粉尘螨提取液致敏CXCR3基因敲除小鼠肺部变应性炎症的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
哮喘是一种包括嗜酸性粒细胞在内的多种炎性细胞浸润、Th1和Th2源性细胞因子产生失衡及气道高反应性为特征的气道慢性变态反应性炎症性疾病。CD4~+CD25~+T细胞与γδT细胞在哮喘气道炎症反应中发挥着不容忽视的作用。多种细胞因子与趋化因子及其受体参与了哮喘的气道炎症反应,CXCR3受体及其配体是与Th1型细胞应答密切关联的炎症相关因子,但其作用机制还不清楚。本文利用CXCR3受体基因敲除小鼠构建哮喘的动物模型,探讨CD4~+CD25~+T细胞、γδT细胞与CXCR3受体及其配体在哮喘发病中的作用。
     实验中,用HE染色计数BALF中不同种细胞的数量并观察肺组织的病理改变;BCA法测定BALF中的蛋白浓度;ELISA法检测小鼠BALF以及脾细胞培养上清中的炎症因子IL-4、IFN-γ的表达情况;流式细胞学检测肺组织、脾组织细胞中CD4~+T细胞、CD8~+T细胞、CD4~+CD25~+T细胞和γδT细胞的比例;RT-PCR检测肺组织中Mig、IP-10、TGF-β、IL-10和Foxp3的mRNA水平。
     结果表明,使用粉尘螨提取液反复多次腹腔注射进行致敏,继而以雾化吸入的方式激发可以成功构建过敏性哮喘小鼠模型,致敏组BALF中的细胞总数、嗜酸性粒细胞数、IL-4和脾细胞培养上清中IL-4的含量较对照组显著升高、IFN-γ含量显著降低(P<0.01)。致敏组CD4~+CD25~+T细胞占CD4~+T细胞的比值在肺组织中显著高于对照组(P<0.05),脾组织中显著低于对照组(P<0.05),且小鼠肺组织TGF-β和IL-10的mRNA表达水平显著低于对照组(P<0.05)。致敏组γδT细胞占CD3~+T细胞的比值在肺组织中显著高于对照组(P<0.05),脾组织中显著低于对照组(P<0.05)。CXCR3~(-/-)基因敲除小鼠BALF中总细胞数、嗜酸性粒细胞数、淋巴细胞和蛋白含量以及脾细胞培养上清中IL-4的浓度较野生型显著升高(P<0.01),且CXCR3~(-/-)小鼠肺组织中Mig、IP-10 mRNA的表达,均较野生型小鼠显著降低(P<0.05)。
     实验证实CD4~+CD25~+T细胞参与了肺部气道变应性炎症反应,在炎症应答中发挥着一定的调节作用,它的调节作用可能依赖于IL-10与TGF-β来实现,因而通过上调IL-10与TGF-β细胞因子的表达可能能够抑制哮喘的炎症反应。γδT细胞从外周聚集到炎症部位,参与了肺部变态反应性炎症反应,其具体机制还有待于进一步研究。CXCR3~(-/-)基因敲除小鼠较野生型C57BL/6小鼠的炎症应答更加严重,说明CXCR3受体与它的配体Mig、IP-10和I-TAC在哮喘肺部炎症的发生发展中可能共同发挥着对抗炎症的作用,是哮喘的保护性因素。促进患者CXCR3受体及其配体的表达,或许可以成为一个新的预防和治疗哮喘的策略。
Asthma is a chronic obstructive airway disease featuring eosinophilic airway inflammation,airway hyperesponssiveness(AHR) to bronchospasmogenic stimuli, mucus hypersecretion,airway remodeling,elevated serum levels of allergen-specific IgE and unbalanced Th1/Th2 immune responses.CD4~+CD25~+T cell andγδT cell participate in the allergic airway inflammation.Cytokines and chemokines play a key role in orchestrating the chronic inflammation of asthma.CXCR3 receptor and its ligands are nearly correlative with Th1 immune response.In this paper,we explore the function of CD4~+CD25~+T cell,γδT cell and CXCR3 by setting up an asthma mice model sensitized and challenged with house dust mite extracts Dermatophagoides farinae.
     In this study,pathological manifestation of the lung,cell counts and classification in BALF were studied;protein in the BALF was detected by BCA;IL-4 and IFN-γ,levels in BALF and spleen supernatants were detected by ELISA;CD4~+T cell,CD8~+T cell,CD4~+CD25~+T cell andγδT cell in the lung and spleen were detected by flow cytometry;the expression of Mig,IP-10,TGF-β,IL-10 and Foxp3 mRNA were detected by RT-PCR.
     In the end,we found that there was pulmonary eosinophilic inflammation in the mice sensitized and challenged with house dust mite extracts.Total cells counts, eosinophil counts and IL-4 levels in BALF and cultured splenocyte supernatants enhanced significantly while IFN-γdecreased(P<0.01) in HDM Groups.The proportion of CD4~+CD25~+T cell in HDM groups increased significantly(P<0.05) in the lung while decreased significantly(P<0.05) in the spleen.The expression of TGF-βand IL-10 mRNA in the HDM groups were lower than the control groups (P<0.05).The proportion ofγδT cell in HDM groups increased significantly(P<0.05) in the lung while decreased significantly(P<0.05) in the spleen.The changes of total cells counts,eosinophil counts,lymphocyte counts,protein in the BALF,IL-4 in the splenocyte supematants and pathological manifestation of the lung were more intensive in CXCR3~(-/-) mice than C57BL/6 wild-type mice.Further more,the expression of Mig,IP-10 mRNA in CXCR3~(-/-) mice lung were lower than C57BL/6 wild-type mice(P<0.05).
     CD4~+CD25~+T cell modulates the allergic pulmonary inflammatory reaction depended on IL-10 and TGF-β.The allergic pulmonary inflammation may be suppressed by uprising IL-10 and TGF-β.γδT cell participates in the allergic pulmonary inflammation,but the immanent mechanism needs further study.As compared with C57BL/6 wild-type mice,CXCR3~(-/-)mice were more sensitized to allergic pulmonary inflammation model.CXCR3 and its ligands(Mig,IP-10 and I-TAC) play an anti-inflammatory role during the pathogenic process in this animal model.They may be protective factors for asthma patients.Promoting the expression of CXCR3 and its ligands could be a new target for preventing and curing asthma.
引文
[1]Bochner BS,Busse WW.Allergy and asthma[J].J Allergy Clin Immunol,2005,115(5):953-959.
    [2]Motta AC,van Oosterhout AJM.T cells in asthma:Lessons from mouse models[J].Drug Discov Today Dis Models,2006,3(3):199-204.
    [3]Swirski FK,Gajewska BU,Alvarez D,et al.Inhalation of a harmless antigen (ovalbumin)elicits immune activation but divergent immunoglobulin and cytokine activities in mice[J].Clin Exp Allergy,2002,32(3):411-421.
