人类UHRF1基因肿瘤生物学功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究hUHRF1基因表达水平改变对乳癌细胞生长、增殖、侵袭、转移以及放射治疗敏感性的影响,及其生物学功能的作用机制,为研究乳癌的发生、发展和治疗提供了新的研究方向和理论基础,为将来hUHRF1基因在肿瘤临床治疗应用提供理论基础和实验依据。
     方法:
     ①采用Western Blot法,检测多种人肿瘤细胞和正常细胞中hUHRF1的蛋白表达情况;Northern Blot法对临床乳癌组织样本和正常乳腺组织中hUHRF1的RNA表达水平进行检测;
     ②根据GeneBank中hUHRF1的基因序列,自行设计扩增hUHRF1基因全长cDNA的引物一对,构建hUHRF1的真核表达载体和腺病毒表达载体;
     ③采用阳离子脂质体Lipofactamin2000介导的方法,进行hUHRF1基因转染,在含G418的培养基中筛选阳性克隆,采用RT-PCR和Western Blot法检测阳性克隆中hUHRF1的RNA和蛋白表达水平;
     ④采用MTT法观察hUHRF1基因转染,对体外培养的不同p53基因表型、不同组织来源的乳癌细胞生长、增殖的影响;皮下瘤液接种法,制备乳癌动物模型,观察hUHRF1基因在体内对乳癌生长的影响;
     ⑤细胞接受不同剂量的χ射线、UV辐照和γ射线照射后的克隆形成实验,观察细胞辐射敏感性的变化;
     ⑥划痕实验和Boyden小室法,观察细胞侵袭、转移能力的变化;
     ⑦流式细胞术分析细胞周期进程和细胞凋亡变化;免疫组化法观察动物肿瘤组织中新生血管的形成;染色体畸变分析观察基因组稳定性变化;Western Blot法检测调控细胞周期、凋亡、DNA损伤修复相关蛋白、细胞侵袭、转移相关基因的蛋白表达水平变化。
     结果
     ①肿瘤细胞中hUHRF1的蛋白表达水平明显高于正常细胞;临床乳癌组织中hUHRF1的RNA水平较正常乳腺组织的表达水平高;
     ②构建的hUHRF1真核表达载体,经过限制性核酸内切酶BamH I和Xho I酶切后电泳和扩增片断测序,证实载体构建成功;
     ③G418筛选得到的阳性克隆,经RT-PCR和Western Blot证实,hUHRF1基因在乳癌细胞中高表达,表明高hUHRF1表达的细胞株筛选成功;
     ④MTT的结果表明:hUHRF1可以促进p53突变型乳癌细胞MDA-MB-231和BT-549的生长,而对p53野生型乳癌细胞MCF-7的生长未见明显影响;而且,hUHRF1的高水平表达,可以通过诱导肿瘤血管形成,在体内促进乳癌细胞的生长;
     ⑤流式细胞术分析结果表明:hUHRF1基因转染后,p53突变型乳癌细胞MDA-MB-231的细胞周期进程中,G0/G1比例由69.157%降至49.854%,subG1%由16.31%降至9.32%,差异有统计意义;而p53野生型乳癌细胞MCF-7的细胞周期进程的G0/G1比例由73.874%降至72.812%,subG1%由14.88%降至8.08%,差异没有统计意义,即外源性hUHRF1的高表达,可明显缩短p53突变型乳癌细胞MDA-MB-231的细胞周期G0/G1期进程,抑制细胞凋亡的发生,而对p53野生型乳癌细胞MCF-7的生长未产生明显影响。Western Blot法检测细胞周期G1期调控因子cyclinD1和凋亡相关因子Bax在MDA-MB-231细胞中的表达,结果表明,hUHRF1基因转染可诱导cyclinD1的表达水平增强,而抑制促凋亡蛋白Bax的表达,与我们流式细胞术的分析结果一致;
     ⑥集落形成实验的结果显示,hUHRF1高水平表达可以降低乳癌细胞MDA-MB-231对χ射线、UV辐照,HeLa细胞对γ射线的辐射敏感性;采用siRNA,“敲除”hUHRF1基因,可增加乳癌细胞MDA-MB-231的辐射敏感性;
     ⑦hUHRF1的高水平表达,可以诱导辐射后的细胞发生明显的G2期阻滞;抑制细胞凋亡;抑制辐照后的细胞中cyclinB1和Bax的表达,而Bcl-2的表达水平影响不明显。
     ⑧Western Blot法检测DNA损伤修复过程中的调节因素XRCC4,Ku70,Ku80蛋白表达水平变化,结果显示:在相同剂量的χ射线照射下,hUHRF1基因的高表达,可以诱导乳癌细胞MDA-MB-231中Ku70,Ku80的表达增强;染色体的畸变率降低;但在腺病毒感染的HeLa细胞中,Ad5-hUHRF1仅使XRCC4的表达水平增加,采用siRNA“敲除”HeLa细胞中XRCC4的表达,改变了hUHRF1调节的辐射敏感性。
     ⑨划痕实验和Boyden小室法的结果显示:hUHRF1高水平表达,可以增强乳癌细胞MDA-MB-231的侵袭和转移能力;但是,Western Blot法检测结果发现,hUHRF1基因高水平表达并不改变PTEN和maspin的表达水平,但是降低细胞的PTEN和maspin表达水平则影响了hUHRF1对细胞的侵袭和转移能力。
     结论:
     ①hUHRF1基因高表达,在体外通过缩短细胞周期进程,抑制细胞凋亡,促进p53突变型乳癌细胞的生长,而对p53野生型乳癌细胞的生长无明显影响。
     ②提高hUHRF1基因表达,通过促进肿瘤血管形成,加速动物体内乳腺肿瘤的生长、增殖和转移。
     ③提高hUHRF1基因表达通过调控细胞周期,抑制凋亡,促进DNA损伤修复,维持基因组稳定性,降低乳癌细胞的辐射敏感性。
     ④提高hUHRF1基因表达增强乳癌细胞的侵袭和转移能力,PTEN和maspin可能起着一定的作用。
UHRF1 (ubiquitin-like protein containing PHD and RING domain 1) was first cloned and isolated in 1998, also named NP95 as a 95-kDa nuclear protein consisting of 782 amino acids (18 exons, spanning 60 kb) and is assigned to chromosome 19p13.3. The hUHRF1 open reading frame contains an unusual N-terminal domain that bears a striking resemblance to ubiqutin, a leucine zipper motif, a zinc finger motif, a potential ATP/GTP binding site, a putative cyclin A/E-cdk2 phosphorylation site, retinoblastoma protein (Rb)-binding motifs (331LMCDE335 and 725LCCQE729), a ring finger domain and the SRA-YDG domain.It has been found that mouse UHRF1 is strongly expressed in the testis, spleen, thymus, and lung tissues, but not in the brain, liver, or skeletal muscles. Although