL, Wang W, Zhou S, et al: Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein. Science 286:771-774,1999
    30. Kurokawa M, Mitani K, Irie K, et al: The oncoprotein Evi-1 represses TGF-beta signalling by inhibiting Smad3. Nature 394:92-96,1998
    31. Kaji H, Canaff L, Lebrun JJ, et al: Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor type beta signaling. Proc Natl Acad Sci U S A 98:3837-3842, 2001
    32. Hocevar BA, Smine A, Xu XX, et al: The adaptor molecule Disabled-2 links the transforming growth factor beta receptors to the Smad pathway. Embo J 20:2789-2801, 2001
    33. Li QL, Ito K, Sakakura C, et al: Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109:113-124, 2002
    34. Yakymovych I, Ten Dijke P, Heldin CH, et al: Regulation of Smad signaling by protein kinase C. Faseb J 15:553-555, 2001
    35. Park BJ, Park JI, Byun DS, et al: Mitogenic conversion of transforming growth factor-beta1 effect by oncogenic Ha-Ras-induced activation of the mitogen-activated protein kinase signaling pathway in human prostate cancer. Cancer Res 60:3031-3038, 2000
    36. Jonson T, Albrechtsson E, Axelson J, et al: Altered expression of TGFB receptors and mitogenic effects of TGFB in pancreatic carcinomas. Int J Oncol 19:71-81, 2001
    37. Seifert RA, Coats SA, Raines EW, et al: Platelet-derived growth factor (PDGF) receptor alpha-subunit mutant and reconstituted cell lines demonstrate that transforming growth factor-beta can be mitogenic through PDGF A-chain-dependent and -independent pathways. J Biol Chem 269:13951-13955, 1994
    38. Strutz F, Zeisberg M, Renziehausen A, et al: TGF-beta 1 induces proliferation in human renal fibroblasts via induction of basic fibroblast growth factor (FGF-2). Kidney Int 59:579-592, 2001
    39. Chantry D, Turner M, Abney E, et al: Modulation of cytokine production by transforming growth factor-beta. J Immunol 142:4295-4300, 1989
    40. Igarashi A, Okochi H, Bradham DM, et al: Regulation of connective tissue growth factor gene expression in human skin fibroblasts and during wound repair. Mol Biol Cell 4:637-645, 1993
    41. Ishikawa O, LeRoy EC, Trojanowska M: Mitogenic effect of transforming growth factor beta 1 on human fibroblasts involves the induction of platelet-derived growth factor alpha receptors. J Cell Physiol 145:181-186,1990
    42. Feng P, Catt KJ, Knecht M: Transforming growth factor beta regulates the inhibitory actions of epidermal growth factor during granulosa cell differentiation. J Biol Chem 261:14167-14170,1986
    43. Piek E, Heldin CH, Ten Dijke P: Specificity, diversity, and regulation in TGF-beta superfamily signaling. FASEB J 13:2105-2124, 1999
    44. Hanafusa H, Ninomiya-Tsuji J, Masuyama N, et al: Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-beta-induced gene expression. J Biol Chem 274:27161-27167,1999
    45. Miettinen PJ, Ebner R, Lopez AR, et al: TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: Involvement of type I receptors. J Cell Biol 127:2021-2036,1994
    46. Giannelli G, Fransvea E, Marinosci F, et al: Transforming growth factor-beta1 triggers hepatocellular carcinoma invasiveness via alpha3beta1 integrin. Am J Pathol 161:183-193, 2002
    47. Schiemann WP, Blobe GC, Kalume DE, et al: Context-specific effects of fibulin-5 (DANCE/EVEC) on cell proliferation, motility, and invasion. Fibulin-5 is induced by transforming growth factor-beta and affects protein kinase cascades. J Biol Chem 277:27367-27377, 2002
    48. Zicha D, Genot E, Dunn GA, et al: TGFbeta1 induces a cell-cycle-dependent increase in motility of epithelial cells. J Cell Sci 112:447-454,1999 (pt 4)
    49. Dumont N, Bakin AV, Arteaga CL: Autocrine transforming growth factor-beta signaling mediates Smad-independent motility in human cancer cells. J Biol Chem 278:3275-3285, 2003
    50. Blobe GC, Schiemann WP, Lodish HF: Role of transforming growth factor beta in human disease. N Engl J Med 342:1350-1358, 2000
    51. Maehara Y, Kakeji Y, Kabashima A, et al: Role of transforming growth factor-beta 1 in invasion and metastasis in gastric carcinoma. J Clin Oncol 17:607-614, 1999