    [4]Swirski FK,Sajic D,Robbins CS,et al.Chronic exposure to innocuous antigen in sensitized mice leads to suppressed airway eosinophilia that is reversed by granulocyte macrophage colony-stimulating factor[J].J Immunol,2002,169(7):3499-3506.
    [5]Gehring U,Heinrich J,Jacob B,et al.Respiratory symptoms in relation to indoor exposure to mite and cat allergens and endotoxins[J].Eur Respir J,2001,18(3):555-563.
    [6]Bousquet J.Global initiative for asthma(GINA) and its objectives[J].Clin Exp Allergy,2000,30(Suppl.1):2-5.
    [7]李国平,刘志刚,钟南山.重组Derp2变应原诱导小鼠变态反应气道炎症动物模型的建立[J].中华微生物和免疫学杂志,2005,25(7):564-569.
    [8]吴奎,毕玉田,孙鲲,等.屋尘螨提取液致敏BALB/c与C57BL/6小鼠肺部变应性炎症模型的比较[J].第三军医大学学报,2005,27(17):1756-1759.
    [9]Cates EC,Fattouh R,Wattie J,et al.Intranasal Exposure of Mice to House Dust Mite Elicits Allergic Airway Inflammation via a GM-CSF-Mediated Mechanism[J].J Immunol,2004,173(10):6384-6392.
    [10]Masoli M,Fabian D,Holt S,et al.The global burden of asthma:executive summary of the GINA dssemination committee report[J].Allergy,2004,59(5):469-478.
    [1]Barnes PJ.The cytokine network in asthma and chronic obstructive pulmonary disease[J].J Clin Invest.2008,118(11):3546-3556.
    [2]Masoli M,Fabian D,Holt S,et al.The global burden of asthma:executive summary of the GINA dssemination committee report[J].Allergy,2004,59(5):469-478.
    [3]Bosquet J,Jeffery PK,Busse W W,et al.Asthma:From bronchoconstriction to airway inflammation and remodeling[J].Am J Respir Crit Care Med,2000,161(5):1720-1745.
    [4]Bochner BS,Busse WW.Allergy and asthma[J].J Allergy Clin Immunol,2005,115(5):953-959.
    [5]Sakaguchi S,Sakaguchi N,Asano M,et al.Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains(CD25).Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases[J].J Immunol,1995,155:1151-1164.
    [6]Akbari O,Stock P,DeKm RH,et al.Role of regulatory T cels in allergy and asthma[J].Curt Opin Immunol,2003,15:627-633.
    [7]Cheong HS,Park CS,Kim LH,et al.CXCR3 polymorphisms associated with risk of asthma[J].Biochem Biophys Res Commun,2005,334:1219-1225.
    [8]张双美,沈华浩.CXCR3及其配体与支气管哮喘[J].国际呼吸杂志,2007,27:826-829.
    [9]李国平,刘志刚,钟南山.重组Derp2变应原诱导小鼠变态反应气道炎症动物模型的建立[J].中华微生物和免疫学杂志,2005,25(7):564-569.
    [10]Gehring U,Heinrich J,Jacob B,et al.Respiratory symptoms in relation to indoor exposure to mite and cat allergens and endotoxins.Indool factors and genetics in asthma(GINA) study group[J].Eur Respir J,2001,18(3):555-563.
    [11]吴奎,毕玉田,孙鲲,等.屋尘螨提取液致敏BALB/c与C57BL/6小鼠肺部变应性炎症模型的比较[J].第三军医大学学报,2005,27(17):1756-1759.
    [12]Cates EC,Fattouh R,Wattie J,et al.Intranasal Exposure of Mice to House Dust Mite Elicits Allergic Airway Inflammation via a GM-CSF-Mediated Mechanism[J].J Immunol,2004,173:6384-6392.
    [13]Tournoy KG,Kips JC,Schou C.Airway eosinophilia is not a requirement for allergen-induced airway hyperresponsiveness[J].Clinical and Experimental Allergy,2000,30:79-85.
    [14]Thornton AM,Shevach EM.Suppressor effector function of CD4~+CD25~+immunoregulatory T cells is antigen nonspecific.J Immunol 2000;164:183-190.
    [15]Asseman C,Mauze S,Leach MW,et al.An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation.J Exp Med 1999;190:995-1004.
    [16]Powrie F,Carlino J,Leach MW,et al.A critical role for transforming growth factor b but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RBlow CD4~+ T cells.J Exp Med 1996;183:2669-2674.
    [17]Borish L,Aarons A,Rumbyrt J,et al.Interleukin-10 regulation in normal subjects and patients with asthma.J Allergy Clin Immunol 1996;97:1288-1296.
    [18]Lim S,Crawley E,Woo P,Barnes PJ.Haplotype associated with low interleukin-10 production in patients with severe asthma.Lancet 1998;352:113.
    [19]Heaton T,Rowe J,Turner S,et al.An immunoepidemiological approach to asthma:identification of in-vitro T-cell response patterns associated with different wheezing phenotypes in children.Lancet 2005;365:142-149.
    [20]Enk AH,Saloga J,Becker D,et al.Induction of haptenspecific tolerance by interleukin 10 in vivo.J Exp Med 1994;179:1397-1402.
    [21]Chen W,Jin W,Hardegen N,et al.Conversion of peripheral CD4~+CD25~- naive T cells to CD4~+CD25~+ regulatory T cells by TGFbeta induction of transcription factor Foxp3.J Exp Med 2003;198:1875-1886.
    [22]Huber S,Schramm C,Lehr HA,Mann A,Schmitt S,Becker C,et al.Cutting edge:TGF-beta signaling is required for the in vivo expansion and immunosuppressive capacity of regulatory CD4~+CD25~+ T cells.J Immunol 2004;173:6526-6531.
