mIL-10基因转染修饰骨髓间充质干/祖细胞在H-2单倍型骨髓移植aGVHD模型中的免疫生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种具有多向分化潜能(向成骨细胞、成脂细胞、成软骨细胞及成肌细胞等多种组织分化)的成体干细胞,间充质干细胞(Mesenchymal stem cell,MSC)最初在组织工程中以“种子细胞”的角色参与组织修复和再生而倍受重视。近期研究发现MSC还具有特殊的造血调控及免疫调节作用,并在造血重建、移植免疫和基因治疗等多方面展现出良好的应用前景。在少数的几个Ⅰ期临床试验中已观察到了令人鼓舞的结果,如HSC/MSC共移植能明显促进受体的造血恢复,减少移植相关并发症,尤其是可降低GVHD的发生。但目前MSC联合移植防治GVHD的研究尚处于起步阶段,还有许多问题亟待解决。如MSC移植后在受体内发挥免疫调节效应的机制迄今仍不明确,部分体外研究、动物实验及Ⅰ期临床试验的结论也还存在着不一致,已报道的少数临床资料多不是随机或对照研究,近期还有研究显示MSC共移植并不能证实减少了GVHD的发生和减轻了严重程度,这些都提示MSC对GVHD的防治作用可能有限或需配合其它措施,基于HSC/MSC共移植对部分高GVHD风险(如单倍型或非血缘供体移植)和高植入失败风险(如脐血及非清髓移植)的病例可能是一种极有临床应用前景的移植策略,是否可以通过基因转染修饰的MSC移植来增强其体内免疫调节效应?近年MSC已成为基因治疗中理想的靶细胞之一,可稳定表达多种外源性目的基因,且回输后植入反应弱,因此通过基因转染MSC进行基因治疗理论上是可行的。
     既往的研究已明确,GVHD的中心环节是免疫活性T细胞的激活,而发病的重要因素及介质是细胞因子分泌异常,细胞因子失调通过级联放大效应诱导“细胞因子灾难”,是各种因素加重GVHD的最终共同通路,利用Ⅱ类细胞因子负调控Th1细胞及单核/巨噬细胞功能,诱使Th1反应向Th2方向“漂变”,减少GVHD致病因子(如IL-1,IL-2,IFN-γ,TNF-a,NO等)生成,是控制GVHD而保留GVL效应的有效策略之一。白细胞介素10(IL-10)作为一种理想的抗炎因子,可抑制T淋巴细胞和单核/巨噬细胞等炎症细胞的激活及多种炎症因子的合成,而从起始到效应阶段都可抑制Th1型细胞免疫反应,更提示IL-10在干预GVHD的发生和进程中具有潜在的重要作用。近期研究认为基于IL-10的抗炎特性及IL-10与树突状细胞(DC)、调节性T细胞(Treg)的联系,对于诱导外周免疫耐受及植入存活都是有益的,已有研究者发现IL-10分泌的低水平与GVHD的高发生率有关。由此,我们设想如以IL-10基因转染修饰的骨髓MSC共移植,能否与IL-10协同发挥免疫抑制效应,联合细胞治疗与基因治疗的优势,阻止或减轻GVHD?但由于伦理学和方法学的限制,使我们无法在人体内进行相关的MSC移植免疫学研究。
     基于上述设想,本研究拟解决以下主要问题:1.分离、培养小鼠骨髓间充质干/祖细胞(mMSC/MPC),确保其良好的增殖能力和多向分化潜能,研究其生物学特征,并对相关生物学特性进行初步研究,为其后进行基因转染修饰及应用于动物模型做准备。2.构建并制备载有mIL-10基因的复制缺陷型腺病毒载体,并证实该病毒载体可高效转染mMSC/MPC并获得高效稳定的体外表达,以符合体内实验要求。3.建立适宜的H-2单倍型骨髓移植aGVHD模型,在此基础上分别进行MSC/MPC及mIL-10基因转染修饰MSC/MPC的共移植,观察相应的免疫生物学效应。通过如上研究探讨MSC/MPC移植能否在受体内诱发免疫耐受及其可能的相关机制,观察IL-10基因转染修饰的MSC/MPC能否协同发挥免疫调节活性,增强免疫耐受效应,并对其在移植中的免疫生物学行为进行初步研究,为潜在的GVHD防治新策略提供理论及实验的依据。
     第一部分:小鼠骨髓间充质干/祖细胞体外培养体系的优化及相关生物学研究
     方法:无菌剥离SPF级雌性C57BL╱6小鼠股骨与胫骨,以培养基反复强力冲洗并刮擦髓腔内膜后收集冲洗液,加入碎骨片振荡冲洗,过200目滤网制备为单细胞悬液。分别以3种完全培养基(低糖DMEM完全培养基,低糖DMEM/MCDB201完全培养基,Mesencult完全培养基)重悬,以1×10~6/cm~2的密度接种于25cm~2滤膜培养瓶,转细胞培养箱,37℃,5%C02,100%饱和湿度条件下培养。24小时后全量换液,去除未贴壁细胞,此后每3日换液一次。镜下贴壁细胞约70%-80%汇合时消化,以2.5~5×10~3/cm~2密度接种传代。对不同代数的培养细胞进行如下检测:倒置显微镜下形态学特点观察;不同培养体系小鼠成纤维细胞样集落形成单位(CFU-F)的检测;计数绘制细胞生长曲线及倍增时间;流式细胞仪细胞周期检测;流式细胞仪检测细胞表面标记;体外定向诱导向成骨、成脂肪分化,鉴定多向分化潜能;RT-PCR法检测细胞mIL-10mRNA;双抗体夹心ELISA法检测细胞培养上清中mIL-10。采用SPSS 11.5 FOR WINDOWS统计处理软件分析,检验水准α=0.05。
     结果:收集经骨片冲洗的小鼠骨髓冲出液接种培养,经传代培养3代以上后细胞呈现为均质性较好的短梭形细胞,漩涡或放射状生长;优化选择Mesencult完全培养基为MSC/MPC培养体系;细胞可传代生长10代以上保持生物学特性稳定,选择P3代培养细胞为实验用细胞;对数生长期的群体倍增时间(Td)为31.1±0.6小时;细胞汇合80%-90%时G0/G1期细胞百分率80.3%,G2期细胞12.4%,S期细胞7.3%;P3代细胞表面抗原高表达CD29、CD44、CD105、Sca-1,极低表达CD45,低到中度表达CD31;P3代细胞经体外定向诱导培养,可分化为成骨及脂肪细胞,证实所培养细胞具备多向分化潜能;RT-PCR法检测培养细胞mIL-10mRNA,双抗体夹心ELISA法检测细胞培养上清中mIL-10,均未能证实mMSC/MPC体外表达分泌mIL-10。
     第二部分:mIL-10重组复制缺陷型腺病毒载体的构建制备及转染mMSC/MPC表达