biological functions of hUHRF1 are unknown, previous studies have suggested that (i) hUHRF1 does not take a direct part in DNA replication as part of the DNA synthesizing machinery, like PCNA, but is presumably involved in other DNA replication-linked nuclear events; (ii) hUHRF1 may be a growth-regulated gene, since its expression was regulated during the cell cycle, required for the G1/S transition, and specifically induced by E1A which can force postmitotic cells to proliferate, and it is a chromatin-associated ubiquitin ligase; (iii) hUHRF1 mRNA was also increased in the transformed BALB/3T3 cells, suggesting it may participate in the maintenance of the transformed phenotype; (iv) hUHRF1 might help recruit DNA-cytosine-5-methyltransferase 1 (DNMT1) to hemimethylated DNA to facilitate faithful maintenance of DNA methylation; and (v) mouse Np95-null (Np95-/-)embryonic stem cells are more sensitive toχrays, UV light, N-methyl-N′-nitro-N-nitrosoguanidine and hydroxyurea versus wild-type (Np95+/+) or Np95+/? embryonic stem cells. Furthermore, several stable transformants from HEK293 and WI-38 cells that had been transfected with the antisense human UHRF1 cDNA were more sensitive toχrays, UV light and hydroxyurea than the corresponding parental cells. Additionally, there was no significant redistribution of hUHRF1 foci shortly after DNA damage byγ-irradiation, but nodular hUHRF1 foci characteristically seen in G2 phase were also detected in G2-arrested cells followingγ-irradiation. These results indicate that hUHRF1 may play an important role in regulation of radiosensitivity. Taken together, the available studies indicate that hUHRF1 may be a putative oncogene, which will become a new target for cancer treatment.
     The current study was designed to determine the impact of overexpression of hUHRF1 by stable transfection of pcDNA3-hUHRF1 expression vector or adenoviral-mediated transduction of hUHRF1 (Ad5-UHRF1) on cell growth, radiosensitivity and migration as well as invasion in human breast cancer MDA-MB231 cells and human cervical cancer HeLa cells. The findings are summzied as following:
     (1) There is a higher expression of hUHRF1 in breast cancer tissues and breast cancer cell lines compare with normal breast tissues and normal cell lines;
     (2) Overexpression of hUHRF1 reduced cell doubling time or promoted cell growth in p53-mutant breast cancer cells lines, including MDA-MB-231 and BT-549, but not in wild-type p53 MCF-7 cells. This promotion of cell growth was associated with the regulation of cell cycle, reduction of apoptosis and reduction of apoptosis promoting protein Bax and cyclin D1 by hUHRF1 overexpression;
     (3) Overexpression of hUHRF1 reduced the radiosensitivity to ionzing radiation and UV, while knocking down hUHRF1 expression increased the radiosensitivity in MDA-MB-231 and HeLa cells. This radioresistance caused by hUHRF1 overexpression may be relative to (i) abolishing apoptosis induction by radiation; (ii) reducing Bax expression; (iii) reducing chromosome abbration caused radiation; (iv) affecting Ku70, Ku 80 and XRCC4 expression. Knocking-down XRCC4 expression reduced hUHRF1-mediated radioresistance.
