REGgamma基因真核表达质粒的构建及其在人乳腺癌细胞中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分
     REGγ基因真核表达质粒的构建及其稳定转染细胞株的建立
     目的:构建REGgamma(REGγ)基因的真核表达重组体pcDNA3.1-REGγ,并建立稳定转染REGγ基因的乳腺(癌)细胞株,为进一步深入研究REGγ基因的功能奠定基础。
     方法:提取MCF-7细胞的总RNA为模板,通过RT-PCR获取全长REGγcDNA,经限制性内切酶EcoRI、EcoRV酶切后与pcDNA3.1连接构建重组体。以Lipofectamine2000将重组体导入HBL-100、MCF-7、MDA-MB-231细胞,由G418筛选出稳定转染细胞株。并经免疫细胞化学、细胞免疫荧光、Western Blot、RT-PCR等方法检测各株细胞的REGγ表达。
     结果:经内切酶酶切及DNA序列分析证实重组体构建成功。经免疫细胞化学、细胞免疫荧光、Western Blot、RT-PCR等检测证实稳定转染细胞株中其REGγ的表达与未转染的同种细胞相比均明显增强,有显著性差异(P<0.01);REGγ在乳腺癌细胞株的表达明显高于乳腺上皮细胞株(P<0.05);在两株乳腺癌细胞株中,MDA-MB-231表达的REGγ高于MCF-7(P<0.05)。
     结论:真核表达重组体pcDNA3.1-REGγ构建成功,并经抗生素筛选获得了稳定高表达REGγ的细胞株,为进一步研究REgγ的功能奠定了基础。同时发现在乳腺癌细胞株中REGγ的表达明显高于乳腺上皮细胞株;在乳腺癌细胞株中,恶性潜能高的细胞株REGγ的表达高于恶性潜能低的细胞株。
     第二部分
     REGγ基因在人乳腺癌细胞中的功能研究
     目的:探讨REGγ基因对乳腺癌细胞增殖、凋亡及其对癌基因的影响。
     方法:通过软琼脂集落形成试验、采用噻唑蓝(MTT)比色法、流式细胞仪(FCM)检测REGγ对细胞增殖及细胞周期的影响;免疫细胞化学检测增殖细胞核抗原(proliferative cell nuclear antigen,PCNA)、bcl-2、fas、c-myc的表达;分光光度法检测Caspase-3活性变化;AnnexinV-FITC的FCM检测来了解细胞凋亡的变化;以透射电子显微镜(TEM)观察转染REGγ引起的细胞超微结构改变;Western Blot检测REGγ对其靶蛋白p21和SRC-3及癌基因CyclinD1的影响。
     结果:MTT法及FCM检测提示,增加REGγ表达可使细胞生长加速、细胞倍增时间缩短、S+G_2+M的增殖期细胞数明显增加。软琼脂集落形成实验表明,转染REGγ基因的细胞集落形成率高、克隆形成时间短、克隆存活时间长。PCNA的免疫细胞化学检测结果显示,转染REGγ基因的细胞PCNA表达明显增强(p<0.01)。Caspase-3分光光度法检测显示,实验组细胞的OD值普遍低于对照组(p<0.05);Annexin V-FITC的FCM检测显示,实验组细胞的凋亡率明显低于对照组(p<0.01);免疫细胞化学检测发现,转染REGγ基因的细胞表达bcl-2增强(p<0.05)、表达fas减弱(p<0.05)、表达c-myc增强(p<0.05);TEM观察转染REGγ基因的细胞表现为核仁肥大,线粒体、高尔基体丰富或扩张,未见凋亡小体形成;Western Blot检测发现转染REGγ基因的细胞,其p21和SRC-3表达减弱(p<0.05)、但癌基因CyclinD1表达增强(p<0.01)。
     结论:REGγ基因能促进乳腺癌细胞的生长及增殖,抑制乳腺癌细胞凋亡。其机制可能与REGγ基因参与了细胞增殖和细胞凋亡基因的调控有关。
     第三部分
     转染REGγ基因对乳腺癌细胞裸鼠移植瘤生长的影响
     目的:研究REGγ基因转染乳腺癌MDA-MB-231细胞后在裸鼠体内的成瘤作用及其机制。
     方法:以稳定高表达REGγ基因的细胞株为实验组、转染空载体及未施加处理因素的细胞为对照组。将此3组细胞接种于裸鼠皮下,观察移植瘤的生长状况并计算抑瘤率;RT-PCR检测REGγ基因在瘤组织中的表达;FCM检测瘤组织的肿瘤浸润淋巴细胞(TIL)中CD16的表达及肿瘤细胞周期和细胞凋亡;免疫组化检测移植瘤中p21的表达。
     结果:与对照组比较,实验组移植瘤生长速度较快、体积较大、瘤重增加(P<0.05);RT-PCR检测显示REGγ基因在瘤组织中的表达增加(P<0.01);FCM检测提示CD16阳性率明显降低,G_0/G_1和G_2/M期细胞减少,S期细胞明显增多,肿瘤细胞的凋亡率明显降低(P<0.05);P21的表达明显降低(P<0.05)。
     结论:REGγ基因在体内具有促进乳腺癌发生、发展的作用,其机制可能与其具有加速细胞周期、抑制细胞凋亡,抑制NK细胞活化以及对p21的特异性降解有关。
PART ONE
     EUKARYOTIC EXPRESSION PLASMID CONSTRUCTION OF REGgamma GENE AND CONSTRUCTION OF THE STABLE TRANSFECTIVE CELL LINE
     Objective.To construct the stable transfective cell line with the eukaryotic expression vector for human REGγ,cDNA to laid the foundation for further study of the function of REGγ.
     Methods:REGγcDNA was obtained by RT-PCR of total RNA extracted from the human breast cancer cell MCF-7,and it was digested by the restriction endonuclease EcoRI and EcoRV before connection with pcDNA3.1.The recombinant was transfected into HBL-100,MCF-7 and MDA-MB-231 cell by using lipofectamine2000.The stable transfected cell line was selected in medium containing antibiotic(G418).The expression of REGγ,detcected by immunocytochemistry,Western Blot,immunofluoresc ence and RT-PCR.
     Results:The recombinant was digested by restriction endonuclease and confirmed correct by sequencing,overexpression of REGγin the stable transfected cell line by contrast with untransfective cell line(P<0.01);The expression of REGγ,in breast cancer cell lines were obviously higher than those of breast epithelial cell(P<0.05);REGγlevels of MDA-MB-231 were obviously higher than that of MCF-7(P<0.05).
     Conclusions.The construction of the eukaryotic expression vector for REGγwas successful,and the stable transfective cell line for overexpression REGγwas obtained by G418 selection,simultaneously, REGγexpressed in breast cancer cell lines were higher than those of breast epithelial cell;MDA-MB-231 was higher than that of MCF-7 within breast cancer cell lines.This work may pave the way for further study of the functions of REGγ.