     方法:以pORF5-mIL-10质粒为模板,PCR扩增回收mIL-10 cDNA,经一系列酶切和连接反应,将其定向插入腺病毒载体pSGCMV中,构建pSGCMV-mIL10质粒;此质粒与5型腺病毒质粒pBGHE3通过脂质体Lipofectamine2000共转染HEK293细胞,经胞内同源重组产生重组复制缺陷型腺病毒Ad5-mIL-10;经纯化后的Ad5-mIL-10在HEK293细胞中大量扩增,并通过氯化铯密度梯度离心法纯化,制备病毒液,50%组织培养感染剂量法(TCID50)测定病毒滴度;以Ad5-EGFP腺病毒确定转染mMSC/MPC的最宜感染复数(MOI),Ad5-mIL10腺病毒体外转染mMSC/MPC;RT-PCR法检测Ad5-mIL10转染mMSC/MPC后mIL10的mRNA表达,ELISA法检测Ad5-mIL10转染mMSC/MPC培养上清中mIL-10。
     结果:扩增产物经酶切鉴定、PCR扩增、DNA测序均证实为小鼠白介素10;构建制备的重组腺病毒Ad5-mIL-10经PCR鉴定正确,滴度达2.5×10~(10)pfu/ml;Ad5-mIL-10以最宜MOI值200转染mMSC/MPC时能获得高效稳定的体外表达,符合体内实验要求。
     第三部分:mIL-10基因转染修饰骨髓间充质干/祖细胞在H-2单倍型骨髓移植aGVHD模型中的生物免疫学效应
     方法:以雌性C57BL/6小鼠为供鼠,雄性F1(CB6F1)小鼠为受鼠,建立H-2单倍型骨髓移植aGVHD模型:对受鼠进行直线加速器6mvX射线一次性全身照射,总剂量12Gy,剂量率100cGy/min。制备供鼠1:0,1:1,1:2,1:3四种比例的骨髓单个核细胞(MNC)/脾MNC混合悬液(骨髓MNC取1×10~7/只),每比例为一实验组(n=15)。受鼠于照射后4小时内经尾静脉回输相应混合悬液,移植后进行一般情况观察,定期体重监测、外周血象及嵌合体测定,GVHD临床综合评分,组织病理学半定量评分,以综合评判各组aGVHD效应,最终确定引出理想aGVHD状态的相关参数,建立H-2单倍型骨髓移植aGVHD模型;选择1×10~5/只和5×10~5/只两个剂量梯度作为MSC/MPC移植剂量,在H-2单倍型骨髓移植aGVHD模型中,分别以MSC/MPC及mIL-10基因转染修饰的MSC/MPC进行共移植实验,对相应的4个共移植实验组及aGVHD对照组进行移植后一般情况观察,定期体重监测,外周血象及嵌合体测定,GVHD临床综合评分,组织病理学半定量评分,对各组GVHD状况进行综合评价,并选择移植后14天、28天、35天、60天及濒死前等不同的时间点,采集制备各组实验鼠血清,以ELISA法进行mIL-10、mIL-4、mINF-γ及mTNF-a定量检测。采用SPSS 11.5 FOR WINDOWS统计软件分析数据,检验水准α=0.05。
     结果:雄性F1(CB6F1)小鼠为受鼠,经直线加速器6mvX射线一次性全身照射(总剂量12Gy,剂量率100cGy/min),接受雌性C57BL/6供鼠1×10~7骨髓MNC/3×10~7脾MNC(每只)联合输注时,可在相对集中的时间内(+24d~+28d)稳定地引出典型aGVHD,临床及病理程度较一致,死亡时间相对集中(+27d~+33d),以此为参数建立H-2单倍型骨髓移植aGVHD模型;体内共移植实验结果显示:以1×10~5/只MSC/MPC共移植时可降低aGVHD的发生及严重程度(P<0.05),提高细胞剂量(5×10~5/只)并不能增强实验效应(P>0.05);同细胞剂量的mIL-10基因转染修饰MSC/MPC共移植能更为显著地减低aGVHD的发生及严重程度(P<0.01),但并不能降低甚至可能会加重cGVHD的发生及严重程度,提高细胞剂量其效应无显著差别(P>0.05)。细胞因子检测显示:MSC/MPC共移植在+14d明显上调受鼠体内IL-4水平(P<0.01),对IL-10影响不显著(P>0.05),同时明显减低INF-γ和TNF-a水平(P均<0.05);mIL-10基因转染修饰的MSC/MPC共移植较MSC/MPC更高地上调了受鼠体内IL-10水平(P<0.01),同时协同上调IL-4水平(P<0.05),更显著地减少了INF-γ生成(P<0.01),但IL-10水平的上升可能也增加了受鼠发生及加重cGVHD的风险。
     结论:1.成功分离、培养了正常C57BL/6小鼠的骨髓间充质干/祖细胞,生物学特性稳定,具有良好的增殖能力和向成骨、脂肪细胞的分化潜能,可用于进行基因转染修饰及应用于动物模型。2.成功构建了重组AD5-mIL-10复制缺陷型腺病毒载体系统,并证实对mMSC/MPC具有较高的转染效率并获得高效稳定的体外表达.。3.成功建立了雌性C57BL/6小鼠→F1(CB6F1)雄性小鼠方向的H-2单倍型骨髓移植aGVHD模型。1×10~5/R MSC/MPC共移植可降低aGVHD的发生及严重程度,提高细胞剂量(5×10~5/只)并不能增强效应。不同程度地上调受鼠IL-4水平(但对IL-10影响不显著),同时明显减低INF-γ和TNF-a水平,这可能是MSC/MPC移植减轻aGVHD的机制之一。1×10~5/只mIL-10基因转染修饰MSC/MPC共移植能更显著地减低aGVHD的发生及严重程度,但并不能降低甚至可能会加重cGVHD的发生及严重程度,提高细胞剂量其效应无显著差别;mIL-10基因转染修饰MSC/MPC较未修饰者更高地上调了受鼠IL-10水平,同时协同上调体内IL-4水平,更为显著地减少INF-γ生成,可能是最终显著降低aGVHD发生及严重程度的原因,但IL-10水平上调也增加了受鼠发生及加重cGVHD的风险。
As an adult stem cell with the ability of multiple lineage differentiations(including osteoblasts,adipocytes,chondrocytes,and myoblasts),mesenchymal stem cells have received considerable attention and been a perfect "seed cell" in regenerative medicine.Recent research has showed that mesenchymal stem cells have some special efficacy on hematopoietic reconstitution and immunomodulation,which making them favourable perspective in clinical application.The encouraging results have been observed in limited clinical trials,co-transplantation with MSC and HSC enhanced