    [23]Lin W,Truong N,Grossma WJ,et al.Allergic dysregulation and hyperimmunoglobulinemia E in Foxp3 mutant mice[J].J Allergy Clin Immunol,2005,116(5):1106-1115.
    [24]Fontenot JD,Gavin MA,Rudensky AY.Foxp3 programs the development and function of CD4~+CD25~+ regulatory T cells.Nat Immunol 2003;4:330-336.
    [25]Shi HZ,Li S,Xie ZF,Qin XJ,Qin X,Zhong XN.Regulatory CD4~+CD25~+ T lymphocytes in peripheral blood from patients with atopic asthma.Clin Immunol 2004;113:172-178.
    [26]Wang LH,Lin YH,Yang J,et al.Insufficient increment of CD4~+CD25~+regulatory T cells after stimulation in vitro with allergen in allergic asthma.Int Arch Allergy Immunol.2009;148(3):199-210.
    [27]吴奎,孙鲲,毕玉田等.哮喘小鼠CD4~+CD25~+调节性T细胞数量及功能的改变,中国呼吸与危重监护杂志,2005,4(6):455-458.
    [28]Chen KS,Miller KH,Hengehold D.Diminution of T cells with gamma delta receptor in the peripheral blood of allergic asthmatic individuals[J].Clin Exp Allergy,1996,26:295-302.
    [29]Krejsek J,Kral B,Vokurkova D,et al..Decreased peripheral blood gamma delta T cells in patients with bronchial asthma[J].Allergy,1998,53(1):73-77.
    [30]Spinozzi F,Agea E,Bistoni O,et al.Increased Allergen-Specific,Steroid-Sensitive γδT Cells in Bronchoalveolar Lavage Fluid from Patients with Asthma[J].Ann Intern Med,1996,124:223-228.
    [31]Hamzaoui A,Kahan A,Ayed K,et al.T cells expressing the gammadelta receptor are essential for Th2-mediated inflammation in patients with acute exacerbation of asthma[J].Mediators Inflamm,2002,11:113-119.
    [32]Snibson KJ,Bischof RJ,Slocombe RF,et al.Airway remodelling and inflammation in sheep lungs after chronic airway challenge with house dust mite[J].Clin Exp Allergy,2005,35:146-152.
    [33]李超乾,徐永健,杨丹蕾,等.支气管哮喘大鼠γδT细胞分布和凋亡的变化.基础医学与临床[J].2003,23(5):521-524.
    [34]Yiamouyiannis CA,Schramm CM,Puddington L,et al.Shifts in Lung Lymphocyte Profiles Correlate with the Sequential Development of Acute Allergic and Chronic Tolerant Stages in a Murine Asthma Model[J].Am J Pathol,1999,154:1911-1921.
    [35]Spinozzi F,Agea E,Bistoni O,et al.Local expansion of allergen-specific CD30~+Th2-type gamma delta T cells in bronchial asthma[J].Mol Med,1995,1:821-826.
    [36]Hamzaoui A,Kahan A,Ayed K,et al.T cells expressing the gamma delta receptor are essential for Th2-mediated inflammation in patients with acute exacerbation of asthma[J].Mediators of Inflammation,2002,11:113-119.
    [37]Krug N,Erpenbeck VJ,Balke K,et al.Cytokine Profile of Bronchoalveolar Lavage-Derived CD4~+,CD8~+,and γδT Cells in People with Asthma after Segmental Allergen Challenge[J].Am J Respir Cell Mol Biol,2001,25:125-131.
    [38]李超乾,徐永健,杨丹蕾,等.大鼠支气管哮喘模型γδT细胞Th1/Th2免疫应答模式的研究[J].中华内科杂志.2004,43(5):342-344.
    [39]Schramm CM,Puddington L,Yiamouyiannis CA,et al.Proinflammatory Roles of T-Cell Receptor(TCR) and TCR Lymphocytes in a Murine Model of Asthma[J].Am J Respir Cell Mol Biol,2000,22:218-225.
    [40]Svensson L,Lillieh(o|¨)(o|¨)k B,Larsson R,et al.γδT cells contribute to the systemic immunoglobulin E response and local B-cell reactivity in allergic eosinophilic airway inflammation[J].Immunology,2003,108:98-108.
    [41]Zuany-Amorim C,Ruffle C,Haile S,et al.Requirement for gammadelta T cells in allergic airway inflammation[J].Science,1998,280:1265-1267.
    [42]Hoek A,Rutten VP,Kool J,et al.Subpopulations of bovine WC1(+)gammadelta T cells rather than CD4(+)CD25(high) Foxp3(+) T cells act as immune regulatory cells ex vivo[J].Vet Res.2009;40(1):6.
    [43]Klunker S,Trautmann A,Akdis M,Verhagen J,Schmid-Grendelmeier P,Blaser K,Akdis AC.A second step of chemotaxis after transendothelial migration:keratinocytes undergoing apoptosis release IP-10,Mig and iTac for T cell chemotaxis towards epidermis in atopic dermatitis[J].J Immunol 2003;171:1078-84.
    [44]Trautmann A,Schmid-Grendelmeier P,Kr(u|¨)ger K,et al.T cells and eosinophils cooperate in the induction of bronchial epithelial apoptosis in asthma[J].J Allergy Clin Immunol 2002;109:329-37.
    [45]Fulkerson PC,Zhu H,Williams DA,et al.CXCL9 inhibits eosinophil responses by a CCR3-and Rac2-dependent mechanism[J].Blood,2005,106(2):436-443.
    [46]Thomas MS,Kunkel SL,Lukacs NW.Regulation of cockroach antigen-induced allergic airway hyperreactivity by the CXCR3 ligand CXCL9[J].J Immunol,2004,173:615-623.
    [47]Gangur V,Simons FE,Hayglass KT.Human IP-10 selectively promotes dominance of polyclonally activated and environmental antigen-driven IFN-gamma over IL-4 responses[J].FASEB J.1998;12(9):705-713.
    [48]Campbell JD, Gangur V, Simons FE, et al. Allergic humans are hyporesponsive to a CXCR3 ligand-mediated Th1 immunity-promoting loop[J]. FASEB J. 2004;18(2): 329-331.
    