     (4) Overexpression of hUHRF1 elevated cellular capability of invasion and migration in MDA-MB-231 cells. Although enhanced expression of hUHRF1 did not affect the expression of PTEN and Maspin, two anti-metastasis proteins. However, reduction of PTEN and Maspin will significantly affected the hUHRF1-mediated invasion .
     These results provide the first evidence that hUHRF1 is an important gene as a novel oncogene in cell growth, invasion, migration and radiosensitivity of cancer, at least human breasat cancer and cervical cancer cells.
引文
1.董志伟,谷铣之.临床肿瘤学[M].北京:人民卫生出版社, 2002: 327.
    2. Bartucci M, Morelli C, Mauro L, et a1. Differential insulin-ike growth factor I receptor signaling and function in estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells. Cancer Res, 2001, 61(18): 6747-6754.
    3. Yan WL, Huang G. Factors implicated to radioresistance of breast cancer and their possible roles. Int J Radiat Med Nucl Med, 2006,30 (4):193-195.
    4. Soderlund K, Perez-Tenorio G, Stal O. Activation of the phosphatidylinositol3-kinase/Akt pathway prevents radiation-induced apoptosis in breast cancer cells. Int J Oncol, 2005, 26(1): 25-32.
    5. Sartor CI. Epidermal growth factor family receptors and inhibitors:radiation response modulatom. Semin Radiat Oncol, 2003, 13(1): 22-30.
    6. Zhou H, Kim YS, Peletier A, et a1. Effects of the EGFM/IER2 kinase inhibitor GW572016 on EGFR- and HER2- overexpressing breast cancer cell line proliferation, radiosensitization and resistance. Int J Radiat Oncol Biol Phys, 2004, 58(2): 344-352.
    7. Liang K, Lu Y, Jin W, et a1. Sensitization of breast cancer cells to radiation bytrastuzumab. Mol Cancer Ther, 2003, 2(11):1113-1120.
    8. Marchetti P, Cannita K, Ricevuto E, et a1. Prognostic value of p53 molecular status in high-risk primary breast cancer.Ann Oncol, 2003, 14(5): 704-708.
    9. Wachsberger P, Burd R, Dicker AP. Improving tumor response to radiotherapy by targeting angiogenesis signaling pathways. Hematol Oncol Clin Noah Am, 2004, 18(5): 1039-1057.
    10. Powell SN, Kachnic LA. Roles of BRCA1 and BRCA2 in homo1ogous recombination, DNA replication fidelity and the cellular response to ionizing radiation.Oncogene, 2003, 22(37):5784-5791.
    11. Xia F, Taghian DG, DeFrank JS, et a1. Deficiency of human BRCA2 leads to impaired homologous recomb ination but maintains normal nonhomologous end joining. Proc Natl Acad Sci USA, 2001, 98(15): 8644-8649.
    12. Lear-Kaul KC, Yoon HR, Kleinschmidt, DeMasters BK, et a1. Her2/neu status in breast cancer metastases to the central neuous system. Arch Pathol Lab Med, 2003, 127(11): 1451-1457.
    13. Rosen EM, Fan S, Rockwell S, et al. The molecular and cellular basis of radiosensitivity; implications for understanding how normal tissues and tumors respond to therapeutic radiation. Cancer Invest, 1999, 17(1): 56-72.
    14. Rosen EM, Fan S, Goldbern ID, et al. Biological basis of radiation sensitivity.Part 2:Cellular and molecular determinants of radiosensitivity. Oncology, 2000, 14(5): 741-757.
    15. Masahiro Muto,Yasuyoshi Kanari, Eiko Kubo, et al. Targeted disruption of NP95 gene renders murine embryonic stem cells hypersensitive to DNA damaging agents and DNA replication blocks.J Biol Chem, 2002, 277(37): 34549-34555.
    16. Fujimori A, Matsuda Y, Takemoto Y, et al. Cloning and mapping of NP95 gene which encodes a novel nuclear protein associated with cell proliferation. Mamm Genome, 1998, 9(12): 1032-1035.
    17. Uemura T, Kubo E, Kanari Y, et al. Temporal and spatial localization of novel nuclear protein NP95 in mitotic and meiotic cells.Cell Struct Funct, 2000, 25(3): 149-159.
    18. Miura M, Watanabe H, Sasaki T, et al. Dynamic changes in subnuclear NP95 location during the cell cycle and its spatial relationship with DNA replication foci. Exp Cell Res. 2001, 263(2): 202-208.
