5-杂氮-2’-脱氧胞苷诱导裸鼠HepG2种植瘤细胞表达T-cadherin及对种植瘤的抑制作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本研究旨在探讨去甲基化药物5-杂氮-2’-脱氧胞苷(5-Aza-CdR)能否在裸鼠体内诱导HepG2细胞的T-cadherin表达,并对HepG2种植瘤生长产生抑制作用.
     方法:皮下接种法建立HepG2细胞裸鼠种植瘤模型,随机分为实验组(5-Aza-CdR组)和对照两组,实验组11只,对照组10只。4周后处死裸鼠,观察种植瘤的生长情况;用RT-PCR技术及免疫组织化学技术检测T-cadherin mRNA及蛋白的表达。
     结果:用药4周后,实验组肿瘤组织的T-cadherin mRNA的表达水平显著高于对照组(T-cadherin基因PCR产物吸光度值与β-actin PCR产物吸光度值比值分别为0.545±0.119,0.256±0.079,t=6.613, P<0.05 );对照组HepG2细胞几乎检测不到T-cadherin蛋白表达,而实验组裸鼠种植瘤细胞膜上可检测到T-cadherin蛋白表达;实验组肿瘤的平均体积明显小于对照组肿瘤平均体积(分别为1005.78±419.69 mm3 , 1423.78±645.54mm3, t=2.337,P=0.025)。
     结论:5-Aza-CdR能诱导裸鼠皮下种植HepG2瘤细胞的T-cadherin表达,抑制HepG2种植瘤的生长。其机制可能与5-Aza-CdR使甲基化的T-cadherin启动子去甲基化恢复了T-cadherin的表达,从而抑制HepG2种植瘤生长.
AIM: This study was to observe whether the demethylation agent 5-Aza-2’–deoxycytidine ( 5-Aza-CdR) can induce the HepG2 cell to express T-cadherin gene, and inhibit the proliferation of the cancer cells in nude mice.
     METHODS : The HepG2-derived tumor model in nude mice was generated by subcutaneous inoculation of HepG2 cells. 21 Nude mice were randomly divided into two groups, the experiment group with 11 mice (5-Aza-CdR group) and the control group with 10 mice. The mice of the experiment group were given 5-Aza-CdR at 1mg/kg(in 200μl PBS) by intraperitoneal injection, three times per week( at an interval of 2-3 days) for 4 weeks, and the mice of the control group were only given the same volume of PBS. The mice were then sacrificed at the end of the fourth week. The tumor growth in nude mice was observed,and the T-cadherin mRNA and protein expressions of the tumors were detected by reverse transcription-polymerase chain reaction(RT-PCR) and immunohistochemistry.
     RESULTS: At the end of the fourth week, the T-cadherin mRNA expression in the tumors of the experiment group was significantly higher than that in the tumors of the control group (t=6.613, P<0.05); Immunohistochemistry further showed that the protein expression of T-cadherin in the HepG2-derived tumor cells of the control group was not found, however, the T-cadherin expression appeared on the membranes of the HepG2-derived tumor cells of the experiment group. After 4 weeks treatment with 5-Aza-CdR, the average volume of HepG2-derived tumors in the experiment group was significantly smaller than that in the control group(1005.78±419.69 vs 1423.78±645.54mm3 ) , there was a significant difference in tumor volume between the two groups(t=2.337,P=0.025<0.05).
     CONCLUSION:5-Aza-CdR induces HepG2 cells to re-express T-cadherin, and inhibits the growth of HepG2-derived tumors in nude mice. The mechanism may correlate with the demethylation of the methylated T-cadherin promoter induced by 5-Aza-CdR,and the T-cadherin reexpression inhibits the growth of the HepG2-derived tumors in nude mice.
引文
1. Sato N,Fukushima N,Maitra A.Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays.Cancer Res 2003;63:3735-3742.
    2. Kiyomi O. Toyooka, Shinichi Toyooka, Arvind K. Virmani, Ubaradka G. Sathyanarayana, David M. Euhus, Michael Gilcrease, John D. Minna, and Adi F. Gazdar.Loss of Expression and Aberrant Methylation of the CDH13 (H-Cadherin) Gene in Breast and Lung Carcinomas. Cancer Res 61, 4556–4560, June 1, 2001.