    [49]Loetscher P, Pellegrino A, Gong JH, et al, The Ligands of CXC Chemokine Receptor 3, I-TAC, Mig, and IP10, Are Natural Antagonists for CCR3[J]. J Biol Chem. 2001, 276(5):2986-2991.
    
    [50]Xanthou G, Duchesnes CE, Williams TJ,et al.CCR3 functional responses are regulated by both CXCR3 and its ligands CXCL9, CXCL10 and CXCL11[J]. Eur J Immunol. 2003 ;33(8):2241-2250.
    [1]Bienenstock J,Johnston N,Perey DY.Bronchial lymphoid tissue.I.Morphologic characteristics[J].Lab.Invest.1973,28:686-692.
    [2]Bienenstock J,Johnston N,Perey DY.Bronchial lymphoid tissue.II.Functional characteristics[J].Lab.Invest.1973,28:693-698.
    [3]Tango M,Suzuki E,Gejyo F,Ushiki T.The presence of specialized epithelial cells on the bronchus-associated lymphoid tissue(BALT) in the mouse[J].Arch.Histol.Cytol.2000,63:81-89.
    [4]Pabst O,Herbrand H,Worbs T,Friedrichsen M,Yan S,Hoffmann MW,Korner H,Bernhardt G,Pabst R,Forster R.Cryptopatches and isolated lymphoid follicles:dynamic lymphoid tissues dispensable for the generation of intraepithelial lymphocytes[J].Eur.J.Immunol.2005,35:98-107.
    [5]Hiller A,Kracke A,Tschering T,Kasper M,Kleemann WJ,Troger HD,Pabst R.Comparison of the immunohistology of mucosa-associated lymphoid tissue in the larynx and lungs in cases of sudden infant death and controls[J].Int.J.Legal.Med.1997,110:316-322.
    [6]Bienenstock J,McDermott MR.Bronchus- and nasal-associated lymphoid tissues[J].Immunological Reviews 2005,206:22-31.
    [7]Clark MA,Jepson MA,Simmons NL,Hirst BH.Selective binding and transcytosis of Ulex europaeus 1 lectin by mouse Peyer's patch M-cells in vivo[J]. Cell Tissue Res.1995,282:455-461.
    [8]Dziedzic D,Wright ES,Sargent NE.Pulmonary response to ozone:reaction of bronchus-associated lymphoid tissue and lymph nod lymphocytes in the rat[J].Environ.Res.1990,51:194-208.
    [9]Tschering T,Pabst R.Bronchus-associated lymphoid tissue(BALT) is not present in the normal adult lung but in different diseases[J].Pathobiology 2000,68:1-8.
    [10]Otsuki Y,Ito Y,Magari S.Lymphocyte sub-populations in high endothelial venules and lymphatic capillaries of bronchus-associated lymphoid tissue(BALT) in the rat[J].Am.J.Anat.1989,184:139-146.
    [11]Xu B,Wagner N,Pham LN,Magno V,Shan Z,Butcher EC,Michiel SA.Lymphocyte homing to bronchus-associated lymphoid tissue(BALT) is mediated by L-selectin/PNAd α4β1 Integrin/VCAM-1,and LFA-1 adhesion pathways[J].J.Exp.Med.2003,197:1255-1267.
    [12]Nohr D,Weihe E.The neuroimmune link in the bronchus-associated lymphoid tissue(BALT) of cat and rat:peptides and neural markers[J].Brain Behav.Immun.1991,5:84-101.
    [13]Cavallotti C,Bruzzone P,Tonnarini G,Cavallotti D.Distribution of catecholaminergic neurotransmitters and related receptors in human bronchus-associated lymphoid tissue[J].Respiration 2004,71:635-640.
    [14]Bienenstock J.Cellular communication networks.Implications for our understanding of gastrointestinal physiology[J].Ann.NY.Acad.Sci.1992,664:1-9.
    [15]Delettieres D,Frecha CA,Roux ME.Early appearance of TNF-alpha and other cyto-kines in bronchus associated lymphoid tissues(BALT) from growing Wistar Rats.What is the role of TNF-alpha[J]? Clin.Dev.Immunol.2004,11:253-259.
    [16]Marquez MG,Sosa GA,Roux ME.Developmental study of immunocompetent cells in the bronchus-associated lymphoid tissue(BALT) from Wistar rats[J].Dev.Comp.Immunol.2000,24:683-689.
    [17]Gould SJ,Isaacson PG.Bronchus-associated lymphoid tissue(BALT) in human fetal and infant lung[J].J.Pathol.1993,169:229-234.
    [18]Tirouvanziam R,Khazaal I,N'Sonde V,Peyrat M-A,Lim A,de Bentzmann S,Fournie JJ,Bonneville M,Peault B.Ex vivo development of functional human lymph node and bronchus-associated lymphoid tissue[J].Blood 2002,99:2483-2489.
    [19]Meuwissen HJ,Hussain M.Bronchus-associated lymphoid tissue in human lung:Correlation of hyperplasia with chronic pulmonary disease[J].Clin.Immunol. Immunopathol. 1982, 23: 548-561.
    