hematopoietic engraftment,attenuated transplant-related complications,especially the incidence and severity of GVHD.However,the mechanism of immunomodulation has not been completely resolved,some latest studies suggested that the efficacy of MSC on prophylaxis and treatment for severe acute GVHD was limited,even not confirmable.Interleukin-10 is an ideal anti-inflammatory cytokine,inhibits the activation of T lymphocytes,monocytes/macrophages,and the synthesis of various inflammatory cytokines.IL-10 represents a substancial suppressor of the cellular immune response of Th1 type,which implys its potential effects on preventing the occurrence and development of GVHD.Because of its anti-inflammatory properties and its association with dendritic cells and regulatory T cells,IL-10 should have substantial benefit on the induction of immune tolerance and graft survival.Holler's research showed that decreased IL-10 production correlated with a subsequent high incidence of GVHD.We assumed that with the combination of cell therapy and gene therapy,the co-transplantation with marrow-derived mesenchymal stem/progenitor cells modified with mIL-10 gene will prevent or attenuate GVHD more effectively in coordination with IL-10,but it hard to carry out in human because of the limitation of ethics and technology.
     In our research,firstly we purified and cultured murine marrow-derived mesenchymal stem/progenitor cells(MSCs/MPCs) with active proliferation activity and multidifferentiation potential,and studied its biological characteristic and corresponding properties.Then,a mlL-10 recombinant adenoviral vector was constructed Successfully and proved to be high efficient in transfecting mMSC/MPCs.The mMSCs/MPCs modified with mIL-10 gene expressed mIL-10 protein efficiently in vitro.Thirdly,we established an eligible model of murine acute GVHD after H-2 haploidentical bone marrow transplantation.On the basis of the model,MSCs/MPCs and MSCs/MPCs modified with mIL-10 gene were transplanted respectively to observe the immunobiologic effects.
     Section 1:The optimization of culture system ex vivo of mMSC/MPC,the corresponding characterization of mMSC/MPC.
     Methods:Bone marrow cells were collected by flushing the femurs and tibias from female C57BL/6 mice with medium repeatedly and thoroughly,while scraping the endosteum Of the bone,then the collection were vibrated with the bone fragments.The mononuclear cells were made and plated in the 25cm~2 culture flasks,at a concentration of 1×10~6/cm~2,with three different complete medium respectively:DMEM-LG medium supplemented with 15%FBS,DMEM -LG/MCDB201 medium supplemented with 15% FBS,and Mesencult basal medium supplemented with 20%MSC Stimulatory Supplement.Flasks were maintained in incubator with 5%CO2 at 37℃.After 24h,nonadherent cells