    52. Tobin SW, Douville K, Benbow U, et al: Consequences of altered TGF-beta expression and responsiveness in breast cancer: Evidence for autocrine and paracrine effects. Oncogene 21:108-118, 2002
    53. Hahn WC: Role of telomeres and telomerase in the pathogenesis of human cancer. J Clin Oncol 21:2034-2043, 2003
    54. Lin SY, Elledge SJ: Multiple tumor suppressor pathways negatively regulate telomerase. Cell 113:881-889, 2003
    55. Werner S, Beer HD, Mauch C, et al: The Mad1 transcription factor is a novel target of activin and TGF-beta action in keratinocytes: Possible role of Madl in wound repair and psoriasis. Oncogene 20:7494-7504, 2001
    56. Comijn J, Berx G, Vermassen P, et al: The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7:1267-1278, 2001
    57. Stampfer MR, Garbe J, Levine G, et al: Expression of the telomerase catalytic subunit, hTERT, induces resistance to transforming growth factor beta growth inhibition in p16INK4A(-) human mammary epithelial cells. Proc Natl Acad Sci U S A 98:4498-4503, 2001
    58. Schuster N, Krieglstein K: Mechanisms of TGF-beta-mediated apoptosis. Cell Tissue Res 307:1-14, 2002
    59. Hsing AY, Kadomatsu K, Bonham MJ, et al: Regulation of apoptosis induced by transforming growth factor-beta1 in nontumorigenic rat prostatic epithelial cell lines. Cancer Res 56:5146-5149,1996
    60. Hyman KM, Seghezzi G, Pintucci G, et al: Transforming growth factor-beta1 induces apoptosis in vascular endothelial cells by activation of mitogen-activated protein kinase. Surgery 132:173-179, 2002
    61. Francis JM, Heyworth CM, Spooncer E, et al: Transforming growth factor-beta 1 induces apoptosis independently of p53 and selectively reduces expression of Bcl-2 in multipotent hematopoietic cells. J Biol Chem 275:39137-39145, 2000
    62. Arsura M, Wu M, Sonenshein GE: TGF beta 1 inhibits NF-kappa B/Rel activity inducing apoptosis of B cells: Transcriptional activation of I kappa B alpha. Immunity 5:31-40,1996
    63. Arsura M, FitzGerald MJ, Fausto N, et al: Nuclear factor-kappaB/Rel blocks transforming growth factor beta1-induced apoptosis of murine hepatocyte cell lines. Cell Growth Differ 8:1049-1059,1997
    64. Krieglstein K, Richter S, Farkas L, et al: Reduction of endogenous transforming growth factors beta prevents ontogenetic neuron death. Nat Neurosci 3:1085-1090, 2000
    65. Kim BC, Mamura M, Choi KS, et al: Transforming growth factor beta 1 induces apoptosis through cleavage of BAD in a Smad3-dependent mechanism in FaO hepatoma cells. Mol Cell Biol 22:1369-1378, 2002
    66. Barna G, Sebestyen A, Chinopoulos CC, et al: TGF beta 1 kills lymphoma cells using mitochondrial apoptotic pathway with the help of caspase-8. Anticancer Res 22:3867-3872, 2002
    67. Lafon C, Mathieu C, Guerrin M, et al: Transforming growth factor beta 1-induced apoptosis in human ovarian carcinoma cells: Protection by the antioxidant N-acetylcysteine and bcl-2. Cell Growth Differ 7:1095-1104,1996
    68. Landstrom M, Heldin NE, Bu S, et al: Smad7 mediates apoptosis induced by transforming growth factor beta in prostatic carcinoma cells. Curr Biol 10:535-538, 2000
    69. Atfi A, Buisine M, Mazars A, et al: Induction of apoptosis by DPC4, a transcriptional factor regulated by transforming growth factor-beta through stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) signaling pathway. J Biol Chem 272:24731-24734, 1997
    70. Yamamura Y, Hua X, Bergelson S, et al: Critical role of smads and AP-1 complex in TGF-beta-dependent apoptosis. J Biol Chem 275:36295-36302, 2000
    71. Lallemand F, Mazars A, Prunier C, et al: Smad7 inhibits the survival nuclear factor kappaB and potentiates apoptosis in epithelial cells. Oncogene 20:879-884, 2001
    72. Perlman R, Schiemann WP, Brooks MW, et al: TGF-beta-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nat Cell Biol 3:708-714, 2001
    73. Motyl T, Grzelkowska K, Zimowska W, et al: Expression of bcl-2 and bax in TGF-beta 1-induced apoptosis of L1210 leukemic cells. Eur J Cell Biol 75:367-374, 1998
    74. Inman GJ, Allday MJ: Apoptosis induced by TGF-beta 1 in Burkitt's lymphoma cells is caspase 8 dependent but is death receptor independent. J Immunol 165:2500-2510, 2000