    [20] Rudzik R, Clancy RL, Perey DY, Day RP, Bienenstock J. Repopulation with IgA-containing cells of bronchial and intestinal lamina propria after transfer of homologous Peyer's patch and bronchial lymphocytes[J]. J. Immunol. 1975, 114:1599-1604.
    
    [21] Clancy R, Cripps A, Murree-Allen K, Yeung S, Engel M. Oral immunization with killed Haemophilus influenzae for protection against acute bronchitis in chronic obstructive lung disease[J]. Lancet. 1985,2: 1395-1397.
    
    [22] Waldman RH, Henney CS. Cell-mediated immunity and antibody responses in the respiratory tract after local and systemic immunization[J]. J. Exp. Med. 1971,134:482-494.
    
    [23] Clancy R, Bienenstock J. The proliferative response of bronchus-associated lymphoid tissue after local and systemic immunization[J]. J. Immunol. 1974, 112:1997-2001.
    
    [24] Smith DJ, Bot S, Dellamary L, Bot A. Evaluation of novel aerosol formulations designed for mucosal vaccination against influenza virus[J]. Vaccine 2003, 21:2805-2812.
    
    [25] Moyron-Quiroz JE, Rangel-Moreno J, Kusser K, Hartson L, Sprague F, Goodrich S, Woodland DL, Lund FE, Randall TD. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity[J]. Nat. Med. 2004, 10: 927-934.
    