    19. Bonapace IM, Latella L, Papait R, et al. NP95 is regulated by E1A during mitotic reactivation of terminally differentiated cells and is essential for S phase entry. J Cell Biol. 2002, 157(6): 909-914.
    20. Mori T, Li Y, Hata H, et al. NIRF, a novel RING finger protein, is involved in cell-cycle regulation. Biochem Biophys Res Commun. 2002, 296(3): 530-536.
    1. Ross DT, Scherf U, Eisen MB, et al. Systermatic variation in gene expression patterns in human cancer cell lines. Nat Genet, 2000, 24(3): 227-235.
    2. Hedenfak IA, Ringner M, Trent JM, et a1. Gene expression in inherited breast cancer. Adv Cancer Res, 2002, 84: 1-34.
    3. Balmain A, Gray J, Ponder B. The genetics and genomics of vancer. Nat Genet, 2003, 33: 238-244.
    4. Lerebours F, Lidereau R. Molecular alterations in sporadic breast cancer.Crit Rev Onclo Hematol. 2002, 44: 121-141.
    5. Osborne C, Wilson P, Tripathy D. Oncogenes and tumor suppressor genes in breast cancer: potential diagnostic and therapeutic applications. Oncologist. 2004, 9: 361-377.
    6. Muto M, Kanari Y, Kubo E, et al. Targeted disruption of Np95 gene renders murine embryonic stem cells hypersensitive to DNA damaging agents and DNA replication blocks. J Biol Chem, 2002, 277(37): 34549-34555.
    7. Muto M, Fujimori A, Nenoi M, et al. Isolation and Characterization of a NovelHuman Radiosusceptibility Gene, NP95. Radiat Res, 2006, 166(5): 723-733.
    8. Weidner N, Carroll PR, Flax J, et al. Tumour angiogenesis correlation with metastasis in invasive prostate carcinoma. Am J Pathol, 1993, 143(2): 401-409.
    9. BonapaceΙΜ, Latella L, Papait R, et al. Np95 is regulated by E1A during mitotic reactivation of terminally differentiated cells and is essential for S phase entry. J Cell Biol, 2002, 157(6): 909-914.
    10. Masahiko Miura, Hiroshi Watanabe, Takehito Sasaki, et al. Dynamic Changes in Subnuclear NP95 Location during the Cell Cycle and Its Spatial Relationship with DNA Replication Foci. Experimental Cell Research, 2001, 263(2): 202-208.
    11. Uemura T, Kubo E, Kanari Y, et al. Temporal and spatial localization of novel nuclear protein NP95 in mitotic and meiotic cells. Cell Struct Funct, 2000, 25(3): 149-159.
    12. Arima Y, Hirota T, Bronner C, et al. Down-regulation of nuclear protein ICBP90 by p53/p21Cip1/WAF1-dependent DNA-damage checkpoint signals contributes to cell cycle arrest at G1/S transition. Genes Cells, 2004, 9(2): 131-142.
    13. Jenkins Y, Markovtsov V, Lang W, et al. Critical role of the ubiquitin ligase activity of NP95, a nuclear RING finger protein, in tumor cell growth. Mol Biol Cell, 2005, 16(12): 5621-5629.
    14. Unoki M, Nishidate T, Nakamura Y. ICBP90, an E2F-1 target recruits HDAC1 and binds to methyl-CpG through its SRA domain. Oncogene, 2004, 23(46): 7601-7610.
    15. Hopfner R, Mousl M, Oudet P, et al. Overexpression of ICBP90, a novel CCAAT binding protein, overcomes cell contact inhibition by forcing topoisomerase IIαexpression. Anticancer Res, 2002, 22(6A): 3165-3170.
    16. Thor AD, Moore DH II, Eegerton SM, et al. Accumulation of p53 tumor suppressor gene pretein: an independent marker of prognosis in breast cancers. J Natl Cancer Inst. 1992, 84: 845-855.
    17. Ioakim-Liossi A, Karakitsos P, Markopoulos C, et al. p53 protein expression and oestrogen and progesterone receptor status in invasive ductal breast carcinomas. Cytopathololgy. 2001, 12: 191-202.
    18. Fitzgibbons PL, Page DL, Weaver D, et al. Prognostic factors in breast cancer.Arch Pathol Lab Med. 2000, 124: 966-978.
    19. Pantelouris EM .Absence of thymus in a mouse mutant.Nature (Lond), 1968, 217:370-371.
    20. Rygaard J, Povlsen CO. Heterotransplantation of a human malignant turnout to nude mice. Acta Path Microbiol Scand 1969, 77: 758-760.
    21. Kerbel RS. Inhibition of tumoer angiogenesis as a strategy to circumvent acquired resistance to anti-cancer therapeutic agents. BioEssays. 1991, 13:31-36
    22. Griffioen AW, Molema G. Angiogenesis: Potentials for pharmacologic intervention in the treatments of cancer vardiovascular diseases and chonic inflammation. Pharmacal Rev. 2000, 52: 238-262.