    3. Bender CM, Pao MM, Jones PA. Inhibition of DNA methylation by 5-aza-2’- deoxycytidine suppresses the growth of human tumor cell lines.Cancer Res,1998,58(1):95-101.
    4. Lantry LE, Zhang Z, Crist KA, Wang Y, Kelloff GJ, Lubet RA, You M.5-Aza-2,-deoxycytidine is chemopreventive in a 4- (methylnitrosamino)- 1- (3-pyridy1)- 1-butanone-induced primary mouse lung tumor model [J]. Carcinogenesis,1999,20(2):343—346.
    5. Huang ZY, Wu Y, Hedrick N, Gutmann DH. T- cadherin-Mediated Cell Growth Regulation Involves G2 Phase Arrest and requires p21CIP1/WAF1 Expression. Mol Cell Biol, 2003, 23: 566–578.
    6. Qun Yan , Zhi-fa Zhang, Xiao-ping Chen, David H Gutmann, Min Xiong Zhen-yu Xiao, Zhi-yong Huang. Reduced T-cadherin expression and promoter methylation are associated with the development and progression of hepatocellular carcinoma.IntJ Oncol, 2008, 32:1057-1063.
    7.张志发,严群,黄志勇.黏附分子cadherin与肝癌生物学特性的关系.世界华人消化杂志, 2006年3月8日;14(7):697-701.
    8. Levenberg S, Yarden A, Kam Z, Geiger B. P27 is involved in N-cadherin mediated contact inhibition of cell growth and S-phase entry. Oncogene, 1999, 18: 869–876.
    9. Ivanov D B, Philippova MP, Tkachuk VA.Structure and Functions of Classical Cadherins,Biochemistry (Moscow), Vol. 66, No. 10, 2001.
    10. Angst BD, Marcozzi C, Magee AI.The cadherin superfamily: diversity in form andfunction. Journal of Cell Science, 2001, 114(Pt4): 629-641.
    11. Philippova M, Ivanov D, Tkachuk V, Erne P, Resink TJ. Polarisation of T-cadherin to the leading edge of migrating vascular cells in vitro: a function in vascular cell motility? Histochemistry and Cell Biology, 2003, 120:353-360.
    12. Sato M, Mori Y, Sakurada A, Fujimura S, Horii A. The H-cadherin (CDH13) gene is inactivated in human lung cancer. Hum Genet, 1998, 103:96–101.
    13. Sakai M, Hibi K, Koshikawa K, Inoue S, Takeda S, Kaneko T, Nakao A. Frequent promoter methylation and gene silencing of CDH13 in pancreatic cancer. Cancer Sci, 2004, 95: 588–591.
    14. Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB, Sidransky D. 5’CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med, 1995, 1: 686–692.
    15. Dammann R, Schagdarsurengin U, Liu L, Otto N, Gimm O, Dralle H, Boehm BO, Pfeifer GP, Hoang-Vu C. Frequent RASSF1A promoter hypermethylation and K-ras mutations in pancreatic carcinoma. Oncogene, 2003, 22:3806–3812.
    16. Fukushima N, Sato N, Ueki T, Rosty C, Walter KM, Wilentz RE, Yeo CJ, Hruban RH, Goggins M. Aberrant methylation of preproenkephalin and p16 genes in pancreatic intraepithelial neoplasia and pancreatic ductal adenocarcinoma. Am J Pathol,2002, 160: 1573–1581.
    17. Santini V, Kantarjian HM, Issa JP,Changes in DNA methylation in neoplasia: pathophysiology and therapeutic implications. Ann Intern Med. 2001 Apr 3; 134 (7):573-86.
    18. Plumb JA,Strathdee G,Sludden J,et a1.Reversal of drug resistance in human tumor xenografts by 2’-deoxy-5-azacytidine induced demethylation of the hMLH1 gene promoter [J]. Cancer Res,2000,60(21):6039—6044(可删除,正文相应删除)
    19. Wijermans PW, Krulder JW, Huijgens PC, NeveP. Continuous infusion of low-dose 5-Aza-2'-deoxycytidine in elderly patients with high-risk myelodysplastic syndrome. Leukemia 1997; 11: 1-5.
    20. Kantarjian H, Oki Y, Garcia-Manero G, Huang X, O'Brien S, Cortes J, Faderl S, Bueso-Ramos C, Ravandi F, Estrov Z, Ferrajoli A, Wierda W, Shan J, Davis J, Giles F, Saba HI, Issa JP. Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia.Blood 2007; 109: 52-57.