     PART TWO
     FUNCTION STUDY OF REGγIN HUMAN BREAST CANCER CELL LINES
     Objective:To study the function of REGγgene in cell proliferation, apoptosis,and the effect for oncogene in human breast cancer cells.
     Methods:The effect of REGγgene expression on cell proliferation and cell cycle was examined by soft agar conoly formation test,MTT assay and flow cytometry(FCM);Immunocytochemistry was performed to detect the differences in proliferative cell nuclear antigen(PCNA),bcl-2,fas and c-myc in breast cancer cells;Apoptosis was measured via FCM,and caspase 3 expression was determined using spectrophotometry; Ultrastructural changes in breast cancer cells were observed with transmission electron microscopy(TEM).The effect of REGγgene on target protein P21,SRC-3 and CyclinD1 was detected by Western Blot.
     Results:MTT assay and FCM indicated that Cell growth was accelerated,the doubling time was shortened and the proportion of cells in proliferative phase in tansfected with REGγgroup was obviously higher than that of untransfected with REGγ.Soft agar conoly formation test indicated that the cell colony forming efficiency was increased,the time of colony forming was shortened and survival time of colony was long in tansfected with REGγ,in contrast to untransfected with REG_γ.The level of PCNA measured by immunocytochemistry indicated that the expression of PCNA was remarkably higher in cells transfected with the REGγ,gene (P<0.01).The optical density(OD) was obviously lower in cells transfected with REGγby using spectrophotometry of caspase 3(P<0.05), and the rate of apoptosis was lower in cells transfected with REGγ(P<0.01).The expression of bcl-2 and c-myc were enhanced in cells transfected with recombinant,on the contrary,the expression of fas was decreased(p<0.05).Karyosome hypertrophy,mitochondrion abundance, Golgi apparatus abundance and ectasis were seen with TEM.Apoptotic bodies were not observed.Western blot revealed that the expression of p21 and SRC-3 were highly decreased in cells stably transfected with the recombinant compared with the control group(P<0.05),but the expression of CyclinD1 was reinforced(p<0.01).
     Conclusions:The REGγgene promotes cell proliferation and inhibits apoptosis in breast cancer cells.The mechanism may be relevant to REGγparticipation in regulation of cell proliferation and apoptosis Cell cycle,Apoptosis
     PART THREE
     EFFECT OF TRANSFECTION OF REG./GENE ON THE GROWTH OF XENOGRAFTED HUMAN BREAST CANCER IN NUDE MICE
     Objective:To study the tumorigenesis of human breast cancer MDA-MB-231 cells in nude mice after transfection with REGγgene(a kind of proteasome activating factor) and the related mechanism.
     Methods:REGγgene was transfected into MDA-MB-231 cells in pcDNA3.1 vector via lipofectin mediation.The stable clones were selected by G418 600mg/L.The cells without transfection and transfected with empty vector were regarded as control groups.Three groups of cells were inoculated subcutaneously into nude mice.The growth of transplanted tumors was observed and the tumor inhibition ratio was calculated.The expression of REGγgene in tumor tissues was detected by RT-PCR.The expression of CD16 in tumor-infiltrating lymphocytes(TIL) and the cell cycle and apoptosis were determined by flow cytometry.The expression of p21 in transplanted tumors was examined by immunohistochemistry.