    23. Folkman J. Tumor angiogenesis:T herapeutic implication. N Engl J Med, 1971, 285: 1182-1186.
    1. Ian Marc Bonapace, Lucia Latella, Roberto Papait, et al. NP95 is regulated by E1A during mitotic reactivation of terminally differentiated cells and is essential for S phase entry. J Cell Biol, 2002, 157(6): 909-914.
    2. Masahiko Miura, Hiroshi Watanabe, Takehito Sasaki, et al. Dynamic Changes in Subnuclear NP95 Location during the Cell Cycle and Its Spatial Relationship with DNA Replication Foci. Experimental Cell Research, 2001, 263: 202-208.
    3. Caldon CE, Daly RJ, Suntherland RL, et al. Cell cycle control in breast cancer cells. J Cell Biochem.2006, 97(2): 261-274.
    4. Blagosklonny MV, Pardee AB. Exploiting cancer cell cycling for selective protection of normal cells. Cancer Res, 2001, 61(11): 4301-4305.
    5. Yu Q, Geng Y, Sicinski P. Specific protection against breast cancers by cyclinD1 ablation. Nature, 2001, 411: 1017-1021.
    6.邵荣光.细胞周期调控与肿瘤治疗[A].北京:化学工业出版社, 2004, 140-157.
    1. Bartucci M, M orelli C, Mauro L, et a1. Differential insulin-like growth factor I receptor signaling and function in estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells. Cancer Res, 2001, 61(18): 6747-6754.
    2. Li YW, Gang H. Factors implicated to radioresistance of breast cancer and their possible roles. lnt J Radiat Med Nucl Med, 2006, 30(4): 193-195.
    3. Soderlund K, Perez-Tenorio G, Stal O. Activation of the phosphatidylinositol3-kinase(PI3K)/Akt pathway prevents radiation-induced apoptosis in breast cancer cells. Int J Oncol, 2005, 26(1): 25-32.
    4. Sartor CI. Epidermal growth factor family receptors and inhibitors:radiation response modulatom. Semin Radiat Oncol, 2003, 13(1): 22-30.
    5. Zhou H, Kim YS, Peletier A, et a1. Effects of the EGFM/IER2 kinase inhibitor GW572016 on EGFR- and HER2- overexpressing breast cancer cell line proliferation, radiosensitization and resistance.Int J Radiat Oncol Biol Phys, 2004, 58(2): 344-352.
    6. Liang K, Lu Y, Jin W, et a1. Sensitization of breast cancer cells to radiation bytrastuzumab. Mol Cancer Ther, 2003, 2(11): 1113-1120.
    7. Marchetti P, Cannita K, Ricevuto E, et a1. Prognostic value of p53 molecular status in high-risk primary breast cancer. Ann Oncol, 2003, 14(5): 704-708.
    8. Wachsberger P, Burd R, Dicker AP. Improving tumor response to radiotherapy by targeting angiogenesis signaling pathways. Hematol Oncol Clin Noah Am, 2004, 18(5): 1039-1057.
    9. Powell SN, Kachnic LA. Roles of BRCA1 and BRCA2 in homo1ogous recombination DNA replication fidelity and the cellular response to ionizing radiation. Oncogene, 2003, 22(37): 5784-5791.
    10. Xia F, Taghian DG, DeFrank JS, et a1. Deficiency of human BRCA2 leads to impaired homologous recomb ination but maintains normal nonhomologous end joining.Proc Natl Acad Sci USA, 2001, 98(15): 8644-8649.
    11. Lear-Kaul KC, Yoon HR, Kleinschmidt, et a1. Her2/neu status in breast cancer metastases to the central neuous system. Arch Pathol Lab Med, 2003, 127(11): 1451-1457.
    12. Rosen EM, Fan S, Rockwell S, et al. The molecular and cellular basis of radiosensitivity; implications for understanding how normal tissues and tumors respond to therapeutic radiation. Cancer Invest, 1999, 17(1): 56-72.
    13. Rosen EM, Fan S, Goldbern ID, et al. Biological basis of radiation sensitivity. Part 2: Cellular and molecular determinants of radiosensitivity. Oncology, 2000, 14(5): 741-757.
    14. McKenna WG, Bernhard EJ, Markiewicz DA, et al. Regulation of radiation-induced apoptosis in oncogene-transfected fibroblasts: influence of H-ras on the G2 delay. Oncogene, 1996, 12(2): 237-245.
    15. Cheong N, Wang Y, Iliakis G. Radioresistance induced in rat embryo cells by transfection with the oncogenes H-ras plus v-myc is cell cycle dependent andmaximal during S and G2. Int J Radiat Biol, 1993, 63(5): 623-629.
    16. Wu DH, Liu L, Chen LH. Radiosensitization by pentoxifylline in human hepatoma cell line HepG2 and its mechanism. Di Yi Jun Yi Da Xue Xue Bao, 2004, 24(4): 382-385.