were eliminated by medium changing,then the medium were changed every 3 days.The cells were trypsinized when tending to 70%-80% confluences,and replated at a concentration of 2.5~5×10~3/ cm~2.The characters of different cell passages,such as morphology,the CFU-F with different medium,cell growth curve,cell cycle,phenotype were demonstrated.The ability of multidifferentiation along adipocytic,osteoblastic pathways were also assayed.The expression of IL-10mRNA in the cells were detected by RT-PCR and IL-10 protein in the culture supernatant by ELISA.The calculations and statistical comparisons were performed using the software SPSS 11.5 and the reported P was 2 sided(a =0.05).
     Results:The cell population consisted of spindle,shaped cells in confluent cultures after three consecutive passaging,and seemed homogeneous by light microscopy.The Mesencult complete medium was the optimal culture system.The biological stabilities were maintained till 10 passages above,and the P3 cells were choosed to be the suitable object for the experiment.Cell-doubling time was 31.1±0.6 hours in log phase.Cell cycle analyses revealed that 80.3%of the P3 cells at G0/G1 phase,12.4%, 7.3%at G2 and S phase respectively,when they tended to 80%-90% confluences.Flow-cytometric analysis showed that the P3 cells were high positive for CD29、CD44、CD105、Sca-1,moderate positive for CD31,and nearly negative for CD45. The cells can be differentiated into osteoblast,adipocyte in vitro.We failed to identify IL-10 mRNA of the cells by RT-PCR and protein of IL-10 in the culture supernatant by ELISA
     Section 2:The construction of mIL-10 recombinant adenoviral vector,the transfection and mIL-10 expression of mMSC/MPCs ex vivo
     Methods:The mIL-10 cDNA was removed and amplificated from pORF5-mIL-10 plasmid through PCR,then inserted into adenoviral vector pSGCMV to construct the recombinant plasmid,pSGCMV-mIL10.The recombinant plasmid were mixed with human serum type v adenoviral plasmid(pBGHE3) and co-transfected into HEK 293 cell line through Lipofectamine 2000.The replication-incompetent adenovirus containing mIL-10 was harvested from the supernatant of HEK 293 cell line.The adenovirus was produced sufficiently in HEK 293 cell line and purificated by CsCl gradient centrifugation.The titer of the recombinant adenovirus was assayed through the method of TCID50.The optimal MOI for mMSC/MPC was identified by the adenovirus Ad5-EGFP.The expression of IL-10mRNA in the mMSC/MPC transfected was detected by RT-PCR and IL-10 protein in the culture supernatant by ELISA.
     Results:The amplification production was verified by restrictive endonucleases analysis,PCR,DNA sequencing.The recombinant adenovirus containing mIL-10 was verified by PCR,and the titer of adenovirus was 2.5×~(10)pfu/ml.the mMSCs/MPCs transfected with mIL-10 recombinant adenoviral vector expressed mIL-10 protein efficiently ex vivo at the MOI of 200.