     Results.As compared with control group,xenografted tumor in REGγgene transfection group showed faster growth speed,larger tumor volume, and increased tumor weight(p<0.05).The expression of REGγgene in tumors was markedly increased(p<0.01).The expression of CD16 in TIL was greatly decreased(p<0.05) and the cell proportion in G_0/G_1 phase and G_2/M phase decreased significantly but the cell percentage in S phase was obviously increased.The apoptotic ratio and the expression of p21 were obviously reduced(p<0.05).
     Conclusions:REGγgene promotes the tumorigenesis and progress of breast cancer cells in nude mice.The mechanism may be explained by its effects of accelerating cell cycle,inhibiting apoptosis,suppressing the activation of NK cells,and specifically degrading p21.
引文
[1]Coldman A,Phillips N,Warren L,et al.Breast cancer mortality after screening mammography in British Columbia women.Int J Cancer,2007,120(5):1076-1080
    [2]Spano JP,Bay JO,Blay JY,et al.Proteasome inhibition:a new approach for the treatment of malignancies[J].Bull Cancer.2005,92(11 ):E61-6,945-952.
    [3]Liu CH,Goldberg AL,Qiu XB.New insights into the role of the ubiquitinproteasome pathway in the regulation of apoptosis[J].Chang Gung Med J.2007,30(6):469-479.
    [4]Gao G,Luo H.The ubiquitin-proteasome pathway in viral infections[J].Can J Physiol Pharmacol.2006,84(l):5-14.
    [5]Hjerpe R,Rodriguez MS.Alternative UPS drug targets upstream the 26S proteasome[J].Int J Biochem Cell Biol.2008,40(6-7):1126-1140.
    [6]Arrigo AP,Tanaka K,Goldberg AL,et al.Identity of the 19S 'prosome' particle with the large multifunctional protease complex of mammalian cells(the proteasome)[J].Nature.1988,331:192-194.
    [7]Hendil KB.The 19 S multicatalytic "prosome" proteinase is a constitutive enzyme in HeLa cells[J].Biochem.Int.1988,17:471-477.
    [8]Wilk S and Orlowski M.Cation-sensitive neutral endopeptidase:isolation and specificity of the bovine pituitary enzyme[J].J Neurochem.1980,35:1172-1182.
    [9]Groll M,Clausen T.Molecular shredders:how proteasomes fulfill their role[J].Curr Opin Stuct Biol.2003,13:665-673.
    [10]Groll M,Ditzel L,L(o|¨)we J,et al.Structure of20S proteasome from yeast at 2.4A°resolution[J].Nature.1997,386:463-471.
    [11]Rabl J,Smith DM,Yu Y,et al.Mechanism of Gate Opening in the 20S Proteasome by the Proteasomal A TPases[J].Mol Cell,2008,30(3):360-368.
    [12]Li J,Gao X,Ortega J,et al.Lysine 188 substitutions convert the pattern of proteasome activation by REGgamma to that of REGs alpha and beta[J].EMBO J,2001,20(13):3359-3369.
    [13] F(?)rster A, Whitby FG, Hill CP. The pore of activated 20S proteasomes has an ordered 7-fold symmetric conformation[J]. EMBO J. 2003,22(17): 4356-4364.
    [14] Realini C, Jensen CC, Zhang Z, et al. Characterization of recombinant REGalpha,REGbeta, and REGgamma proteasome activators [J]. J Biol Chem, 1997 272(41):25483-25492.
    [15] Mao I, Liu J, Li X, Luo H.REGgamma, a proteasome activator and beyond? Cell Mol Life Sci. 2008 , 65(24): 3971-3980.
    [16] Chen X, Barton LF, Chi Y, et al.Ubiquitin-Independent Degradation of Cell-Cycle Inhibitors by the REGgamma Proteasome[J]. Mol Cell. 2007,26(6):843-852.
    [17] Murata S, Kawahara H, Tohma S,et al. Growth retardation in mice lacking the proteasome activator PA28gamma[J]. J Biol Chem. 1999, 274(53):38211-38215.
    [18] Zannini L, Lecis D, Buscemi G,et al. REGgamma proteasome activator is involved in the maintenance of chromosomal stability[J]. Cell Cycle. 2008, 7(4):504-512.
    [19] Mori Y, Moriishi K, Matsuura Y. Hepatitis C virus core protein: Its coordinate roles with PA28γ in metabolic abnormality and carcinogenicity in the liver. Int J Biochem Cell Biol. 2008, 40(8): 1437-1442.
    
