人骨髓间充质干细胞诱导分化神经元样细胞移植治疗局灶性脑缺血的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:脑血管意外是世界范围内的三大死因之一,也是导致成人残疾的首位病因。我国年发病率约130-300万,死亡60-100万,存活者中75%有不同程度的残疾。尽管在脑血管意外的急救和早期康复方面取得了很大进展,但对脑血管意外后期严重的神经功能障碍缺乏有效的治疗方法。21世纪是再生医学的世纪,干细胞的研究则是当前生命科学的重中之重。与胚胎干细胞和神经干细胞相比,人骨髓间充质干细胞BMSCs具有以下优点:①取材方便,分离获取容易,可从自身骨髓提取;②在体外扩增迅速,具有多向分化潜能;③是来自中胚层的早期细胞,避免组织配型及免疫排斥等问题;④可避免伦理学方面的争议等。因此,受到越来越多的学者关注。但BMSCs移植后在体内微环境下分化为神经胶质细胞的比率较大而分化为神经元样细胞的比率较小,如果能将骨髓基质细胞在体外分化为神经元样细胞,再行细胞移植将会有事半功倍的效果。本研究拟探讨体外分离培养、纯化鉴定hBMSCs的方法,分析其生物学特性并定向诱导分化为神经元样细胞,并通过立体定向将hBMSCs源性神经元样细胞植入脑缺血大鼠脑内,观察移植后细胞存活、迁移、分化以及大鼠的神经功能障碍恢复情况,并与hBMSCs移植做一比较,探讨hBMSCs源性神经元样细胞移植对于局灶性脑缺血后神经功能缺失的修复作用及可能机制,以期为hBMSCs源性神经元样细胞移植治疗脑缺血提供理论依据。
     方法:(1)用密度梯度离心结合贴壁培养法分离纯化hBMSCs,在体外观察hBMSCs生长特性、传代扩增,测定生长曲线,形态学观察,免疫细胞化学及图像分析测定细胞表面抗原表达情况;(2)将其与T淋巴细胞共培养,通过3H-TdR掺入、β液闪计数,分析其免疫原性;(3)采用全反式维甲酸(all-trans-retinoic acid,ATRA)、叔丁对甲氧酚(butylated hydroxyanisole,BHA)等对培养的细胞向神经细胞方向诱导分化,继而采用免疫细胞化学等方法对分化的细胞进行鉴定;(4)采用线栓法制备大鼠局灶性脑缺血模型。将脑缺血大鼠随机分为磷酸盐缓冲液(PBS)组、hBMSCs组及hBMSCs源性神经元样细胞组,分别将PBS、BrdU标记的hBMSCs及BrdU标记的源性神经元样细胞通过立体定向植入大鼠纹状体内。术前、术后1、3、6及8周进行神经损伤严重程度评分(NSS)、平衡木实验(BBT)、抬高身体摇摆实验(EBST)、一次性被动回避平台实验(Step-down Passive Avoidance)及水迷宫实验(Water Maze Test),观察各组术后神经功能改变情况;8周后处死大鼠取脑,HE染色、BrdU免疫组化染色以及BrdU/NSE, BrdU/GFAP免疫组化双染,观察植入BMSCs的存活、迁移、分化情况。
     结果:(1)hBMSCs在体外可以大量增殖,原代培养需要2~3周,传代后速度加快,可以获取大量贴壁细胞。细胞呈均一的成纤维细胞样,应用流式细胞仪检测MSCs的表面抗原,均一表达CD29、CD44和CD105,不表达CD34、CD45、CD19、HLA-DR和CD106;(2)与T淋巴细胞体外共培养,无明显的促T细胞增殖反应,提示其具有低免疫原性的特点;(3)可诱导表达神经元标志抗原神经元特异性烯醇化酶(neuron specific enolase, NSE)、星型胶质细胞标志抗原胶质纤维酸性蛋白(glial fibrilament acidic protein,GFAP);(4)应用线栓法短暂闭塞大鼠右侧大脑中动脉后,大鼠出现左侧肢体不同程度偏瘫同时伴有右侧Honner氏征。TTC和HE染色均显示缺血区域位于右侧纹状体、额顶区皮层,位置和范围较为稳定;神经功能行为学检测显示:hBMSCs移植大鼠NSS、BBT、EBST在术后1、3、6、8周与PBS对照组比较有显著好转(P< 0.01),在术后1、3周与hBMSCs源性神经元样细胞移植组比较有好转(P< 0.05),6、8周NSS、BBT、EBST评分两组比较无统计学差异(P> 0.05);hBMSCs源性神经元样细胞移植组大鼠NSS、BBT、EBST在术后3、6、8周较PBS对照组明显改善(P< 0.01),在术后1、3周较hBMSCs移植组差(P< 0.05),6、8周NSS、BBT、EBST评分两组比较无统计学差异(P> 0.05);hBMSCs和hBMSCs源性神经元样细胞组较对照组一次性被动回避平台实验及水迷宫实验明显改善(P< 0.01);hBMSCs源性神经元样细胞较hBMSCs组效果更好(P< 0.05)。移植8周后,hBMSCs组和hBMSCs源性神经元样细胞组均可见较多BrdU表达阳性的细胞,细胞集中在移植位点及周围区域,有向缺血灶迁移的趋势,局部无胶质增生和淋巴细胞浸润,hBMSCs组Brdu阳性细胞群中,11.5-19.3%为GFAP阳性细胞,1.5-4.8%为NSE阳性细胞,hBMSCs源性神经元样细胞组Brdu阳性细胞群中,23.5-39.1%为NSE阳性细胞,9.8-17.6%为GFAP阳性细胞。
     结论:hBMSCs属骨髓中单个核细胞,具有免疫原性低、可塑性好和扩增能力强等特性,密度梯度离心结合贴壁培养法能有效分离纯化hBMSCs;全反式维甲酸(ATRA)、叔丁对甲氧酚(BHA)等对培养的细胞向神经细胞方向诱导分化,可诱导表达神经元标志抗原神经元特异性烯醇化酶(NSE)的hBMSCs源性神经元样细胞;hBMSCs和hBMSCs源性神经元样细胞脑内移植均能有效改善局灶性脑缺血大鼠的神经功能症状,hBMSCs移植作用起效更快,hBMSCs源性神经元样细胞移植在学习、记忆功能方面改善更好;hBMSCs源性神经元样细胞在体内大部分表达NSE阳性,优于hBMSCs,局部无肿瘤生成及明显炎症反应。hBMSCs源性神经元样细胞脑内移植是治疗局灶性脑缺血的一种可能措施。
Objective:The cerebral vascular accident is one of three severe causes of death in the world and is also the first pathogeny of the adult disability.
     The year incidence of the cerebral vascular accident in our country is approximately 130-300 tenthousand, and 60-100 tenthousand are dead among them, and seventy-five percent survivors had some disability. Although great progress about the first aid and early healing to the cerebral vascular accident had been obtained, there were short of effective treatment for the later severely neurological deficiencies of accident. 