    21. Kanai Y, Ushijima S, Hui AM, Ochiai A, Tsuda H, Sakamoto M, Hirohashi S. The E-cadherin gene is silenced by CpG methylation in human hepatocellular carcinomas, Int. J. Cancer: 71, 355–359.
    22. Lee YY, Kang SH, Seo JY, Jung CW, Lee KU, Choe KJ, Kim BK, Kim NK, Koeffler HP, Bang YJ. Alterations of p16INK4A and p15INK4B genes in gastric carcinomas. Cancer, 80, 1889–1896.
    23. Vogt,M., Haggblom,C., Yeargin,J., Christiansen-Weber,T. and Haas,M. Independent induction of senescence by p16INK4a and p21CIP1 in spontaneously immortalized human fibroblasts. Cell Growth Differentiate, 9, 139–146.
    1. Huang J , Cai MY, Wei DP. HLA classⅠexpression in primary hepatocellular carcinoma. World J Gastroenterol ,2002 ,8 (4) :654 -657.
    2. Tabor E. Liver tumors and host defense. Semin Liver Dis. 1997;17(4):351-5.
    3. Vivarelli M, Cucchetti A, Piscaglia F, La Barba G, Bolondi L, Cavallari A, Pinna AD. Analysis of risk factors for tumor recurrence after liver transplantation for hepatocellular carcinoma: key role of immunosuppression. Liver Transpl. 2005 May;11(5):497-503.
    4. Montoya MC , Sancho D ,Vicente Manzanares M ,et al . Cell adhesion and polarity during immune interactions. Immunol Rev , 2002 ,18 :168-282.
    5. Attallah AM, Tabll AA, El-Sadany M, Ibrahim TA, El-Dosoky I. Dysregulation of blood lymphocyte subsets and natural killer cells in schistosomal liver cirrhosis and hepatocellular carcinoma. Clin Exp Med. 2003 Nov;3(3):181-5.
    6. Lars A. Ormandy, Tina Hillemann, Heiner Wedemeyer, Michael P. Manns, Tim F. Greten, and Firouzeh Korangy. Increased Populations of Regulatory T Cells in Peripheral Blood of Patients with Hepatocellular Carcinoma. Cancer Res 2005; 65: (6). March 15, 2005.
    7. Noboru Harada, Mitsuo Shimada, Shinji Okano, Taketoshi Suehiro, Yuji Soejima, Yukihiro Tomita, and Yoshihiko Maehara. IL-12 Gene Therapy Is an Effective Therapeutic Strategy for Hepatocellular Carcinoma in Immunosuppressed Mice. The Journal of Immunology, 2004, 173: 6635–6644.
    8. Wada Y, Nakashima O, Kutami R, Yamamoto O, Kojiro M. Clinicopathological study on hepatocellular carcinoma with lymphocytic infi ltration. Hepatology 1998; 27: 407-414.
    9. Unitt E, Rushbrook SM, Marshall A, Davies S, Gibbs P, Morris LS, Coleman N, Alexander GJ. Compromised lymphocytes infiltrate hepatocellular carcinoma: the role of T-regulatory cells. Hepatology. 2005 Apr; 41(4):722-30.
    10. Unitt E, Rushbrook SM, Marshall A, Davies S, Gibbs P, Morris LS, Coleman N, Alexander GJ. Compromised lymphocytes infiltrate hepatocellular carcinoma: the role of T-regulatory cells. Hepatology. 2005 Apr; 41(4):722-30.
    11. Lars A Ormandy, Anatol F?rber, Tobias Cantz, Susanne Petrykowska, Heiner Wedemeyer, Monique H?rning, Frank Lehner, Michael P Manns, Firouzeh Korangy, Tim F Greten. Direct ex vivo analysis of dendritic cells in patients with hepatocellular carcinoma. World J Gastroenterol 2006 May 28; 12(20): 3275-3282.
    12. A H Lau and A W Thomson. Dendritic cells and immune regulation in the liver.Gut 2003;52;307-314.
    13. Banchereau J , Steinman RM. Dendritic cells and the control of immunity. Nature , 1998 , 392(6673) : 245 - 252.
    14. Labeur M ,Boerman O ,Collins J ,et al . Generation tumor immunity by bone marrow derived dendritic cells correlates wit the dendritic cell maturation stage. Immunol , 1999 , 162 (4) :168-175.