    [20] Imai Y, Kimura T, Murakami A,et al.The CED-4-homologous protein FLASH is involved in Fas-mediated activation of caspase-8 during apoptosis[J].Nature. 1999,398(6730):777-785.
    [21] Yang X, Khosravi-Far R, Chang HY. et al. Daxx,a novel Fas-binding protein that activates JNK and apoptosis[J]. Cell. 1997, 89(7): 1067-1076.
    [22] Bai D, Chen H, Huang BR. RanBPM is a novel binding protein for p75NTR[J].Biochem Biophys Res Commun. 2003, 309(3): 552-557.
    [23] Liu B, Shuai K. Induction of apoptosis by protein inhibitor of activated Statl through c-Jun NH2-terminal kinase activation[J].J Biol Chem. 2001, 276(39):36624-36631.
    
    [24] Okamura T, Taniguchi S, Ohkura T,et al.Abnormally high expression of proteasome activator-y in thyroid neoplasm[J].J Clin Endocrinol Metab. 2003,88(3): 1374-1383.
    
    [25] Yi P, Feng Q, Amazit L, et al. Atypical protein kinase C regulates dual pathways for degradation of the oncogenic coactivator SRC-3/AIB1[J]. MolCell. 2008, 29(4):465-476.
    [26] Yi P, Wu RC, Sandquist J,.et al. Peptidyl-prolyl isomerase 1 (Pin1) serves as a coactivator of steroid receptor by regulating the activity of phosphorylated steroid receptor coactivator 3 (SRC-3/AIBl)[J]. Mol Cell Biol.2005, 25(21):9687-9699.
    [27] Xu FP, Xie D, Wen JM,et al. SRC-3/AIB1 protein and gene amplification levels in human esophageal squamous cell carcinomas. Cancer Lett. 2007, 245(1-2):69-74.
    [28] Li X, Lonard DM, Jung SY, et al. The SRC-3/AIB1 coactivator is degraded in a ubiquitin- and ATP-independent manner by the REGgamma proteasome[J]. Cell.2006, 124(2):381-392.
    [29] Abba MC, Drake JA, Hawkins KA,et al.Transcriptomic changes in human breast cancer progression as determined by serial analysis of gene expression[J].Breast Cancer Res.2004,6(5):R499-R513.
    [30] Okamurat, Taniguchi S, Ohkura T,et al. Abnormally high expression of proteasome activator-gamma in thyroid neoplasm[J]. J Clin Endocrinol Metab.2003,88(3): 1374-1383.-
    [31] Zhang Z, Zhang R.Proteasome activator PA28γ regulates p53 by enhancing its MDM2-mediated degradation[J]. EMBO J. 2008,27(6): 852-864.
    [32] Hjerpe R, Rodriguez MS. Alternative UPS drug targets upstream the 26S proteasome[J]. Int J Biochem Cell Biol, 2008,40(6-7): 1126-1140.
    [1]LI X,LONARD D M,JUNG S Y,et al.The SRC-3/AIB1 coactivator is degraded in a ubiquitin- and ATP-independent manner by the REGgamma proteasome[J].Cell,2006,124(2):381-392.
    [2]Realini C,Jensen CC,Zhang Z,et al.Characterization of recombinant REGalpha,REGbeta,and REGgamma proteasome activators[J].J Biol Chem,1997,272(41):25483-25492.
    [3]Wojcik C,Tanaka K,Paweletz N,et al.Proteasome activator(PA28) subunits alpha,beta and gamma(Ki antigen) in NT2 neuronal precursor cells and Hela S3cells[J].Eur J Cell Biol,1998,77(2):151-160.