     Section 3:The establishment of a model of murine acute GVHD after H-2 haploidentical bone marrow transplantation,the immunobiologic effects of mMSCs/MPCs modified with mIL-10 gene in the model when co-transplanted.
     Methods:The female C57BL/6 mice as donor,male CB6F1 mice were used as recipients to establish aGVHD model of murine after H-2 haploidentical BMT.The recipients received 12Gy(100cGy/min) total body irradiation(6mv,X-ray) as the lethal conditioning.Bone marrow MNC(1×10~7/a recipient mouse) and splenic MNC(0,1×10~7,2×107,3~ 10~7/a recipient mouse,respectively) were transplanted by tail vein infusion into irradiated recipients in 4 hours.Four groups were divided(n=15) according to the different MNC mixture.The general state,survival time,loss of weight,WBC counting in peripheral blood,chimerism,clinical signs were observed after BMT regularly.The severity of aGVHD
     was assessed with a clinical GVHD scoring system and a semiquantitative system for histologic examination,and the corresponding parameters were determined for an eligible acute GVHD model.On the basis of the model,MSCs/MPCs and mMSC/MPCs modified with mIL-10 gene were transplanted respectively to observe the immunobiologic effects. Four groups were divided according to the different dose of cells(1×10~5 and 5×10~5/a recipient mouse).The general state,survival time,loss of weight,WBC counting in peripheral blood,chimerism,clinical signs,were observed regularly,and the severity of aGVHD was assessed similarly.The serum of recipient mice was collected on the day 14,28,35 after transplantation and in extremis,then be used to detect cytokines of mIL-10, mIL-4,mINF-γand mTNF-a by ELISA.
     Results:Under the condition of TBI(X-ray,6mv,total dose:12Gy,dose rate:100 cGy/min), typical aGVHD clinical signs were induced stably in limited days(+24d~+28d) when recipient mice were infused with 1×10~7 bone marrow MNCs plus 3×10~7 splenic MNCs from the donor mice.The clinical and histologic degree was relatively coincident,and the incidence of aGVHD in 35 days were 100%,all the recipient mice died within +27d~+33d.Accordingly,the C57BL/6→CB6F1 model of munne aGVHD after H-2 haploidentical BMT was set up successfully.The co-transplant of 1×10~5 MSCs/MPCs seemd to decrease the incidence and severity of aGVHD(P<0.05),while increased cell dose(5×10~5) failed to enhance the effect significantly(P>0.05).The co-transplant of 1×10~5 MSCs/MPCs modified with mIL-10 gene showed the more significant decreasing incidence and severity of aGVHD than MSCs/MPCs(P<0.01).While it failed to decrease,even augment the incidence and severity of cGVHD,similarly,increased cell dose(5×10~5) failed to enhance the effect