    [26] Zuercher AW, Jiang H-Q, Thurnheer MC, Cuff CF, Cebra JJ. Distinct mechanisms for cross-protection of the upper versus lower respiratory tract through intestinal priming[J]. J. Immunol. 2002, 169: 3920-3925.
    
    [27] McMenamin C, Oliver J, Girn B, Holt BJ, Kees UR, Thomas WR, Holt PG Regulation of T-cell sensitization at epithelial surfaces in the respiratory tract: suppression of IgE responses to inhaled antigens byCD3~+Tcr alpha-/beta-lymphocytes (putative gamma/delta T cells)[J].Immunology 1991, 74: 234-239.
    
    [28] Jessica R. Kocks, Ana Clara Marques Davalos-Misslitz, Gabriele Hintzen,Lars Ohl, and Reinhold Foster. Regulatory T cells interfere with the development of bronchus-associated lymphoid tissue[J]. The Journal of Experimental Medicine. 2007,204: 723 - 734.
    
    [29] Holt PG, Upham JW. The role of dendritic cells in asthma[J]. Curr. Opin. Allergy.Clin. Immunol. 2004, 4: 39-44
    
    [30] Isaacson PG. Mucosa-associated lymphoid tissue lymphoma[J]. Semin. Hematol. 1999, 36:139-147.
    
    [31] Shahid Ahmeda,*, Steven J. Kussick b, Anita K. Siddiquic, Tawfiqul A. Bhuiyad,Arfa Khand, Stephen Sarewitze, Harry Steinbergd, Cristina P. Sisonf, Kanti R. Rai.Bronchial-associated lymphoid tissue lymphoma: a clinical study of a rare disease[J].European Journal of Cancer 2004,40:1320 - 1326
    
    [32] Koss MN. Pulmonary lymphoid disorders[J]. Semin. Diagn. Pathol. 1995, 12:158-171.
    
    [33] Oh YW, Effrnann EL, Reading GJ, Godwin JD. Follicular hyperplasia of bronchus-associated lymphoid tissue causing severe air trapping[J]. Am. J.Roentgenol.1999, 172: 745-747.
    
    [34] Kurosu K, Yumoto N, Furukawa M, Kuriyama T, Mikaka A. Low-grade pulmonary mucosa-associated lymphoid tissue lymphoma with or without intraclonal variation[J]. Am. J. Respir. Crit. Care. Med. 1998,158: 1613-1619.
    
    [35] Prop J, Nieuwenhuis P, Wildevuur CRH. Lung allograft rejection in the rat: I. Accelerated rejection caused by graft lymphocytes[J]. Transplantation 1985, 40:25-30.
    
    [36] Prop J, Wildevuur CRH, Nieuwenhuis P. Lung allograft rejection in the rat. III.Corresponding morphological rejection phases in various rat strain combinations[J].Transplantation 1985,40: 132-136.
    
    [37] Hruban RH, Beschorner WE, Baumgartner WA, Achuff SC, Traill TA, Digennaro KA, Reitz BA, Hutchins GM. Depletion of bronchus-associated lymphoid tissue associated with lung allograft rejection[J]. Am. J. Pathol. 1988, 132: 6-11.
    
    [38] Hasegawa T, Iacono A, Yousem SA. The significance of bronchus-associated lymphoid tissue in the human lung transplantation: Is there an association with acute and chronic rejection[J]? Transplantation 1999, 67: 381-385.
    
    [39] Sato A, Hayakawa H, Uchiyama H, Chida K. Cellular distribution of bronchus-associated lymphoid tissue in rheumatoid arthritis[J]. Am. J. Respir. Crit.Care. Med. 1996, 154: 1903-1907.
    
    [40] Javier Rangel-Moreno Louise Hartson, Carmen Navarro, Miguel Gaxiola,Moises Selman, and Troy D. Randall. Inducible bronchus-associated lymphoid tissue (iBALT) in patients with pulmonary complications of rheumatoid arthritis[J]. J. Clin.Invest. 2006, 116: 3183-3194.
    [1]Huffnagle GB,Wernick A.The Probiotics Revolution[M].2007:134-135,146-147.
    [2]Mannino DM,Homa DM,Akinbami LJ,et al.Surveillance for asthma:United States, 1980-1999[J]. Morb Mortal Wkly Rep Surveill Summ, 2002, 51: 1-13.
    
    [3] Schwartz RS. A new element in the mechanism of asthma[J]. N Engl J Med,2002, 346:857-858.
    
    [4] Busse WW, Lemanske RE Asthma[J]. N Engl J Med, 2001, 344: 350-362.
    
    [5] Strachan DP. Hay fever, hygiene, and household size[J]. BMJ, 1989, 299:1259-1260.
    
    [6] Gerrard J, Geddes C, Reggin P, et al. Serum IgE levels in white and Metis communities in Saskatchewan[J]. Ann Allergy, 1976, 37: 91-100.
    
    [7] Strachan, DP. Family size, infection and atopy: The first decade of the 'hygiene hypothesis' [J]. Thorax, 2000, 55(Suppl 1): S2-S10.
    