21st century is the century of regeneration. The study of stem-cell is the focus of life medicine. Compare with the embryo-stem cell and the neuro-stem cell, BMSCs have many merits, including:①get and separate the material conveniently and easily, we can withdraw it from our own bone marrow.②Expands and increases in vitro rapidly and has multi-potential.③BMSCs are early cells from mesoblast, which can avoid tissue type and immuno-exclusion.④can avoid the ethical dispute and so on. More and more scholars had paid attention to the BMSCs. Because the transplanted BMSCs have more probability to translate to the neuro-glial cell than neuron-like cell in internal-entironment, so if we can translate the BMSCs to neuron-like cell in vitro, we can have twice the result with half the effort to transplant the neuron-like cells.By establishing the cell-culturing system in vitro of hBMSCs and neuron-like cell from hBMSCs early and observing the biological properties, hBMSCs and the neuron-like cells differentiated from hBMSCs are considered to be good resources of cell transplant and the cell treatment. The objective of this study is to explore a new method for the isolation, purification and amplification in vitro of hBMSCs from human bone marrow. We observe their biological character and directional differentiate to neuron- type cell, and observed the survival, migration, differentiation and the recovery of neurological deficits after transplantation of hBMSCs neuron- type cell into ischemic rats by stereotactic operation. Then we explored the effects of hBMSCs neuron- type cell transplantation on the repair of neurological functions and possible mechanism, so that theoretical assistance for clinical therapy of cerebral ischemia with hBMSCs neuron- type cell transplantation could be provided.
     Method:(1) BMSCs were isolated and purified from the bone marrow of human by density gradient centrifugation and by adhering to the culture plastic. After successive subculture and amplification, the growth curve was drawn, the morphology and growth characteristics were observed under phase contrast microscope , and the cell surface antigens were examined by immunocytochemistry and image analysis in vitro; (2) BMSCs were co-cultured with T lymphocytes with 3H-TdR were mixed to analysis its immunogenicity.(3) BMSCs were induced towards neuro- cells with all-trans-retinoic acid (ATRA) and butylated hydroxyanisole(BHA), then identified with immunocytochemistry. (4) Focal cerebral ischemia was induced by transient MCA with a monofilament suture in adult Wistar rats. The cerebral ischemia rats were divided into three groups including group PBS, group hBMSCs and group of neuron-like cells from BMSC randomly. We transplant the hBMSCs marked by PBS and BrdU and neuron-like cells from BMSC marked by BrdU into rats’striatum by stereotactic operation. We used the NSS, BBT, EBST, SDPAT and WMT to evaluate the rats at pro-operation and 1st, 3rd,6th,8th week post-operation. These rats were killed at 8th week after cerebral ischemia. In the same time, HE staining, immunohistochemical staining for BrdU, and immunohistochemical doublestaining for BrdU/NSE and BrdU/GFAP were processed to observe the survival, migration and differentiation of grafted BMSCs.