    15. Lars A Ormandy, Anatol F?rber, Tobias Cantz, Susanne Petrykowska, Heiner Wedemeyer, Monique H?rning, Frank Lehner, Michael P Manns, Firouzeh Korangy, Tim F Greten. Direct ex vivo analysis of dendritic cells in patients with hepatocellular carcinoma. World J Gastroenterol 2006 May 28; 12(20): 3275-3282.
    16. Lee WC, Chiang YJ, Wang HC, Wang MR, Lia SR, Chen MF. Functional impairment of dendritic cells caused by murine hepatocellular carcinoma. Clin Immunol 2004 Mar;24(2):145-54.
    17. Luo D ,Vermijlen D ,Ahishali B ,et al . MHC class I expression protects colon carcinoma cells from cytolysis and apoptosis by hepatic NK (pit) cells by blocking the perforin/ granzyme pathway . Comparative Hepatology ,2002 ,1(1) :1– 9.
    18. Horny HP, Engst U, Walz RS, Kaiserling E. In situ immunophenotyping of lymphocytes in human bone marrow: an immunohistochemical study. Br J Haematol. 1989 Mar;71(3):313-21.
    19. Kawarabayashi N , Seki S , Hatsuse K, et al . Decrease of CD56 ( + ) T cells and natural killer cells in cirrhotic livers with hepatitis C may be involved in their susceptibility to hepatocellular carcinoma. Hepatology , 2000 , 32 (5) :962~969.
    20. Margalit M, Shibolet O, Klein A, Elinav E, Alper R, Thalenfeld B, Engelhardt D, Rabbani E, Ilan Y. Suppression of hepatocellular carcinoma by transplantation of ex-vivo immune-modulated NKT lymphocytes. Int J Cancer. 2005 Jun 20;115(3):443-9.
    21. Kataoka S, Konishi Y, Nishio Y, Fujikawa-Adachi K, Tominaga A. Antitumor activity of eosinophils activated by IL-5 and eotaxin against hepatocellular carcinoma. DNA Cell Biol. 2004 Sep; 23(9):549-60.
    22. Lin CY, Lin CJ, Chen KH, Wu JC, Huang SH, Wang SM. Macrophage activation increases the invasive properties of hepatoma cells by destabilization of the adherens junction. FEBS Lett. 2006 May 29;580(13):3042-50. Epub 2006 Apr 27.
    23. Matsui S ,Ahlers J D ,Vortmeyer A O et al . A model for CD8 + CTL tumor immunosurveillance and regulation of tumor escape by CD4 + T cells through an effect on quality of CTL [J ] . J Immunol ,1999 ;165 :184.
    24. Young Doo Shin, Byung Lae Park, Lyoung Hyo Kim, Ji Hyun Jung, Jun Yeon Kim, Jung Hwan Yoon, and Hyo-Suk Lee, Interleukin 10 haplotype associated with increased risk of hepatocellular carcinoma. Human Molecular Genetics, 2003, Vol. 12, No. 8 901–906.
    25. Wang J, Ni H, Chen L, Song WQ. Interleukin-10 promoter polymorphisms in patients with hepatitis B virus infection or hepatocellular carcinoma in Chinese Han ethnic population. Hepatobiliary Pancreat Dis Int. 2006 Feb;5(1):60-4.
    26. Okumoto K, Hattori E, Tamura K, Kiso S, Watanabe H, Saito K, Saito T, Togashi H, Kawata S. Possible contribution of circulating transforming growth factor-beta1 to immunity and prognosis in unresectable hepatocellular carcinoma. Liver Int. 2004 Feb;24(1):21-8.
    27. Balkwill FR. Cytokines in cancer therapy . Oxford University Press ,1989. 127.
    28. He YF, Wang XH, Zhang GM, Chen HT, Zhang H, Feng ZH. Sustained low-level expression of interferon-gamma promotes tumor development. Cancer Immunol Immunother. 2005 Sep;54(9):891-7. Epub 2005 Mar 18.
    29. Matsui M, Machida S, Itani-Yohda T, Akatsuka T. Downregulation of the proteasome subunits, transporter, and antigen presentation in hepatocellular carcinoma, and their restoration by interferon-gamma. J Gastroenterol Hepatol. 2002 Aug;17(8):897-907.