    [4]Rechsteiner M,Hill CP.Mobilizing the proteolytic machine:cell biological roles of proteasome activators and inhibitors[J].Trends Cell Biol,2005,15(1):27-33.
    [5]Rechsteiner M,Hill CP.Mobilizing the proteolytic machine:cell biological roles of proteasome activators and inhibitors[J].Trends Cell Biol,2005,15(1):27-33.
    [6]Khan S,van den Broek M,Schwarz K,et al.Immunoproteasomes largely replace constitutive proteasomes during an antiviral and antibacterial immune response in the liver[J].J Immunol,2001,167(12):6859-6868.
    [7]Masson P,Andersson O,Petersen UM et al.Identification and characterization of a Drosophila nuclear proteasome regulator.A homolog of human 11 S REGγ(PA28γ).J Biol Chem,2001,276(2):1383-1390
    [8]Nikaido T,Shimada K,Shibata M,et al.Cloning and nucleotide sequence of cDNA for Ki antigen,a highly conserved nuclear protein detected with sera from patients with systemic lupus erythematosus [J]. Clin Exp Immunol. 1990,79:209-21.
    [9] Barton LF, Runnels HA,Schell TD,et al. Immune defects in 28-kDa proteasome activator gamma-deficient mice[J].J Immunol,2004,172(6):3948-3954
    [10] Masson P, Lundgren J, Young P. Drosophila Proteasome regulator REGgamma:transcriptional activation by DNA replication-related factor DREF and evidence for a role in cell cycle progression[J].J Mol Biol,2003;327(5):1001-1012
    [11] Li X, Amazit L, Long W, et al. Ubiquitin-and ATP-Independent Proteolytic Turnover of p21 by the REGg-Proteasome Pathway[J]. Molecular Cell,2007,26(6):831-842
    [12] Imai Y, Kimura T, Murakami A,et al.The CED-4-homologous protein FLASH is involved in Fas-mediated activation of caspase-8 during apoptosis[J] .Nature, 1999,398(6730):777-785.
    [13] Chen LY, Chen JD.Daxx silencing sensitizes cells to multiple apoptotic pathways[J]. Mol Cell Biol,2003;23(20):7108-7121
    [14] Bai D, Chen H, Huang BR. RanBPM is a novel binding protein for p75NTR[J].Biochem Biophys Res Commun,2003, 309(3):552-557.
    [15] Liu,B.Shuai,K. Induction of apoptosis by protein inhibitor of activated Statl through c-Jun NH2-terminal kinase activation[J].J Biol Chem, 2001,276(39):36624-36631.
    [16] Chen X, Barton LF, Chi Y, et al. Ubiquitin-Independent Degradation of Cell-Cycle Inhibitors by the REGgamma Proteasome[J].Mol Cell,2007,26(6): 843-852.
    [17] Abba MC, Drake JA, Hawkins KA,et al.Transcriptomic changes in human breast cancer progression as determined by serial analysis of gene expression[J]. Breast Cancer Res,2004, 6(5):R499-R513.
    [18] Okamura T, Taniguchi S, Ohkura T,et al. Abnormally high expression of proteasome activator-gamma in thyroid neoplasm[J]. J Clin Endocrinol Metab,2003, 88(3): 1374-1383.
    