    [8] Riedler J, Braun-Fahrlander C, Eder W, et al. Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey[J]. Lancet, 2001, 358:1129-1133.
    
    [9] Leynaert B, Neukirch C, Jarvis D, et al. Does living on a farm during childhood protect against asthma, allergic rhinitis, and atopy in adulthood[J]? Am J Respir Crit Care Med, 2001,164: 1829-1834.
    
    [10] Sherriff A, Golding J, The Alspac Study Team. Hygiene levels in a contemporary population cohort are associated with wheezing and atopic eczema in preschool infants[J]. Arch Dis Child, 2002, 87: 26-29.
    
    [11] Rook GAW, Stanford JL. Give us this day our daily germs[J]. Immunol Today,1998,19: 113-116.
    
    [12] Berg RD. The indigenous gastrointestinal microflora[J]. Trends Microbiol, 1996,4: 430-435.
    
    [13] Rodriguez LAG, Ruigomez A. Increased risk of irritable bowel syndrome after bacterial gastroenteritis: cohort study[J]. BMJ, 1999, 318: 565-566.
    
    [14] Floch MH. Probiotics, Irritable Bowel Syndrome, and Inflammatory Bowel Disease[J]. Curr Treat Options Gastroenterol, 2003, 6: 283-288.
    
    [15] Madden JA, Hunter JO. A review of the role of the gut microflora in irritable bowel syndrome and the effects of probiotics[J]. Br J Nutr, 2002, 88(Suppl 1):S67-S72.
    
    [16] Yen PK. Probiotics and prebiotics for bowel health[J]. Geriatr Nurs, 2003, 24:192-193.
    
    [17] Bj(?)rksten B, Naaber P, Sepp E, et al. The intestinal microflora in allergic Estonian and Swedish 2-year-old children[J]. Clin Exp Allergy, 1999, 29: 342-346.
    [18] Fooks LJ, Gibson GR. Probiotics as modulators of the gut flora. Probiotics as modulators of the gut flora[J]. Br J Nutr, 2002, 88(Suppl 1): S39-S49.
    
    [19] Sullivan A, Barkholt L, Nord CE. Lactobacillus acidophilus, Bifidobacterium lactis and Lactobacillus F19 prevent antibiotic-associated ecological disturbances of Bacteroides fragilis in the intestine[J]. J Antimicrob Chemother, 2003, 52: 308-311.
    
    [20] Mattes J, Karmaus W. The use of antibiotics in the first year of life and development of asthma: which comes first[J]? Clin Exp Allergy, 1999, 29: 729-732.
    
    [21] McKeever TM, Lewis SA, Smith C, et al. Early exposure to infections and antibiotics and the incidence of allergic disease: a birth cohort study with the West Midlands General Practice Research Database[J]. J Allergy Clin Immunol, 2002,109:43-50.
    
    [22] Aim JS, Swartz J, Lilja G, et al. Atopy in children of families with an anthroposophic lifestyle[J]. Lancet, 1999, 353: 1485-1488.
    
    [23] Marteau PR. Probiotics in clinical conditions[J]. Clin Rev Allergy Immunol,2002, 22: 255-273.
    
    [24] Yen PK. Probiotics and prebiotics for bowel health[J]. Geriatr Nurs, 2003, 24:192-193.
    
    [25] Dunne C. Adaptation of bacteria to the intestinal niche: probiotics and gut disorder[J]. Inflamm Bowel Dis, 2001, 7: 136-145.
    
    [26] Resta-Lenert S, Barrett KE. Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC)[J]. Gut,2003, 52: 988-997.
    
    [27] Schultz M, Linde HJ, Lehn N, et al. Immunomodulatory consequences of oral administration of Lactobacillus rhamnosus strain GG in healthy volunteers[J]. J Dairy Res, 2003, 70: 165-173.
    
    [28] McCarthy J, O'Mahony L, O'Callaghan L, et al. Double blind, placebo controlled trial of two probiotic strains in interleukin 10 knockout mice and mechanistic link with cytokine balance[J]. Gut, 2003, 52: 975-980.
    
    [29] Perdigon G, Locascio M, Medici M, et al. Interaction of bifidobacteria with the gut and their influence in the immune function[J]. Biocell, 2003, 27: 1-9.
    
    [30] Marteau P, Seksik P, Jian R. Probiotics and intestinal health effects: a clinical perspective[J]. Br J Nutr, 2002, 88(Suppl 1): S51-S57.
    
    [31] Reid G, Sanders ME, Gaskins HR, et al. New scientific paradigms for probiotics and prebiotics[J]. J Clin Gastroenterol, 2003, 37: 105-118.
    [32] Drisko JA, Giles CK, Bischoff BJ. Probiotics in health maintenance and disease prevention[J]. Altern Med Rev, 2003, 8: 143-155.
    
    [33] Ouwehand A, Vesterlund S. Health aspects of probiotics[J]. IDrugs, 2003, 6:573-580.
    
    [34] Heller F, Duchmann R. Intestinal flora and mucosal immune responses[J]. Int J Med Microbiol, 2003, 293: 77-86.
    