     Result: (1) Human bone marrow mesenchymal stem cells can generate with large quantity in vitro and primary culture require 2~3 weeks under conventional culture, the growth velocity speed up after passage. We can get a number of cells adhering to the culture plastic.Uiform fibroblast-like cells were got and the surface antigen of MSCs detected by flow cytometry show it is positive for CD44、CD29、CD105 and negative for CD45、CD106、CD34、HLA-DR. (2) When BMSCs were cocultured with T lymphocytes, the proliferation of T cells was not found. It suggested the low immunogenicity of the BMSCs. (3) BMSCs could be induced to neuron-like cells, which developed rounded cell bodies with multiple neuron-like extension as well as several neuronal proteins such as neuron specific enolased and astrocyte marker glial fibrillary acid protein. (4) Left hemiplegia and right Honner's sign were observed after transient right MCA with a monofilament suture. TTC and HE staining showed that ischemic regions were located in the right striatum and frontoparietal cortex. The position and area were relatively stable each time. The NSS, BBT、EBST of group hBMSCs are much better than the group PBS at the 1st,3rd,6th,8th week post-operation (P<0.01), and better than the group of neuron-like cells from hBMSCs at 1st,3rd week post-operation(P<0.05), but there is no statistical significance between the group hBMSCs and group of neuron-like cells from hBMSCs(P>0.05); The NSS, BBT、EBST of group of neuron-like cells from hBMSCs are much better than the group PBS at the 3rd,6th,8th week post-operation (P<0.01), is lower than the group hBMSCs at 1st,3rd week post-operation(P<0.05), and there is no statistical significance between the two groups at the 6th ,8th week (P>0.05) .The SDPAT and WMT of the two groups of neuron-like cells and hBMSCs are much better than the control group, and the effection of group hBMSCs is worse than the group of neuron-like cells from hBMSCs (P<0.05). After the 8th week of transplantation, numerous cells labeled with BrdU were present at both of the group hBMSCs and group neuron-like cells from BMSCs, which were present in the injecting points and surrounding areas, and had the trend to migration to the ischemia areas. There were no significance glial-cell proliferation and lymphocyte infiltration. Among all the Brdu reactive cells of group hBMSCs, 11.5-19.3% were reactive for the astrocyte marker glial fibrillary acidic protein(GFAP), 1.5-4.8% expressed the neuronal markers neuron specific enolase(NSE). Among all the Brdu reactive cells of group of neuron-like cells from hBMSCs, 23.5-39.1% were reactive for the neuronal markers neuron specific enolase(NSE), 9.8-17.6% expressed the astrocyte marker glial fibrillary acidic protein(GFAP).
     Conclusion:hBMSCs are mono-neuclear cells in the bone marrow,and have much charactistics such as low inmunogenicity, good plasticity, strong generation et.al , and we can isolate and purify the hBMSCs by density gradient centrifugation combined with adhering to the culture plastic effectively . The cultured cells can induced by the all-trans-retinoic acid (ATRA) and butylated hydroxyanisole(BHA) to nerve cells, and can be induced to neuron-like cells from hBMSCs wich expressed the neuron-spesific protein—neuron specific enolased. The two groups of hBMSCs and neuron-like cells from hBMSCs both can improve the neurological function of the focal cerebral ischemia rats effectively, but hBMSCs have faster effection than another. The transplantion effection on improving study and memory of group of neuron-like cells from hBMSCs is better than another group. The most of neuron-like cells from hBMSCs in vivo are expressed NSE which is better than the group of hBMSCs, and there are no tumors appear and inflammation responds on local regions. The intra-cerebral transplantation of the neuron-like cells from hBMSCs would be one of measures for treatment of local cerebral ischemia.
引文
1. Lange C, Schroeder J, Stute N, et al. High-potential human mesenchymal stem cells. Stem Cells Dev 2005; 14(1):70-80.
    2. Sudeepta A, PittengerM F. Human mesenchymal stem cells modulate allogeneic immune cell responses[ J ]. Blood, 2005, 105: 1815 - 1822.
    3. Bianco P, RiminucciM. Bonemarrow stromal stem cells: nature, biology, and potential applications[ J ]. Stem Cells, 2001, 19: 180 - 192.
    4. BanfiA, Muraglia A, Dozin B, et al. Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy [ J ]. Exp Hem ato,2000, 28: 707 - 715.
    5. Shinichi T, Atsushi S, KazukoM, et al. Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF[ J ]. Biochem Biophys Res Commun, 2001, 288: 413 - 419.
    6. Elisabeth HJ, Kirstin JB, Alan WF. Mesenchymal stem cells: Paradoxes of passaging[ J ]. Exp Hemato, 2004, 32: 414 - 425.
    7. Dressler MR, Butler DL, Boivin GP. Effects of age on the repair ability of mesenchymal stem cells in rabbit tendon. J Orthop Res 2005; 23(2):287-293.