    [19] Sheridan C, Kishimoto H, Fuchs R, et al. CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res, 2006, 8(5): R59.
    [1]Goldberg,A.L.Protein degradation and protection against misfolded or damaged proteins[J].Nature.2003,6968(426):895-899
    [2]Masson P,Andersson O,Petersen U.M,et al.Identification and Characterization of a Drosophila Nuclear Proteasome Regulator[J].J.Biol.Chem.2001,276(2):1383-1390
    [3]Murata S,Kawahara H,Tohma S,et al.Growth Retardation in Mice Lacking the Proteasome Activator PA28γ[J].The Journal of biological chemistry,1999,274(53):38211-38215
    [4]Barton LF,Runnels HA,Schell TD,et al.Immune defects in 28-kDa proteasome activator gamma-deficient mice[J].J Immunol.2004,172:3948-3954
    [5]金顺钱,詹启敏.肿瘤分子生物学是基础医学研究的前沿[J].世界华人消化杂志.2002,10:678-680
    [6]曾益新.肿瘤学.第1版.北京:人民卫生出版社,1999:108-109
    [7]Blagosklonny MV,Pardee AB.The restriction point of the cell cycle[J].Cell Cycle.2002,1:103-110
    [8]Bianchi S,Paglierani M,Zampi G,et al.Prognostic value of proliferating cell nuclear antigen in lymph node-negative breast cancer patients[J].Cancer.1993,72:120-125
    [9]Chen X,Barton LF,Chi Y,et al.Ubiquitin-Independent Degradation of Cell-Cycle Inhibitors by the REGgamma Proteasome[J].Mol Cell.2007,26(6):843-852
    [10]Li X,Amazit L,Long W,et al.Ubiquitin-and ATP-Independent Proteolytic Turnover of p21 by the REGg-Proteasome Pathway[J].Mol Cell.2007,26(6):831-842
    [11]种瑞峰,李福年,刘相萍,等.P21~(wafl)基因转染对乳腺癌细胞中心体复制和增殖活性的影响[J].中华实验外科杂志.2008,25:12-14
    [12]Li X,Lonard DM,Jung SY,Malovannaya A,Feng Q,Qin J,et al.The SRC-3/AIB1 coactivator is degraded in a ubiquitin- and ATP-independent manner by the REGgamma proteasome[J].Cell.2006,124(2):381-392
    [13]Yi P,Feng Q,Amazit L,et al.Atypical protein kinase C regulates dual pathways for degradation of the oncogenic coactivator SRC-3/AIB1[J].Mol Cell.2008,29(4):465-476
    [14]Yang X,Khosravi-Far R,Chang HY.et al.Daxx,a novel Fas-binding protein that activates JNK and apoptosis[J].Cell.1997,89(7):1067-1076
    [15]Yi T,Baek JH,Kim HJ,et al.Trichostatin A-mediated upregulation of p21(WAF1)contributes to osteoclast apoptosis[J].Exp Mol Med.2007,39(2):213-221
    [16]Lee CJ,Kim HT,Song KW,et al.Ovarian expression of p53 and p21 apoptosis regulators in gamma-irradiated mice[J].Mol Reprod Dev.2008,75(2):383-391
    [17]Obradovic D,Tirard M,Nemethy Z,et al.Daxx,FLASH,and FAF-1 modulate mineralocorticoid and glucocorticoid receptor-mediated transcription in hippocampal cells-toward a basis for the opposite actions elicited by two nuclear receptors[J]?Mol Pharmacol.2004,65(3):761-769
    [18]Zhang Z,Zhang R.Proteasome activator PA28 gamma regulates p53 by enhancing its MDM2-mediated degradation[J].EMBO J.2008,27(6):852-864
    [19]Bala S,Peltomaki P.CYCLIN D1 as a genetic modifier in hereditary nonpolyposis colorectal cancer[J].Cancer Res.2001,61:6042-6045
    [20]Bartkova J,Thullberg M,Slezak P,et al.Aberrant expression of G1-phase cell cycle regulators in flat and exophytic adenomas of the human colon[J].Gastroenterology.2001,120:1680-1688
    [21]Arber N,Doki Y,Han EKH,et al.Antisense to cyclin D1 inhibits the growth and tumorigenicity of human colon cancer cells[J].Cancer Res.1997,57:1569-1573
    [22]Xu AG,Li SG,Liu JH,Gan AH.Function of apoptosis and expression of the proteins Bcl-2,p53 and C-myc in the development of gastric cancer[J].World J Gastroenterol. 2001, 7:403-406
    [23] Monga SP, Monga HK, Tan XF, et al. Beta catenin antisense studies in embryonic liver cultures : role in Proliferation, apoptosis, and lineage specification[J]. Gastroenterology. 2003,124 (1) :202-216
    [24] Cui J, Zhou X, Liu YK, et al. Wnt signaling in hepatocellular carcinoma: analysis of mutation and expression of beta catenin, Tcell facto r4 and glycogen synthase kinase 3 beta genes[J]. J Gastroenterol Hepatol. 2003, 18(3) :280-287