    30. Li D , Shugert E , Guo M, et al . Combination nonviral interleukin 2 and interleukin 12 gene therapy for head and neck squamous cell carcinoma . Arch Otolaryngol Head Neck Surg , 2001 , 127 (11) : 1319 - 1324.
    31. Yamashita Y I , Shimada M, Hasegawa H , et al . Electroporation-mediated interleukin-12 gene therapy for hepatocellular carcinoma in the mice model . Cancer Res , 2001 , 61 (3) : 1005 - 1012.
    32. Teicher BA , Ara G, Schaub KM , et al. In vivo studies with interleukin - 12 alone and in combination with monocyte colony - stimulation factor and/ or fractionated radiation treatment . Int J Cancer. 1996 ,65 :8084~8088.
    33. Hanagiri T, Yoshino I, Takenoyama M , et al. Effects of interleukin - 12 on the induction of cytotoxic T lymphocytes from the regional lymphnode lymphocytes of patients with lung adenocarcinoma. Cancer Res, 1998, 89 (2)∶192.
    34. Tanaka F, Hashimoto W, Okamura H, Robbins PD, Lotze MT, Tahara H. Rapid generation of potent and tumor-specific cytotoxic T lymphocytes by interleukin 18 using dendritic cells and natural killer cells. Cancer Res. 2000 Sep 1;60(17):4838-44.
    35. Sobota V , Bubenik J , Simova J , et al . Intratumoral IL - 12 gene transfer improves the therapeutic efficacy of IL - 12 but not IL– 19. Folia Biol (Praha) ,2000 ,46(5) :191 - 193.
    36. Liu Y, Poon RT, Hughes J, Feng X, Yu WC, Fan ST. Chemokine receptors support infiltration of lymphocyte subpopulations in human hepatocellular carcinoma. ClinImmunol. 2005 Feb;114(2):174-82.
    37. Huang H , Li F , John RG, et al. Synergistic enhancement of antitumor immunity with adoptively transferred tumor– specific CD4 + and CD8 + T cells and intratumoral lymphotactin transgene expression. Cancer Res , 2002 , 62 ( 4) : 2043 -2051.
    38. Fujiwara K, Higashi T, Nouso K, Kobayashi Y, Uemura M, Nakamura S, Sato S, Hanafusa T, Yumoto Y, Naito I, Shiratori Y. Decreased expression of B7 costimulatory molecules and major histocompatibility complex class-I in human hepatocellular carcinoma. Gastroenterol Hepatol. 2004 Oct;19(10):1121-7.
    39. Kim HR, Park HJ, Park JH, Kim SJ, Kim K, Kim J. Characteristics of the killing mechanism of human natural killer cells against hepatocellular carcinoma cell lines HepG2 and Hep3B. Cancer Immunol. 2004 ,May;53(5):461-70. Epub 2003 Nov 28.
    40. Nagarkatti N ,Tumor-derived Fas ligang induces toxicity in lymphoid organs and plays an important role in successful chemotherapy. Cancer Immunol Immunother , 2000 , 49(1) :46-551.
    41. Johannes H?nsler, Thadd?us Till Wissniowski, Detlef Schuppan, Astrid Witte, Thomas Bernatik, Eckhart Georg Hahn, Deike Strobel. Activation and dramatically increased cytolytic activity of tumor specific T lymphocytes after radio-frequency ablation in patients with hepatocellular carcinoma and colorectal liver metastases. World J Gastroenterol 2006 June 21; 12(23): 3716-3721.
    42. Ali MY, Grimm CF, Ritter M, Mohr L, Allgaier HP, Weth R, Bocher WO, Endrulat K, Blum HE, Geissler M. Activation of dendritic cells by local ablation of hepatocellular carcinoma.Hepatol. 2005 Nov;43(5):817-22. Epub 2005 Jun 20.
    43. Zerbini A, Pilli M, Penna A, Pelosi G, SchianchiC,MolinariA,SchivazappaS,Zibera C, Fagnoni FF,Ferrari C, Missale G. Radiofrequency thermal ablation of hepatocellular carcinoma liver nodules can activate and enhance tumor-specific T-cell responses. Cancer Res. 2006 Jan 15;66(2):39-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700