    8. Grove JE, Bruscia E, Krause DS. Plasticity of bone marrow-derived stem cells. Stem Cells. 2004; 22 (4):487-500.
    9. Lennon DP, Haynesworth SE, Young RG, et al. A chemically defined medium supports in vitro proliferation and maintains the osteochondral potential of rat marrow-derived mesenchymal stem cells. Exp Cell Res 1995; 219(1):211-222.
    10. Lennon DP, Edmison JM, Caplan AI. Cultivation of rat marrow-derived mesenchymalstem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J Cell Physiol 2001; 187(3):345-355.
    11. Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 1997; 64(2):278-294.
    12. Akino K, Mineta T, Fukui M,et al. Bone morphogenetic protein-2 regulates proliferation of human mesenchymal stem cells. Wound Repair Regen 2003; 11(5):354-360.
    13. Sun S, Guo Z, Xiao X, et al.Isolation of mouse marrow mesenchymal progenitors by a novel and reliable method. Stem Cells 2003; 21(5):527-535.
    14. Grove JE, Bruscia E, Krause DS. Plasticity of bone marrow-derived stem cells. Stem Cells 2004; 22(4):487-500.
    15. Bosnakovski D, Mizuno M, Kim G, et al. Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell Tissue Res. 2005;319(2):243-253.
    16. Zohar R, Sodek J, McCulloch CA. Characterization of stromal progenitor cells enriched by flow cytometry. Blood 1997; 90 (9):3471-3481.
    17. inge J, Haupl T, Sittinger M. Mesenchymal stem cells for tissue engineering of bone and cartilage. Med Klin (Munich) 2003; 98(2):35-40.
    18. ajumdar MK, Keane2Moore M, Buyaner D, et al. Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J of Bio Sci 2003; 10(2):228 - 241.
    1. Bosnakovski D, Mizuno M, Kim G, et al. Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell Tissue Res. 2005;319(2):243-253.
    2. Fukuda K, Fujita J. Mesenchymal, but not hematopoietic, stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction in mice. Kidney Int. 2005; 68(5):1940-1943.
    3. Kulbatski I, Mothe AJ, Nomura H, et al.Endogenous and exogenous CNS derived stem/progenitor cell approaches for neurotrauma [J].Curr Drug Targets. 2005; 6(1):111-126.
    4. Safford KM, Rice HE..Stem cell therapy for neurologic disorders: therapeutic potential of adipose-derived stem cells [J]. Curr Drug Targets. 2005; 6(1):57-62.
    5. Grove JE, Bruscia E, Krause DS. Plasticity of bone marrow-derived stem cells. Stem Cells. 2004; 22 (4):487-500.
    6. Sotiropoulou PA, Perez SA, Gritzapis AD et al. Interactions between human mesenchymal stem cells and natural killer cells. STEM CELLS 2006;24:74–85.
    7. Wang G, Bunnell BA, Painter RG, et al. Adult stem cells from bone marrow stroma differentiate into airway epithelial cells: potential therapy for cystic fibrosis. Proc Natl Acad Sci U S A. 2005;102(1):186-191.
    8. Yano S, Kuroda S, Shichinohe H, et al. Do bone marrow stromal cells proliferate aftertransplantation into mice cerebral infarct?--a double labeling study. Brain Res. 2005;1065(1-2):60-67.
    9. Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrow stromal cell differentiate into neurons [ J ]. J Neurosci Res, 2000, 61 (4) : 364 - 370.
    10. Di-Nicola M, Carlo-Stella C, Mangni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cell or nonspecific mitogenic stimuli. Blood[J] ,2002;99:3838-3843
    11. Klyushnenkova E, Shustova V, Mosca J,et al. Human mesentchymal stem cells induce unresponsiveness in preectivated but not na?ve alloantigen specific T cells[abstract]. Exp Hematol, 1999,27:122
    12. Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005;105:1815–1822.
    13. Liu H, Kemeny DM, Heng BC et al. The immunogenicity and immunomodulatory function of osteogenic cells differentiated from mesenchymal stem cells. J Immunol 2006;176:2864–2871.
    14. Deng W, Han Q, Liao L, et al. Engrafted bone marrow-derived flk-(1+) mesenchymal stem cells regenerate skin tissue. Tissue Eng. 2005;11(1-2):110-119.
    15. Krampera M, Glennie S, Dyson J, et al. Bone marrow mesenchymal stem cells inhibit the response of na?ve and memory antigen-specific T cells to their cognate peptide. Blood, 2003,101(9):3722-3729
    16. Oshima Y, Watanabe N, Matsuda K, et al. Behavior of transplanted bone marrow-derived GFP mesenchymal cells in osteochondral defect as a simulation of autologous transplantation. J Histochem Cytochem. 2005 ;53(2):207-216
    17. Silva GV, Litovsky S, Assad JA, et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation. 2005;111(2):150-156.
    18. Lu P,Blesch A, Tuszynski MH. Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation or artifact[J].Neurosci Res, 2004, 77( 2) : 174- 191.