    17. Aldridge DR, Radford IR. Explaining differences in sensitivity to killing by ionizing radiation between human lymphoid cell lines. Cancer Res,1998, 58(13): 2817-2824.
    18. Hui ZG, Li YX, Yang WZ, et al. Abrogation of radiation-induced G2 arrest and radiosensitization by 7-hydroxystaurosporine (UCN-01) in human nasopharyngeal carcinoma cell line. Ai Zheng. 2003, 22(1):6-10.
    19. Kastan MB.Checkpoint controls and cancer. Introduction. Cancer-Surv, 1997, 29: 1-6.
    20. Wang Q, Fan S, Eastman A, et al. UCN-01: a potent abrogator of G2 checkpoint function in cancer cells with disrupted p53. J Natl Cancer Inst, 1996, 88(14): 956-965.
    21. Li YX, Weber-Johnson K, Sun LQ, et al. Effect of pentoxifylline on radiation-induced G2-phase delay and radiosensitivity of human colon and cervical cancer cells. Radiat Res, 1998, 149(4): 338-342.
    22. Bunch RT, Eastman A. 7-Hydroxystaurosporine (UCN-01) causes redistribution of proliferating cell nuclear antigen and abrogates cisplatin-induced S-phase arrest in Chinese hamster ovary cells. Cell Growth Differ, 1997, 8(7): 779-788.
    23. Clifford B,Beljin M, Stark GR, et al. G2 arrest in response to topoisomerase II inhibitors: the role of p53. Cancer Res, 2003, 63(14): 4074-4081.
    24. Tian H, Faje AT, Lee SL, et al. Radiation-induced phosphorylation of Chk1 at S345 is associated with p53-dependent cell cycle arrest pathways. Neoplasia, 2002, 4(2): 171-180.
    25. Huang H, Huang SY, Chen TT, et al. Cisplatin restores p53 function and enhances the radiosensitivity in HPV16 E6 containing SiHa cells. J Cell Biochem, 2004, 91(4): 756-765.
    26. Akimoto T, Nonaka T, Harashima K, et al. Selective inhibition of survival signal transduction pathways enhanced radiosensitivity in human esophageal cancer cell lines in vitro. Anticancer Res, 2004, 24(2B): 811-819.
    27. Mckenna WG, Muschel RJ, Gupta AK, et al. The RAS signal transduction pathwayand its role in radiation sensitivity. Oncogene, 2003, 22(37): 58-66.
    28. Warenius HM, Jones M, Gorman T, et al. Combined RAF1 protein expression and p53 mutational status provides a strong predictor of cellular radiosensitivity. Br J Cancer. 2000, 83(8): 1084-1095.
    29. Ishikawa H, Sakurai H, Hasegawa M, et al. Expression of hypoxic-inducible factor 1alpha predicts metastasis-free survival after radiation therapy alone in stage IIIB cervical squamous cell carcinoma. Int J Radiat Oncol Biol Phys, 2004, 60(2): 513-521.
    30. Streffer JR, Rimner A, Rieger J, et al. BCL-2 family proteins modulate radiosensitivity in human malignant glioma cells. J Neuro Oncol, 2002, 56(1): 43-49.
    31. Bernhard EJ, McKenna WG, Muschel RJ. Cyclin expression and G2-phase delay after irradiation. Radiat Res, 1994, 138(1Suppl): S64-67.
    32. Hall LL, Thing JP, Guo XW, et a1. A brief staurosporine treatment of mitotic cells triggers premature exit from mitosis an d polyploid cell formation.Cancer Res, 1996, 56: 3551-3559.
    33. Rajagopalan H, Nowak MA, Vogelstein B, et al. The significance of unstable chromosomes in colorectal cancer. Nat Rev Cancer. 2003, 3(9): 695-701.
    34. Rajagopalan H, Lengauer C. CIN-ful cancers.Cancer Chemother Pharmacol, 2004, 54 ( Suppl 1): S65-68.
    35. Brennan RJ, Schiesd RH. Persistent genomic instability in the yeast Saccharomyces cerevisiae induced by ionizing radiation and DNA-damaging agents. Radiat Res, 2001, 155: 768-777.
    36. Pandita TK, Pathak S, Ceard CR, et al. Chromosome end associations, telomeras and telomerase activity in ataxia telangiectasia cells. Cytogenet Cell Genet, 1995, 71(1): 86-93.
    37.王继先,金璀珍,白玉书等著.放射生物剂量学[M]北京:原子能出版社, 1997: 200- 201.
    38.石小燕,袁响林,陶德定等. DNA倍体类型与鼻咽癌放射敏感性及预后关系的研究.肿瘤防治研究, 2005, 32(6): 368-370.