    [25] Hjerpe R, Rodriguez MS. Alternative UPS drug targets upstream the 26S proteasome[J]. Int J Biochem Cell Biol, 2008, 40:1126-1140
    [1]LIX,LONARD D M,JUNG S Y,et al.The SRC-3/AIB1 coactivator is degraded in a ubiquitin- and ATP-independent manner by the REGgamma proteasome[J].Cell,2006,124(2):381-392.
    [2]Murata S,Kawahara H,Tohma S,et al.Growth Retardation in Mice Lacking the Proteasome Activator PA28gamma[J].The Journal of biological chemistry,1999,274(53):38211-38215.
    [3]Barton LF,Runnels HA,Schell TD,et al.Immune defects in 28-kDa proteasome activator gamma-deficient mice[J].J Immunol,2004,172(6):3948-3954.
    [4]Masson P,Lundgren J,Young P.Drosophila Proteasome regulator REGgamma:transcriptional activation by DNA replication-related factor DREF and evidence for a role in cell cycle progression[J].J Mol Biol,2003,327(5):1001-1012.
    [5]Li X,Amazit L,Long W,et al.Ubiquitin-and ATP-Independent Proteolytic Turnover of p21 by the REGg-Proteasome Pathway[J].Molecular Cell,2007,26(6):831-842.
    [6]GOLDBERG,A L.Protein degradation and protection against misfolded or damaged proteins Nature,2003,6968(426):895-899.
    [7]Spano J P,Bay J O,Blay J Y,et al.Proteasome inhibition:a new approach for the treatment of malignancies[J].Bull Cancer,2005,92(11):E61-666,945-952.
    [8]田甜,王小毅,李凡等.蛋白酶体激活因子REGgamma基因对乳腺癌MDA-MB-231细胞生长的影响[J].中华实验外科杂志,2008,25(10):1265-1267.
    [9]BRITTENDEN J,HEYS S D,ROSS J,et al.Natural killer cells and cancer[J].Cancer,1996,77(7):1226-1243.
    [10]BARTON L F,RUNNELS HA,SCHELL T D,et al.Immune defects in 28-kDa proteasome activator gamma-deficient mice[J].J Immunol,2004,172(6):3948-3954.
    [11]CHEN X,BARTON L F,CHI Y,et al.Ubiquitin-independent degradation of cell-cycle inhibitors by the REGgamma proteasome[J].Mol Cell,2007,26(6): 843-852.
    [12]YI T,BAEK J H,KIM H J,et al.Trichostatin A-mediated upregulation of p21(WAF1) contributes to osteoclast apoptosis[J].Exp Mol Med,2007,39(2):213-221.
    [13]LEE C J,KIM H T,SONG K W,et al.Ovarian expression of p53 and p21apoptosis regulators in gamma-irradiated mice[J].Mol Reprod Dev,2008,75(2):383-391.
    [1]Goldberg AL.Protein degradation and protection against misfolded or damaged proteins[J].Nature,2003,6 9 6 8(426):895-899
    [2]Realini C,Jensen CC,Zhang Z,et al.Characterization of recombinant REGalpha,REGbeta,and REGgamma proteasome activators[J].J Biol Chem,1997,272(41):25483-25492
    [3]Rechsteiner M,Hill CP.Mobilizing the proteolytic machine:cell biological roles of proteasome activators and inhibitors[J].Trends Cell Biol,2005,15(1):27-33
    [4]Khan S,van den Brock M,Schwarz K,et al.Immunoproteasomes largely replace constitutive proteasomes during an antiviral and antibacterial immune response in the liver[J].J Immunol,2001,167(12):6859-6868
    [5]Masson P,Andersson O,Petersen UM et al.Identification and characterization of a Drosophila nuclear proteasome regulator.A homolog of human 11 S REGγ(PA28γ).J Biol Chem,2001,276(2):1383-1390
    [6]Wojcik C,Tanaka K,Paweletz N,et al.Proteasome activator(PA28) subunits alpha,beta and gamma(Ki antigen) in NT2 neuronal precursor cells and Hela S3cells[J].Eur J Cell Biol,1998,77(2):151-160
    [7]Li J,Gao X,Ortega J,et al.Lysine 188 substitutions convert the pattern of proteasome activation by REGgamma to that of REGs alpha and beta[J].EMBO J,2001;20(13):3359-3369
    [8]Ben-Saadon R,Fajerman I,Ziv T,et al.The tumor suppressor protein p16(INK4a)and the human papillomavirus oncoprotein-58 E7 are naturally occurring lysine-less proteins that are degraded by the ubiquitin system.Direct evidence for ubiquitination at the N-terminal residue[J].J Biol Chem,2004,279(40):41414-41421
    [9] Murata S, Kawahara H, Tohma S,et al. Growth retardation in mice lacking the proteasome activator PA28gamma[J]. J Biol Chem,1999,274(53):38211-38215
    