significantly(P>0.05),The detection of cytokines showed that the co-transplant of MSCs/MPCs up-regulate the level of IL-4 significantly in 14 days after transplant(P<0.05),decrease the level of INF-γand TNF-a significantly(P<0.05),while no significant effect on IL-10(P>0.05).The co-transplant MSCs/MPCs modified with mIL-10 gene showed the significant increase of IL-10(P<0.05),the corresponding increase of IL-4(P<0.05),and more dramatic decrease of INF-γ(P<0.01).
     Conclusions:1.mMSCs/MPCs from C57BL/6 mice have been isolated,cultured and purified ex vivo successfully.With the stable biologic characterization,active proliferation and multiple differentiated abilities,the mMSCs/MPCs could be used in gene-transfection and animal model experiment.2,mlL-10 recombinant replication-incompetent adenoviral vector system was constructed successfully,and mMSCs/MPCs could be gene-transfected with high efficiency by the adenoviral vector.The mMSCs/MPCs transfected with mIL-10 recombinant adenoviral vector expressed mIL-10 protein efficiently and stably ex vivo.3.The C57BL/6→CB6F1 model of murine aGVHD after H-2 haploidentical BMT was established successfully.The co-transplant of 1×10~5 MSCs/MPCs could decrease the incidence and severity of aGVHD,while increased cell dose(5×10~5) failed to enhance the effects significantly.MSCs/MPCs up-regulated the level of IL-4 significantly in 14 days after transplant,decreased the level of INF-γand TNF-a significantly(no significant effect on IL-10),it maybe the one of the mechanisms of MSCs/MPCs alleviating aGVHD.The co-transplant of 1×10~5 MSCs/MPCs modified with mIL-10 gene showed the more significant effects on decreasing incidence and severity of aGVHD than MSCs/MPCs,while it failed to decrease,even augment the incidence and severity of cGVHD.Similarly,increased cell dose(5×10~5) failed to enhance the effects significantly.The significant increase of IL-10,the corresponding increase of IL-4 and more dramatic decrease of INF-γmay accounted for the possible reason,while the upregulation of IL-10 may increase the risk of cGVHD.
引文
1.Koc ON,Gerson SL,Cooper BW,et al.Rapid hematopoietic recovery after co-infusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy.Clin Oncol.2000;18:307- 316.
    2.Lazar-us HM,Koc ON,Devine SM,et al.Cotransplantation of HLA-identical sibling culture-expanded MSC and HSC in hematologic malignancy patients.Bio Blood Marrow Transplant,2005,11:389-398.
    3.Lee ST,Jang JH,Cheong J-W,et al.Treatment of high-risk acute myelogenous leukaemia by myeloablative chemoradiotherapy followed by co-infusion of T cell-depleted haematopoietic stem cells and culture-expanded marrow mesenchymal stem cells from a related donor with one fully mismatched human leucocyte antigen haplotype. BrJHaematol.2002;118: 1128-1131.
    