    75. Hagimoto N, Kuwano K, Inoshima I, et al: TGF-beta 1 as an enhancer of Fas-mediated apoptosis of lung epithelial cells. J Immunol 168:6470-6478, 2002
    76. Chen RH, Su YH, Chuang RL, et al: Suppression of transforming growth factor-beta-induced apoptosis through a phosphatidylinositol 3-kinase/Akt-dependent pathway. Oncogene 17:1959-1968,1998
    77. Conery AR, Cao Y, Thompson EA, et al: Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis. Nat Cell Biol 6:366-372, 2004
    78. Remy I, Montmarquette A, Michnick SW: PKB/Akt modulates TGF-beta signalling through a direct interaction with Smad3. Nat Cell Biol 6:358-365, 2004
    79. Pepper MS: Transforming growth factor-beta: Vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev 8:21-43,1997
    80. Dickson MC, Martin JS, Cousins FM, et al: Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. Development 121:1845-1854,1995
    81. Oshima M, Oshima H, Taketo MM: TGF-beta receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol 179:297-302,1996
    82. Larsson J, Goumans MJ, Sjostrand LJ, et al: Abnormal angiogenesis but intact hematopoietic potential in TGF-beta type I receptor-deficient mice. Embo J 20:1663-1673, 2001
    83. McAllister KA, Grogg KM, Johnson DW, et al: Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 8:345-351,1994
    84. Johnson DW, Berg JN, Baldwin MA, et al: Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet 13:189-195,1996
    85. Li DY, Sorensen LK, Brooke BS, et al: Defective angiogenesis in mice lacking endoglin. Science 284:1534-1537,1999
    86. Oh SP, Seki T, Goss KA, et al: Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci U S A 97:2626-2631, 2000
    87. Burrows FJ, Derbyshire EJ, Tazzari PL, et al: Up-regulation of endoglin on vascular endothelial cells in human solid tumors: Implications for diagnosis and therapy. Clin Cancer Res 1:1623-1634, 1995
    88. Yamamoto T, Kozawa O, Tanabe K, et al: Involvement of p38 MAP kinase in TGF-beta-stimulated VEGF synthesis in aortic smooth muscle cells. J Cell Biochem 82:591-598, 2001
    89. Goumans MJ, Valdimarsdottir G, Itoh S, et al: Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. Embo J 21:1743-1753, 2002
    90. Lamouille S, Mallet C, Feige JJ, et al: Activin receptor-like kinase 1 is implicated in the maturation phase of angiogenesis. Blood 100:4495-4501, 2002
    91. Lastres P, Letamendia A, Zhang H, et al: Endoglin modulates cellular responses to TGF-beta 1. J Cell Biol 133:1109-1121,1996
    92. Goumans MJ, Valdimarsdottir G, Itoh S, et al: Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFbeta/ALK5 signaling. Mol Cell 12:817-828, 2003
    93. Kirkbride KC, Blobe GC: Inhibiting the TGF-beta signalling pathway as a means of cancer immunotherapy. Expert Opin Biol Ther 3:251-261, 2003
    94. Bodmer S, Strommer K, Frei K, et al: Immunosuppression and transforming growth factor-beta in glioblastoma: Preferential production of transforming growth factor-beta 2. J Immunol 143:3222-3229,1989
    95. von Bernstorff W, Voss M, Freichel S, et al: Systemic and local immunosuppression in pancreatic cancer patients. Clin Cancer Res 7:925s-932s, 2001
    96. Hersey P: Impediments to successful immunotherapy. Pharmacol Ther 81:111-119,1999
    97. Leach DR, Krummel MF, Allison JP: Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734-1736,1996
    98. Brandes ME, Wakefield LM, Wahl SM: Modulation of monocyte type I transforming growth factor-beta receptors by inflammatory stimuli. J Biol Chem 266:19697-19703,1991
    99. Kehrl JH, Wakefield LM, Roberts AB, et al: Production of transforming growth factor beta by human T lymphocytes and its potential role in the regulation of T cell growth. J Exp Med 163:1037-1050,1986
    100. Gorelik L, Flavell RA: Transforming growth factor-beta in T-cell biology. Nat Rev Immunol 2:46-53, 2002
    101. Nakamura K, Kitani A, Strober W: Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 194:629-644, 2001
    102. Shull MM, Ormsby I, Kier AB, et al: Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359:693-699,1992
    103. Gorelik L, Flavell RA: Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12:171-181, 2000