    39. Radford IR, AIdridge DR. Importantance of DNA damage in the induction of apoptosis by ionizing radiation: effect of the scid mutation and DNA ploid on the radiosensitivity of murine lymphoid cell lines. Int J Radiat Biol, 1999, 75 (2): 143-153.
    1. Bevers TB. Breast cancer chemoprevetion: current clinical practice and future direction. Biomed Pharmaco ther, 2001, 55: 559-564.
    2. Perez EA. Current management of metastatic breast cancer. Semin Oncol, 1999, 26 (Suppl 12): 1-10.
    3. Ranuncolo SM, Armanasco E, Cresta C, et al. Plasma MMP-9 (92kDa-MMP) activity is useful in the follow-up and in the assessment of prognosis in breast cancer patients. Int J Cancer, 2003, 106(5): 745-751.
    4. Nakopoulou L, Tsirmpa I, Alexandrou P, et al. MMP-2 protein in invasive breast cancer and the impact of MMP-2/TIMP-2 phenotype on overall survival. Breast Cancer Res Treat, 2003, 77(2): 145-155.
    5. Talvensaari Mattila A, Paakko P, Turpeenniemi-Hujanen T. Matrix metal loproteinase-2 (MMP-2) is associated with survival in breast cancer. Br J Cancer, 2003, 89 (7): 1270-1275.
    6. Hansen S, Grabau DA, Sorensen FB, et al. Vascular grading of angiogenesis: prognostic significance in breast cancer. Br J Cancer 2000, 82(2): 339-347.
    7. Nathanson SD. Insights into the mechanisms of lymph node metastasis. Cancer, 2003, 98(2): 413-423.
    8. Toi M, Bando H, Ogawa T, et al. Significance of vascular endothelial growth factor (VEGF)/soluble VEGF receptor-1 relationship in breast cancer. Int J Cancer, 2002, 98(1): 14 -18.
    9. Toi M, Hoshina S, Takayanagi T, et al. Association of vascular endothelial growth factor expression with tumor angiogenesis and with early relapse in primary breast Cancer. Jpn J Cancer Res, 1994, 85(10): 1045-1049.
    10. Berren A, Weng IP, Boag AH, et al. Immunohistochemica evidence of loss of PTEN in primary carcinomas of the breast. Am J Pathal, 1999, 155(4): 1253-1260.
    11. Yuan HZ. The gene expression of the tumor suppressor PTEN in the breast cancer Organizes. Practical cancer magazine, 2002, 7(1): 37-39.
    12. Bose S, Crane A, Hibshoosh H, et al. Reduced expression of PTEN correlates with breast cancer progression. Hum Pathol, 2002, 33(4): 405-409.
    13. Kaufamann M, Heider KH, Sinn HP, et al. CD44 variant exon epitopes in primary breast cancer and length of survival. Lancet, 1995, 345(8950): 615-619
    14. Nadji M. Laminin receptor in lymph node negative breast carcinoma. Cancer, 1999, 85(2): 432-436.
    15. Kerekatte V, Smiley K, Hu B, et al. The proto-oncogene/translation factor eIF4E: a survey of its expression in breast carcinomas. Int J Cancer. 1995, 64(1): 27-31.
    16. Li BD, McDonald JC, Nassar R, et al. Clinical outcome in stageⅠto III breast carcinoma and eIF4E overexpression. Ann Surg, 1998, 227(5): 756-763.
    17. De Benedetti A, Graff J R. eIF-4E expression and its role in malignancies and metastases.Oncogene, 2004, 23(18): 3189-3199.
    18. Jiang H, Coleman J, Miskimins R, et al. Expression of constitutively active 4EBP-1 enhances p27Kip1 expression and inhibits proliferation of MCF-7 breast cancer cells.Cancer Cell Int, 2003, 3(1): 2.
    19. Zou Z, Anisowicz A, Hendrix MJ, et a1. Maspin,a serpin with tumor suppressing activity in human mammary epithelial cells. Science, 1994, 263(5146): 526-529.
    20. Zou Z, Gao C, Nagaich A, et a1. p53 regulates the expression of the tumor suppressor gene maspin. J Bid Chem, 2000, 275(9): 6051-6054.
    21. Xu Z, Stokoe D, Kane LP, et al. The inducible expression of the tumoer suppressor gene PTEN promotes apoptosis and decreases cell size by inhibiting the PI3K/Akt pathway in jurkat cells. Cell growth & Differentiation, 2002, 13(7): 285-296.
    22. Hagenbeek TJ, Naspetti M, Malergue F, et al. The loss of PTEN allows TCR lineage thymocytes to bypass IL-7 and Pre-TCR-mediated signaling. J Exp Med, 2004, 200(7): 883-894.
    23. Cai XM, Tao BB, Wang LY, et al. Protein phosphatase activity of PTEN inhibited the invasion of glioma cells with epidermal growth factor receptor mutation type III expression. Int J Cancer, 2005, 117(6): 905-912
    24.黄玉钿,张声,郑曦等.乳腺癌中黏着斑激酶-抑癌基因PTEN编码蛋白的表达与生物学行为相关性分析.中华实验外科杂志, 2005, 22(10): 1201-1202.