    4.Frassoni F, Labopin M, Bacigalupo A, et al. Expanded mesenchymal stem cells (MSC), co-infused with HLA-identical hematopoietic stem cell transplants, reduce acute and chronic graft-vs-host disease: a matched pair analysis. Bone Marrow Transplant 2002;29(suppl 2):S2[abstr 75].
    
    5 Koc O, Peters C, Raghavan S, et al. Bone marrow derived mesenchymal stem cells of patients with lysosomal and peroxisomal storage diseases remain host type following allogeneic bone marrow transplantation. Exp Hematol. 1999;27:1675-1681
    
    6.Short B,Brouard N,Driessen R,et al. Prospective isolation of stromal progenitor cells from mouse BM.Cytotherapy,2001;3(5):407-408.
    
    7.Sun SK,Guo ZK,Xiao XR,et al.Isolation of mouse marrow mesenchymal progenitors by a novel and reliable method. Stem Cell, 2003;21:527-535.
    8. Simmond PL,Walfgang W,Frederik W,et al.Comparative characteristic of mesenchymal stem cells from human bone and bone marrow.Exp Hematol.2005,33:1402-1416.
    9.Wang QR,Wolf NS. Dissecting the hematopoietic microenvironment: Clonal isolation and identification of cell types in murine CFU-F colonies by limiting dilution. Exp Hematol. 1990:18(4):355-359.
    