    19. LiM, Pevny L, Lovell-Badge R, et al. Generation of purified neural precursors from embryonic stem cells by lineage selection [ J ]. Curr Biol, 1998, 8 (17) : 971 - 974.
    20. Sieber-Blum M, Zhang JM. Growth factor action in neural crest cell diversification. J Anat, 1997, 191 ( Pt 4) : 493 - 499.
    21. Pincus DW, Keyoung HM, Harrison-Restelli C, et al. Fibroblast growth factor-2 /brain-derivered neurotrophic factor-associated maturation of new neurons generated from adult human subependymal cells.Ann Neurol, 1998, 43 (5) : 576 - 585.
    22. Kim BJ, Seo JH, Bubien JK, et al. Differentiation of adult bone marrow stem cells into neuron progenitor cells in vitro. Neuroreport, 2002, 13: 1185 - 1188.
    1. Lange C, Schroeder J, Stute N, et al. High-potential human mesenchymal stem cells. Stem Cells Dev , 2005; 14(1):70-80.
    2. Sudeepta A, PittengerM F. Human mesenchymal stem cells modulate allogeneic immune cell responses [ J ]. Blood, 2005, 105: 1815 - 1822.
    3. Bianco P, RiminucciM. Bonemarrow stromal stem cells: nature, biology, and potential applications [ J ]. Stem Cells, 2001, 19: 180 - 192.
    4. Eglitis MA, Mezey E. Hematopoietic cells differentiate into both microglia and macroglia in the brain of adult mice. Proc Natl Acad Sci USA 1997; 94(8): 4085-4088
    5. Mezey E, Chevndrosc KT,Horta G, et al.Turning blood into brain:cell bearing neuronal antigens generated in vivo from bone marrow [J]. Sience, 2000, 290(5497):1779.
    6. Azizi S人Stokes D, Augelli BJ, et al. Engraftment and migration of human bone marrow stromal cells implarned in the brains of albino rats-similarities to astrocyte grafts. Proc Natl Acad Sci USA 1998; 95: 390-413
    7. Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes agter injection into neonatal mouse brains. Proc Natl Acad Sci USA 1999; 96: 1071-1076
    8. Li丫Chen J and Chopp M. Adult bone marrow transplantation after stroke in adult mice. Cell Transplant 2001; 10: 31-40
    9. Zhao LR , Duan WM , Reyes M et al . Human bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol ,2002 ,174 (1) :11-20.
    10. Brazeltoon TR, Rossi FWV, Keshet GI,et al, From marrow to brain: expression of neurnal phenotypes in adult mice [J].Sience, 2000, 290:1775.
    11. Chen J, Li Y, Wang L, et al. Caspase inhibition by Z-VAD increases the survival of grafted bone marrow cells and improves functional outcome after MCAo in rats. J Neuro Sci 2002; 199: 17-24.
    12. Li Y, Mcintosh K, Chen J et al . Allogeneic bone marrow stromal cells promote glial -axonal remodeling without immunologic senstiza-tion after stroke in rats. Fxp Neural ,2006 ,198 (2) :313
    13. ZhuW, XuW, J iang R, et al. Mesenchymal stem cells derived frombone marrow favor tumor cell growth in vivo. Exp Mol Pathol, 2006,80: 267 - 274.
    14. Li Y,Chen J, Wang L, et al. Treatment of stoke in rat with intracarotid administration of marrow cells. Neurology 2001b; 56:1666-1672.
    15. Li Y, Chen J and Chopp M. Adult bone marrow transplantation after stoke in adult mice. Cell Transplant 2001 a; 10: 31-40.
    16. Li Y, Chopp M, Chen J, et al. Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stoke in adult mice. J Cereb Blood Flow Metab 2000; 29: 1311一1319.
    17. Chen JL, Li Y and Chopp M. Intracerebral transplantation of bone marrow with BDNF after MCAo in rat. Neuropharmacology 2000; 39: 711-716.
    18. Chen J,Zhang ZG,Li Y,et al Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rates Circ Res,2003,92:692-699.
    19. Chen J,Li Y,KatakowskiM, et al Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat J Neurosic Res,2003,73(6):778-786.
    20. Li Y, ChenJ, WangL, et al. Treamentof stroke in rat with intracamtid administration of mancxv stmmal cells Neurology, 2001, 56:1666- 1672.
    21.宋书欣,邓志峰,汪泱等.骨髓间充质干细胞移植治疗脑缺血大鼠的实验研究.中国微侵袭神经外科杂志,2005 ,10(2) :77
    22. Zhang J, Li Y, Chen J, et al. Expression of insulin -like growth factor 1 and receptor in ischemic rats treated with human marrow stromal cells. Brain Res, 2004, 1030 (1): 19-27.
    23. Zhao LX, Zhang J,Cao F,et al Modification of the brain-derived neurotrophic factor gene a portal to transform mesenchymal stem cellsinto advantageous engineering cellsfor neurore generation and neuroprotection. Exp Neurol, 2004,190:396-406.