    104. Bogdan C, Paik J, Vodovotz Y, et al: Contrasting mechanisms for suppression of macrophage cytokine release by transforming growth factor-beta and interleukin-10. J Biol Chem 267:23301-23308,1992
    105. Riedl E, Strobl H, Majdic O, et al: TGF-beta 1 promotes in vitro generation of dendritic cells by protecting progenitor cells from apoptosis. J Immunol 158:1591-1597,1997
    106. Borkowski TA, Letterio JJ, Mackall CL, et al: Langerhans cells in the TGF beta 1 null mouse. Adv Exp Med Biol 417:307-310,1997
    107. Kinzler KW, Vogelstein B: Cancer-susceptibility genes: Gatekeepers and caretakers. Nature 386:761-763, 1997
    108. Kanamoto T, Hellman U, Heldin CH, et al: Functional proteomics of transforming growth factor-beta1-stimulated Mv1Lu epithelial cells: Rad51 as a target of TGFbeta1-dependent regulation of DNA repair. Embo J 21:1219-1230, 2002
    109. Ewan KB, Henshall-Powell RL, Ravani SA, et al: Transforming growth factor-beta1 mediates cellular response to DNA damage in situ. Cancer Res 62:5627-5631, 2002
    110. Glick A, Popescu N, Alexander V, et al: Defects in transforming growth factor-beta signaling cooperate with a Ras oncogene to cause rapid aneuploidy and malignant transformation of mouse keratinocytes. Proc Natl Acad Sci U S A 96:14949-14954,1999
    111. Tang B, Bottinger EP, Jakowlew SB, et al: Transforming growth factor-beta1 is a new form of tumor suppressor with true haploid insufficiency. Nat Med 4:802-807, 1998
    112. Oft M, Heider KH, Beug H: TGFbeta signaling is necessary for carcinoma cell invasiveness and metastasis. Curr Biol 8:1243-1252,1998
    113. Knaus PI, Lindemann D, DeCoteau JF, et al: A dominant inhibitory mutant of the type II transforming growth factor beta receptor in the malignant progression of a cutaneous T-cell lymphoma. Mol Cell Biol 16:3480-3489,1996
    114. Picon A, Gold LI, Wang J, et al: A subset of metastatic human colon cancers expresses elevated levels of transforming growth factor beta1. Cancer Epidemiol Biomarkers Prev 7:497-504,1998
    115. Wikstrom P, Stattin P, Franck-Lissbrant I, et al: Transforming growth factor beta1 is associated with angiogenesis, metastasis, and poor clinical outcome in prostate cancer. Prostate 37:19-29, 1998
    116. Cui W, Fowlis DJ, Bryson S, et al: TGFbeta1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 86:531-542, 1996
    117. Tang B, Vu M, Booker T, et al: TGF-beta switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. J Clin Invest 112:1116-1124, 2003
    118. Siegel PM, Shu W, Cardiff RD, et al: Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proc Natl Acad Sci U S A 100:8430-8435, 2003
    119. McEarchern JA, Kobie JJ, Mack V, et al: Invasion and metastasis of a mammary tumor involves TGF-beta signaling. Int J Cancer 91:76-82, 2001
    120. Thiery JP, Chopin D: Epithelial cell plasticity in development and tumor progression. Cancer Metastasis Rev 18:31-42,1999
    121. Rosivatz E, Becker I, Specht K, et al: Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, and twist in gastric cancer. Am J Pathol 161:1881-1891, 2002
    122. Piek E, Moustakas A, Kurisaki A, et al: TGF-(beta) type I receptor/ALK-5 and Smad proteins mediate epithelial to mesenchymal transdifferentiation in NMuMG breast epithelial cells. J Cell Sci 112:4557-4568,1999 (pt 24)
    123. Brown CB, Boyer AS, Runyan RB, et al: Requirement of type III TGF-beta receptor for endocardial cell transformation in the heart. Science 283:2080-2082,1999
    124. Reeves R, Edberg DD, Li Y: Architectural transcription factor HMGI(Y) promotes tumor progression and mesenchymal transition of human epithelial cells. Mol Cell Biol 21:575-594, 2001
    125. Blobe GC, Schiemann WP, Pepin MC, et al: Functional roles for the cytoplasmic domain of the type III transforming growth factor beta receptor in regulating transforming growth factor beta signaling. J Biol Chem 276:24627-24637, 2001
    126. Eickelberg O, Centrella M, Reiss M, et al: Betaglycan inhibits TGF-beta signaling by preventing type I-type II receptor complex formation: Glycosaminoglycan modifications alter betaglycan function. J Biol Chem 277:823-829, 2002