    [10] Barton LF,Runnels HA,Schell TD,et al. Immune defects in 28-kDa proteasome activator gamma-deficient mice[J].J Immunol,2004,172(6):3948-3954
    
    [11] Masson P,Lundgren J,Young P. Drosophila Proteasome regulator REGgamma:transcriptional activation by DNA replication-related factor DREF and evidence for a role in cell cycle progression[J]J Mol Biol,2003;327(5):1001-1012
    
    [12] Li X, Amazit L, Long W, et al. Ubiquitin-and ATP-Independent Proteolytic Turnover of p21 by the REGg-Proteasome Pathway[J]. Molecular Cell,2007, 26(6):831-842
    
    [13] Davis RJ. Signal transduction by the JNK group of MAP kinases[J].Cell, 2000,103(2):239-252
    
    [14] Hagemann C, Patel R, Blank JL. MEKK3 interacts with the PA28gamma regulatory subunit of the proteasome[J].Biochem J,2003;373(Pt1):71-79
    
    [15] Imai Y, Kimura T, Murakami A,et al.The CED-4-homologous protein FLASH is involved in Fas-mediated activation of caspase-8 during apoptosis[J].Nature,1999,398(6730):777-785
    
    [16] Yang X, Khosravi-Far R, Chang HY.et al. Daxx,a novel Fas-binding protein that activates JNK and apoptosis[J].Cell,1997,89(7):1067-1076
    
    [17] Chen LY, Chen JD.Daxx silencing sensitizes cells to multiple apoptotic pathways[J].Mol Cell Biol,2003,23(20):7108-7121
    
    [18] Bai D, Chen H, Huang BR. RanBPM is a novel binding protein for p75NTR[J].Biochem Biophys Res Commun,2003;309(3):552-557
    
    [19] Liu,B.Shuai,K. Induction of apoptosis by protein inhibitor of activated Stat1 through c-Jun NH2-terminal kinase activation[J].J Biol Chem, 2001,276(39):36624-36631
    
    [20] Okamura T, Taniguchi S, Ohkura T,et al.Abnormally high expression of proteasome activator-γ in thyroid neoplasm[J].J Clin Endocrinol Metab,2003,88(3): 1374-1383
    [21] Lipford JR,Deshaies RJ. Diverse roles for ubiquitin-dependent proteolysis in transcriptional activation[J].Nat Cell Biol, 2003,5(10):845-850
    
    [22] Obradovi(?) D, Tirard M, N(?)methy Z,et al.Daxx,FLASH,and FAF-1 modulate mineralocorticoid and glucocorticoid receptor-mediated transcription in hippocampal cells-toward a basis for the opposite actions elicited by two nuclear receptors[J]?Mol Pharmacol, 2004, 65(3):761-769
    
    [23] Zhang Z, Zhang R. Proteasome activator PA28 gamma regulates p53 by enhancing its MDM2-mediated degradation[J]. EMBO J, 2008, 27(6): 852-864
    
    [24] Chen X, Barton LF, Chi Y, et al.Ubiquitin-Independent Degradation of Cell-Cycle Inhibitors by the REGgamma Proteasome[J].Mol Cell,2007;26(6): 843-852
    
    [25] Hershko A, Ciechanover A.The ubiquitin system[J].Annu Rev Biochem,1998, 67:425-479
    
    [26] Wu RC, Qin J, Yi P et al. Selective phosphorylations of the SRC-3/AIB1 coactivator integrate genomic reponses to multiple cellular signaling pathways[J].Mol Cell,2004, 15(6):937-949
    
    [27] Li X, Lonard DM, Jung SY, et al. The SRC-3/AIB1 coactivator is degraded in a ubiquitin- and ATP-independent manner by the REGgamma proteasome[J].Cell,2006,124(2):381-392
    
    [28] Bar-Nahum G, Epshtein V, Ruckenstein AE,et al.A ratchet mechanism of transcription elongation and its control [J] .Cell,2005,120(2): 183-193
    
    [29] Yi P, Wu RC, Sandquist J,.et al. Peptidyl-prolyl isomerase 1 (Pin1) serves as a coactivator of steroid receptor by regulating the activity of phosphorylated steroid receptor coactivator 3 (SRC-3/AIBl)[J]. Mol Cell Biol,2005;25(21): 9687-9699
    
    [30] Torres-Arzayus MI, Font de Mora J, Yuan J,et al. High tumor incidence and activation of the PI3K/AKT pathway in transgenic mice define AIB1 as an oncogene[J].Cancer Cell, 2004,6(3):263-274
    
    [31] Abba MC, Drake JA, Hawkins KA,et al.Transcriptomic changes in human breast cancer progression as determined by serial analysis of gene expression[J]. Breast Cancer Res,2004,6(5):R499-R513
    
    [32] Okamura T, Taniguchi S, Ohkura T,et al. Abnormally high expression of proteasome activator-gamma in thyroid neoplasm[J]. J Clin Endocrinol Metab,2003,88(3):1374-1383
    
    [33] Spano P, Bay JO, Blay JY, et al. Proteasome inhibition:a new approach for the treatment of malignancies[J].Bull Cancer,2005,92(11):E61-6,945-952.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700