    24. Chen X, Li Y,Wang,L,et al Ischemic rat brain extracts induce human marrow stromal cell growth factor production.Neuropathology,2002,22(4):275-279.
    25. Chen X, Katakowski M, Li Y et al . Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts : growth factorproduction. J Neurosci Res ,2002 ,69 (5) :687.
    26. Takahashi T, Kalka Cl, Masuda H et al . ischemia - and cytokine -induced mobilization of bone marrow - derived endothelial progenitorcells for neovascularization. Nat Med ,1999 ,5.
    27. ZhangC,QinZ,Zhong CJ,et al.Neuroprotective effects of bone marrow stromal cells on rat organotypic hippocampal slice culture model of cerebral ischemia[J].Neurosci Lett,2003,342:93.
    28. Shen LH, Li Y, Chen J et al . Intracarotid transplantation of bone marrow stromal cells increases axon - myelin remodeling after stroke.Neuroscienec ,2006 ,137 (2) :393.
    29. Chen J, L i Y, Wang L, et al Therapeutic benefit of intravenous administration of bone manrxv stmmal cells after cerebral ischania in rats Stroke, 2001, 32: 1005 - 1011.
    30. Bang OY,Lee JS,Lee PH,et al Autologous mesenchymal stem cell transplantation in stroke patients Ann Neurol,2005,57:874-8822.
    1. Prockop DJ. Marrow stromal cells as stem cells for non-he matopoietic tissues [ J ]. Science, 1997 ,276 :71 - 74.
    2. Bianco P. Riminucci M. Gronthos S. Bone marrow stromalste m cells: Nature, biology , and potential applications [ J ] .Ste m Cells ,2001 ,19(3) :180 - 192.
    3. Krause DS. Plasticity of marrow-derived stem cells: [ J]. Gene Therapy, 2002, 9 :754 - 758.
    4. Yuehua Jiang , Balkrishna N . Jahagirdar , Pluripotency of mes-enchymal stem cells derived from adult marrow [ J ] . Nature, 2002, 418(4): :41 - 49.
    5. Parsons CH, Sannju B , Kedes DH. Susceptibility of human fetal mesenchymal stem cells to Kaposi sarcoma-assc)ciated herpes-virus. Blood, 2004, 104(9): 2736-2738.
    6. Musina RA, Bekchanova ES, Sukhikh GT. Comparison of mesenchymal stem cells obtained from different human tissues. Bull Exp BiolMed, 2005, 139 (4): 504-509.
    7. De Ugarte DA, Alfonso Z, Zuk PA, et aL Differential expression of stem cell mobilization-asscociated molecules on multi-lin-eage cells from adipose and bone manrxv. dnmuncl Lett,2003, 89(2-3): 267.
    8. Conger PA, Minguell JJ. Phenotypical and functional properities of human bone marrcxv mesenchymal progenitor ce1l [J] Cell Physiol, 1999, 181(1): 67.
    9. Barry F, Boynton R, MuiphyM, et al The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from human mesenchymal stem cells. BiDChem Biophys Res Commun, 2001, 289(2): 519.
    10. Brazelton TR. Rossi PM. Keshet G1. et al. From marrow to brain: expression of neuronal phenotypes in adult mice. [J] Science, 2000, 290: 1775一1779
    11. Mezey. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. [J], Science, 2000, 290: 1779--1782
    12. Woodhurv D ,Schwarz EJ, Prockop DJ, et al. Adult rat and human bone :Marrow stromal cells differentiate into neurons. [J] Neurosci Res, 2000,61:364一370.
    13. Kohyama J, Abe H, Shimazaki T, et al. Brain from bone: efficient"meta-differentiation" of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation, 2001, 68: 235 - 244.
    14. Li Y, Chen J, 7liang CL, et al Gliosis and brain remodeling after treahnent of stroke in ratswith mar%v sticmal cells Glia, 2005, 49:407-417.
    15. LI Y. Chopp M, Chen J et al. Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab,2000 ,20 (9) :1 311
    16. Li Y, Chen J , Mang CL et al . Ciiosis and brain remodeling after treatnent of stroke in rats with marrow stromal cells. Ciia ,2005 ,49(3) :407
    17.杨华静,徐光锦,褚倩.对比研究经颈动脉和立体定位注射骨髓间充质干细胞治疗缺血性脑卒中.卒中与神经疾病, 2005 ,12(2) :77-79
    18. Chen J, L i Y, Wang L, et al Therapeutic benefit of intravenous administration of bone manrxv stmmal cells after cerebral ischania in rats Stroke, 2001, 32: 1005 - 1011.