    127. Sun L, Chen C: Expression of transforming growth factor beta type III receptor suppresses tumorigenicity of human breast cancer MDA-MB-231 cells. J Biol Chem 272:25367-25372, 1997
    128. Copland JA, Luxon BA, Ajani L, et al: Genomic profiling identifies alterations in TGFbeta signaling through loss of TGFbeta receptor expression in human renal cell carcinogenesis and progression. Oncogene 22:6109-6118, 2003
    129. McDonald CC, Alexander FE, Whyte BW, et al: Cardiac and vascular morbidity in women receiving adjuvant tamoxifen for breast cancer in a randomised trial: The Scottish Cancer Trials Breast Group. BMJ 311:977-980, 1995
    130. Comerci JT Jr, Runowicz CD, Fields AL, et al: Induction of transforming growth factor beta-1 in cervical intraepithelial neoplasia in vivo after treatment with beta-carotene. Clin Cancer Res 3:157-160,1997
    131. Park SH, Lee SR, Kim BC, et al: Transcriptional regulation of the transforming growth factor beta type II receptor gene by histone acetyltransferase and deacetylase is mediated by NF-Y in human breast cancer cells. J Biol Chem 277:5168-5174, 2002
    132. Miyajima A, Asano T, Hayakawa M: Captopril restores transforming growth factor-beta type II receptor and sensitivity to transforming growth factor-beta in murine renal cell cancer cells. J Urol 165:616-620, 2001
    133. Adnane J, Bizouarn FA, Chen Z, et al: Inhibition of farnesyltransferase increases TGFbeta type II receptor expression and enhances the responsiveness of human cancer cells to TGFbeta. Oncogene 19:5525-5533, 2000
    134. Venkatasubbarao K, Ammanamanchi S, Brattain MG, et al: Reversion of transcriptional repression of Sp1 by 5 aza-2' deoxycytidine restores TGF-beta type II receptor expression in the pancreatic cancer cell line MIA PaCa-2. Cancer Res 61:6239-6247, 2001
    135. Kavsak P, Rasmussen RK, Causing CG, et al: Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell 6:1365-1375, 2000
    136. Stander M, Naumann U, Dumitrescu L, et al: Decorin gene transfer-mediated suppression of TGF-beta synthesis abrogates experimental malignant glioma growth in vivo. Gene Ther 5:1187-1194, 1998
    137. Rowland-Goldsmith MA, Maruyama H, Matsuda K, et al: Soluble type II transforming growth factor-beta receptor attenuates expression of metastasis-associated genes and suppresses pancreatic cancer cell metastasis. Mol Cancer Ther 1:161-167, 2002
    138. Lei X, Bandyopadhyay A, Le T, et al: Autocrine TGFbeta supports growth and survival of human breast cancer MDA-MB-231 cells. Oncogene 21:7514-7523, 2002
    139. Cordeiro MF: Technology evaluation: Lerdelimumab, Cambridge Antibody Technology. Curr Opin Mol Ther 5:199-203, 2003
    140. Andres JL, Stanley K, Cheifetz S, et al: Membrane-anchored and soluble forms of betaglycan, a polymorphic proteoglycan that binds transforming growth factor-beta. J Cell Biol 109:3137-3145,1989
    141. Inman GJ, Nicolas FJ, Callahan JF, et al: SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 62:65-74, 2002
    142. Sawyer JS, Anderson BD, Beight DW, et al: Synthesis and activity of new aryl- and heteroaryl-substituted pyrazole inhibitors of the transforming growth factor-beta type I receptor kinase domain. J Med Chem 46:3953-3956, 2003
    143. Matsuno F, Haruta Y, Kondo M, et al: Induction of lasting complete regression of preformed distinct solid tumors by targeting the tumor vasculature using two new anti-endoglin monoclonal antibodies. Clin Cancer Res 5:371-382,1999
    144. Wojtowicz-Praga S, Verma UN, Wakefield L, et al: Modulation of B16 melanoma growth and metastasis by anti-transforming growth factor beta antibody and interleukin-2. J Immunother Emphasis Tumor Immunol 19:169-175,1996
    145. Matthews E, Yang T, Janulis L, et al: Down-regulation of TGF-beta1 production restores immunogenicity in prostate cancer cells. Br J Cancer 83:519-525,2000
    146. Gorelik L, Flavell RA: Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med 7:1118-1122, 2001
    147. Bosher JM, Labouesse M: RNA interference: Genetic wand and genetic watchdog. Nat Cell Biol 2:E31-E36, 2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700