    25. Moon SK, Kim HM, Kim CH. PTEN induces G1 cell cycle arrest and inhibits MMP-9 expression via the regulation of NF-kappaB and AP-I in vascular smooth muscle cells. Arch Biochem Biophys, 2004, 42(2): 267-276.
    26. Huang J, Kontos CD. PTEN modulates vascular endothelial growth factor mediated signaling and angiogenic effects. J Biol Chem, 2002, 277(13): 10760-10766.
    27. Hong TM,Yang PC, Peck K, et al. Profiling the downstream genes of tumor suppressor PTEN in lung cancer cells by complementary DNA microarray. AM J Respir Cell Mol Biol, 2000, 23(3): 355-363.
    1. Fujimori A, Matsuda Y, Takemoto Y, et al.Cloning and mapping of NP95 gene which encodes a novel nuclear protein associated with cell proliferation. Mamm Genome, 1998, 9(12): 1032-1035.
    2. Bronner C, Hopfner R, Mousli M. Transcriptional regulation of the human topoisomerase II IIalpha gene. Anticancer Res. 2002, 22(2A): 605-612.
    3. Hopfner R, Mousli M, Garnier J, et al. Genomic structure and chromosomal mapping of the gene coding for ICBP90, a protein involved in the regulation of the topoisomerase IIalpha gene expression. Gene, 2001, 266(1-2): 15-23.
    4. Hopfner R, Mousli M, Jeltsch J, et al. ICBP90, a novel human CCAAT binding protein, involved in the regulation of topoisomerase IIalpha expression. Cancer Res, 2000, 60(1): 121-128.
    5. Masahiro M, Akira F, Mituru N, et al. Isolation and Characterization of a NovelHuman Radiosusceptibility Gene, NP95. Radiat Res, 2006, 166(5): 723-733.
    6. Masahiro M, Yasuyoshi K, Eiko K, et al.Targeted disruption of NP95 gene renders murine embryonic stem cells hypersensitive to DNA damaging agents and DNA replication blocks. J Biol Chem, 2002, 277(37): 34549-34555.
    7. Ian Marc B, Lucia L, Roberto P, et al. NP95 is regulated by E1A during mitotic reactivation of terminally differentiated cells and is essential for S phase entry. J Cell Biol, 2002, 157(6): 909-914.
    8. Mori T, Li Y, Hata H, et al. NIRF, a novel RING finger protein, is involved in cell-cycle regulation. Biochem Biophys Res Commun, 2002, 296(3): 530-536.
    9. Masahiko M, Hiroshi W, Takehito S, et al. Dynamic Changes in Subnuclear NP95 Location during the Cell Cycle and Its Spatial Relationship with DNA Replication Foci. Experimental Cell Research, 2001, 263(2): 202-208.
    10. Uemura T, Kubo E, Kanari Y, et al.Temporal and spatial localization of novel nuclear protein UHRF1 in mitotic and meiotic cells. Cell Struct Funct, 2000, 25(3): 149-159.
    11. Arima Y, Hirota T, Bronner C, et al . Down-regulation of nuclear protein ICBP90 by p53/p21Cip1/WAF1-dependent DNA-damage checkpoint signals contributes to cell cycle arrest at G1/S transition. Genes Cells, 2004, 9(2): 131-142.
    12. Jenkins Y, Markovtsov V, Lang W, et al . Critical role of the ubiquitin ligase activity of NP95, a nuclear RING finger protein, in tumor cell growth. Mol Biol Cell, 2005, 16(12): 5621-5629.
    13. Unoki M, Nishidate T, Nakamura Y. ICBP90, an E2F-1 target, recruits HDAC1 and binds to methyl-CpG through its SRA domain. Oncogene, 2004, 23(46): 7601-7610.
    14. Christian B, Mayada A, Yoshimi A, et al .The UHRF family: Oncogenes that are drugable targets for cancer therapy in the near future? Pharmacol Ther, 2007, 115(3): 419-434
    15. Freemont P. RING for destruction? Curr Biol, 2000, 10(2): R84-87.
    16. Joazeiro CA, Weissman AM. RING finger proteins: mediators of ubiquitin ligase activity.Cell, 2000, 102(5): 549-552.
    17. Cox MM, Goodman MF, Kreuzer KN, et al. The importance of repairing stalled replication forks.Nature, 2000, 404(6773): 37-41.
    18. Sharif J, Muto M, Takebayashi SI, et al .The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature, 2007, 450(7171): 908-912.
    19. Macaluso M, Montanari M, Noto PB, et al. Epigenetic modulation of estrogen receptor-alpha by pRb family proteins: a novel mechanism in breast cancer. Cancer Res, 2007, 67(16): 7731-7737.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700