    19. Li Y, ChenJ, WangL, et al Treamentof stroke in ratwith intracamtid administration of mancxv stmmal cells Neurology, 2001, 56:1666- 1672
    20. 1iu W , Xu W , J iang R, et al Mesenchyrnal stem cells derived from bone marrrnv fawr tumor cell grrnvth in viux Exp Mol Pathol, 2006,80: 267– 274
    21. Koide, K.; Hashitani, T.; Aihara, N.; Mabe, H.; Nishino, H.Improvement of passive avoidance task after grafting of fetal striatal cell suspensions in ischemic striatum in the rat. Rest.Neurol. Neurosci. 5:205-214; 1993.
    22. Nishino, H.; Koide, K.; Aihara, N.; Kumazaki, M.; Sakurai, T.:Nagai, H. Striatal grafts in the ischemic striatum improve pallidal GABA release and passive avoidance. Brain Res. Bull.32:517-20; 1993.
    23. Emerich, D. F.; Sanberg, P. R. Animal models of Huntington's Disease. Animal models of neurological disease. In: Boulton, A.;Baker, G.; Butterworth, R., eds. Neuromethods, vol. 21. New Jersey: Humana Press; 1992:65-124.
    24. Sanberg, P. R. Haloperidol-induced catalepsy is mediated by post-synaptic dopamine receptors. Nature 284:472-473; 1980.
    25. Sanberg, P. R.; Coyle, J. T. Scientific approaches to Huntington's disease. CRC Critical Reviews in Clinical Neurobiology 1:1-44; 1984.
    26. Nakahara, I.; Kikuchi, H.; Taki, W. Nishi, S.; Kito, M.;Yonekawa, Y.; Goto, Y.; Ogata, N. Changes in major phospholipids of mitochondria during postischemic reperfusion in rat brain. J. Neurosurg. 76:244-250; 1992.
    27. Pundt, L. L.; Kondoh, T.; Conrad, J. A.; Low, W. C. Human fetal striatum exhibits viable tissue and cells for transplantation from donors 7-18 weeks in gestation. Soc. Neurosci. Abstr. 20:472;1994-
    28. Sanberg, P. R.; Wiktorin, K.; Isacson, O. Cell Transplantation for Huntington's Disease. FL: R. G. Landes Co.; 1994a.
    29. Isacson, O.; Brundin, P.; Gage, F. H.; Bjorklund, A. Neural grafting in a rat model of Huntington's Disease: Progressive neurochemicat changes after neostriatal ibotenate lesions and striatal tissue grafting. Neuroscience 16:799-$17; 1985.
    30. Olney, J. W. Neurotoxicity of excitatory amino acids. In: McGeer, E.; Olney, J. W.; McGeer, P., eds. Kainic acid as a tool in neurobiology. New York: Raven Press; 1978:201-217.
    31. Pritzel, M.; Isacson, O.; Brundin, P.; Wiklund, L.; Bjorklund, A.Afferent and efferent connections of striatal transplants implanted into the ibotenic acid lesioned neostriatum in adult rats. Exp. Brain Res. 65:112-126; 1986.
    32. Sanberg, P. R.; Wiktorin, K.; Isacson, O. Cell Transplantationfor Huntington's Disease. FL: R. G. Landes Co.; 1994
    33. Sanberg, P. R.; Borlongan, C. V.; Freeman, T. B.; Koutouzis, T.K.; Cahill, D. W.; Isacson, O.; Pakzaban, P. Transplantation of striatal human fetal tissue in excitotoxin model of Huntington'sdisease: Neuroanatomical and behavioral effects. Soc. Neurosci. Abstr. 20:471; 19946.
    34. Nishino, H.; Koide, K.; Aihara, N.; Kumazaki, M.; Sakurai, T.:Nagai, H. Striatal grafts in the ischemic striatum improve pallidal GABA release and passive avoidance. Brain Res. Bull. 32:517-20; 1993.
    35. Koide, K.; Hashitani, T.; Aihara, N.; Mabe, H.; Nishino, H.Improvement of passive avoidance task after grafting of fetal striatal cell suspensions in ischemic striatum in the rat. Rest.Neurol. Neurosci. 5:205-214; 1993.
    36. Lindvall, O.; Brundin, P.; Widner, H.; Rehncrona, S.; Gustavii,B.; Frackowiak, R.; Leenders, K. L.; Sawle, G.; Rothwell, J. C.;Marsden, C. D.; Bjorklund, A. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease. Science 247:574-577; 1990.
    37. Henderson, B. T. H.; Clough, C. G.; Hitchcock, E. R.; Kenny,B. G. Implantation of human fetal ventral mesencephalon to the right caudate nucleus in advanced Parkinson's disease. Lancet 1274; 1988.
    38. Grabowski, M.; Brundin, P.; Johansson, B. B. Functional integration of cortical grafts placed in brain infarcts of rats. Ann.Neurol. 34:362-368; 1993.
    39. Wictorin, K.; Clarke, D. J.; Bolam, J. P.; Bjorklund, A. Host corticostriatal fibers establish synaptic connections with grafted striatal neurons in the ibotenic acid lesioned striatum. Eur. J.Neurosci. 1:189-195; 1989.