    [35] Sudo N, Sawamura S, Tanaka K, et al. The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction[J]. J Immunol, 1997,159: 1739-1745.
    
    [36] Holt PG, Sly PD, Bjorksten B. Atopic versus infectious diseases in childhood: a question of balance[J]? Pediatr Allergy Immunol, 1997, 8: 53-58.
    
    [37] Bjorksten B. Evidence of probiotics in prevention of allergy and asthma[J]. Curr Drug Targets Inflamm Allergy, 2005,4: 599-604.
    
    [38] Fujiwara D, Inoue S, Wakabayashi H, et al. The anti-allergic effects of lactic acid bacteria are strain dependent and mediated by effects on both Thl/Th2 cytokine expression and balance[J]. Int Arch Allergy Immunol, 2004,135: 205-215.
    
    [39] Nagler-Anderson C. Man the barrier: Strategic defences in the intestinal mucosa[J]. Nat Rev Immunol, 2001, 1: 59-67.
    
    [40] Nagler-Anderson C, Terhoust C, Bhan AK, et al. Mucosal antigen presentation and the control of tolerance and immunity[J]. Trends Immunol, 2001, 22: 120-122.
    
    [41] Rautava S, Kalliomaki M, Isolauri E. Probiotics during pregnancy and breastfeeding might confer immunomodulatory protection against atopic disease in the infant[J]. J Allergy Clin Immunol, 2002, 109: 119-121.
    
    [42] Pessi T, Sutas Y, Hurme M, et al. Interleukin-10 generation in atopic children following oral Lactobacillus rhamnosus GG[J]. Clin Exp Allergy, 2000, 30:1804-1808.
    
    [43] Di Giacinto C, Marinaro M, Sanchez M, et al. Probiotics ameliorate recurrent Thl -mediated murine colitis by inducing IL-10 and IL-10-dependent TGF-b-bearing regulatory cells[J]. J Immunol, 2005, 174: 3237-3246.
    
    [44] Noverr MC, Noggle RM, Toews GB, et al. Role of antibiotics and fungal microbiota in driving pulmonary allergic responses[J]. Infect Immun, 2004, 72:4996-5003.
    
    [45] Noverr MC, Falkowski NR, McDonald RA, et al. Development of allergic airway disease in mice following antibiotic therapy and fungal microbiota increase: role of host genetics, antigen, and interleukin-13[J]. Infect Immun, 2005, 73: 30-38.
    
    [46] Shida K, Makino K, Morishita A, et al. Lactobacillus casei Inhibits Antigen-Induced IgE Secretion through Regulation of Cytokine Production in Murine Splenocyte Cultures[J]. Int Arch Allergy Immunol, 1998, 115: 278-287.
    
    [47] Kim H, Kwack K, Kim DY, et al. Oral probiotic bacterial administration suppressed allergic responses in an ovalbumin-induced allergy mouse model[J].FEMS Immunol Med Microbiol, 2005, 45: 259-267.
    
    [48] Bliimer N, Sel S, Virna S, et al. Perinatal maternal application of Lactobacillus rhamnosus GG suppresses allergic airway inflammation in mouse offspring[J]. Clin Exp Allergy, 2007, 37: 348-357.
    
    [49] Nonaka Y, Izumo T, Izumi F, et al. Antiallergic effects of Lactobacillus pentosus strain S-PT84 mediated by modulation of Th1/Th2 immunobalance and induction of IL-10 production[J]. Int Arch Allergy Immunol, 2008, 145: 249-257.
    
    [50] Torii A, Torii S, Fujiwara S, et al. Lactobacillus Acidophilus strain L-92 regulates the production of Th1 cytokine as well as Th2 cytokines[J]. Allergol Int,2007,56:293-301.
    
    [51] Feleszko W, Jaworska J, Rha RD, et al. Probiotic-induced suppression of allergic sensitization and airway inflammation is associated with an increase of T regulatory-dependent mechanisms in a murine model of asthma[J]. Clin Exp Allergy,2007, 37: 348-357.
    
    [52] Viljanen M, Savilahti E, Haahtela T, et al. Probiotics in the treatment of atopic eczema/dermatitis syndrome in infants: a double-blind placebo-controlled tria[J]l.Allergy, 2005, 60: 494-500.
    
    [53] Kalliomaki M, Salminen S, Poussa T, et al. Probiotics and prevention of atopic disease: 4-year follow-up of a randomised placebo-controlled trial[J]. Lancet, 2003,361: 1869-1871.
    
    [54] Giovannini M, Agostoni C, Riva E, et al. A randomized prospective double blind controlled trial on effects of long-term consumption of fermented milk containing Lactobacillus casei in pre-school children with allergic asthma and/or rhinitis[J]. Pediatr Res, 2007, 62: 215-220.
    
    [55] Stockert K, Schneider B, Porenta G, et al. Laser acupuncture and probiotics in school age children with asthma: a randomized, placebo-controlled pilot study of therapy guided by principles of Traditional Chinese Medicine[J]. Pedriatr Allergy Immunol, 2007,18: 160-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700