    40. Wictorin, K.; Simerly, R. B.; Isacson, O.; Swanson, L. W.;Bjorklund, A. Connectivity of striatal transplants implanted into the ibotenic acid-lesioned striatum. II. Cortical afferents. Neuroscience 30:297-311; 1989.
    41. Freeman, T. B.; Sanberg, P. R.; Snow, B. J.; Vingerhoets, F. J.G.; Smith, D. A.; Borlongan, C. V.; Olanow, C. W. Fetal nigral transplantation in Parkinson's disease: The USF experience. Soc. Neurosci. Abstr. 20:9; 1994.
    42. Isacson, O.; Dunnett, S. B.; Bjorklund, A. Graft induced behavioral recovery in an animal model of Huntington's Disease. Proc.Nam. Acad. Sci. USA 83:2728-2732; 1986
    43. Lindvall, O.; Brundin, P.; Widner, H.; Rehncrona, S.; Gustavii,B.; Frackowiak, R.; Leenders, K. L.; Sawle, G.; Rothwell, J. C.;Marsden, C. D.; Bjorklund, A. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease. Science 247:574-577; 1990.
    44. Perlman, S. H.; Levivier, M.; Collier, T. J.; Sladek, J. R.; Gash, D. M. Striatal implants protect the host striatum against quinolinic acid toxicity. Exp. Brain Res. 84:303-310; 1991.
    45. Rod, M. R.; Auer, R. N. Combination therapy with nimodipine and dizocilpine in a rat model of transient forebrain ischemia. Stroke 23:196-209: 1992.
    46. Freeman, T. B.; Nauert, G. M.; Sanberg, P. R.; Kordower, J. H. Influence of donor age on the survival of human embryonic dopaminergic neural grafts. J. Neural Transplant. Plast. 3:257-258; 1993.
    47. Freeman, T. B.; Sanberg, P. R.; Snow, B. J.; Vingerhoets, F. J. G.; Smith, D. A.; Borlongan, C. V.; Olanow, C. W. Fetal nigral transplantation in Parkinson's disease: The USF experience. Soc. Neurosci. Abstr. 20:9; 1994.
    48. Shen LH, Li Y, Chen J et al . Intracarotid transplantation of bone marrow stromal cells increases axon - myelin remodeling after stroke.Neuroscienec ,2006 ,137 (2) :393
    49.宋书欣,邓志峰,汪泱等.骨髓间充质干细胞移植治疗脑缺血大鼠的实验研究.中国微侵袭神经外科杂志,2005 ,10(2) :77
    50. Chen X, Katakowski M, Li Y et al . Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts : growth factorproduction. J Neurosci Res ,2002 ,69 (5) :687
    51.许予明,宋波,秦洁等.骨髓间充质干细胞对大鼠脑缺血再灌注损伤的保护机制.国外医学脑血管疾病分册, 2004 ,12(9) :657
    52. Li Y. CJx)rp MCben J et al. Intrastriatal transplantation of bone manow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab,2000 ,20 (9) :1 311
    53. Shen LH, Li Y, Chen J et al . Intracarotid transplantation of bone marrow stromal cells increases axon - myelin remodeling after stroke.Neuroscienec ,2006 ,137 (2) :393
    54. Li Y, Mcintosh K, Chen J et al . Allogeneic bone marrow stromal cells promote glial - axonal remodeling without immunologic senstiza-tion after stroke in rats. Fxp Neural ,2006 ,198 (2) :313
    55. 71raoLR, Duan WM, Reyes M et al . Human bone marrow stem cells exhibit neural phenotypes and arrieliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neural ,2002 ,174(1) :11
    56. Takahashi T, Kalka Cl, Masuda H et al . Ischemia and cytokine-induced mobilization of bone marrow-derived endothelial progenitorcells for neovascularization. Nat Med ,1999 ,5 (4) :434
    57. Chen X, Katakowski M, Li Y et al . Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts : growth factorproduction. J Neurosci Res ,2002 ,69 (5) :687
    58. Li Y, Mcintosh K, Chen J et al . Allogeneic bone marrow stromal cells promote glial - axonal remodeling without immunologic senstiza-tion after stroke in rats. Fxp Neural ,2006 ,198 (2) :313
    59. Cfuber R. Kandler B , Holzmann P et al . Bone manow stromal cells can provide a local environment that favors migration and formation of tubvlar strvctures of endothelial cells. Tissue Eng,2005,11(5 - 6):896
    60. Shen LH, Li Y, Chen J et al . Intracarotid transplantation of bone marrow stromal cells increases axon - myelin remodeling after stroke.Neuroscienec ,2006 ,137 (2) :393
    61. Takahashi T, Kalka Cl, Masuda H et al . ischemia - and cytokine -induced mobilization of bone marrow - derived endothelial progenitorcells for neovascularization. Nat Med ,1999 ,5 (4) :434
    62. Bang OY, Lee JS, Lee PH, et al Autobgousmesenchyrnal stem cell transplantation in stroke patients AnnNeurol, 2005, 57: 874- 882

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700