    10.Van Vlasselaer P,Falla N,Snoeck H, et al.Chracterization and purification of osteogenic cells from murine bone marrow by two-color sorting using anti-Sca-1 monoclonal anti,body and wheat germ agglutinin.Blood,1984;84(3):753-763.
    
    11.Kitano Y,Radu A,Shaaban A,et al. Selection,enrichment and culture expansion of murine mesenchymal progenitor cells by retroviral transduction of cycling adherent bone marrow cells. Exp Hematal. 2000,28(12):1460-1469.
    
    12.Tropel P,Noel D.Platet N,et al.Isolation and Chracterization of mesenchymal stem cells from adult mouse bone marrow.Exp Cell Res.2004;295(2):395-406.
    13.Kitano Y,Radu A,Shaaban A,et al.Selection,enrichment and culture expansion of murine mesnechymal progenitor cells by retroviral transduction of cycling adherent bone marrow cells. Exp Hematol,2000;28:1460-1469
    
    14.Anjos-Afonso F,Siapati EK,Bonnet D,et al.In vivo contribution of murine mesenchymal stem cells into multiple cell-types under minimal damage conditions.J Cell Sci.2004;117(pt23):5655-5664.
    
    15.Kemp KC,Hoes J,Donaldson C.Bone marrow-derived mesenchymal stem cells.Leukemia Lymphoma.2005,46(11):1531-1544.
    
    16.Robert JD ,Annemaire BM.Mesenchymal stem cells:Biology and potential clinical uses.ExpHematol.2000,28:875-884.
    
    17.Alexandra P,Jason A,Benjamin L,et al. Adult stem cells from bone marrow(MScs) isolated from different strains of inbred mice vary in surface epitops ,rates of proliferation,and differentiation potential.Blood,2004,103:1662-1668.
    
    18.,Gang EL,Barko B,Camila AF, et al.SSEA-4~+ identifies mesenchymal stem cells from bone marrow compartment. .Blood,2007, 24:1298-1306.
    
    19 Martinez C, Hofmann TJ, Marino R,et al.Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs. Blood,2007,30[Epub ahead of print]
    
    20.Phinney DG,Hill K,Michelson C,et al.Biological activities encoded by the murine mesnechymal stem cell transcriptome provide a basis for their developmental potential and broad therapeutic efficacy. Stem Cell, 2006;24(1):186-198.
    
    21.Javzon EH,Beggs KJ,Flake AW,et al.Mesenchymal stem sells:paradoxes of passaging.Exp Hematol.2004,32(5):414-425.
    
    22.Pittenger MF,Mackay AM,Beck SC,et al. Multilineage potential of adult human mesenchymal stem cells. science,1999,284:143-147.
    
    23.Worster AA,Nixon AJ,Brower-Toland BD,et al.Effect of transforming growth factor betal on chondrogenic differentiation of cultured equine mesenchymal stem cells . Am J Vet Res, 2006,61:1003-1010.
    
    24.Moore KW,De Malefyt R,Coffman RL,et al. Interleukin-10 and interleukin-10 receptor.Annu Rev Immunol,2001,19(1):683-765
    
    25.Cezmi AA,Kurt B.Machanisms of interleukin-10-midiated immune suppression.Immunology,2001,103:131-136.
    
    26.Krampera M, Glennie S, Dyson J, et al. Bone marrow mesenchymal stem cells inhibit the response of na(?)ve and memory antigen-specific T cells to their cognate peptide. Blood. 2003; 101:3 722-3729
    
    27.Meisel R, Zibert A, Laryea M, et al .Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase mediated tryptophan degradation. Blood. 2004; 103:4619-4621.
    
    28.Dominici M,Le Blanc K,Muller I,et al.Minimal criteria for defining multipotent mesenchymal stromal cells. J Cytotherapy.2006,8:315-317
    1.Fiorentino DF,Bond MW,Mosmann TR,et al.Two types of mouse T-helper cell:Th2clones secreate a factor that inhibits cytokine production by Thl clones.J Exp Med.1989,170:2081-2095.
    2.Moore KW,Vieira P,Fiorentino DF,et al.Homology of cytokine synthesis inhibiory factor(IL-10) to the E-B virus gene BCRF1.Science,1990,248:1230-1234.,
    3.Moore KW,Malefyt WR,Coffman RL,et al.Interleukin-10 and the interleukin-10 receptor.Annu Rev Immunol.2001,19:683-675.
    4.Akdis CA,Blaser K.Mechanisms of interleukin-10-midiated immune suppression.J Immunol,2001,103:131-136.
    5.Gerald G.New insights into the molecular mechanisms of interleukin-10-midiated immun0suppression.J Leuk Bio,2006,77:3-15
    6.Schottelius AJ,Mayo MW,Sartor RB,et al.Interleukin-10 signaling blocks inhibitor of kappa-B kinase activity and nuclear factor kappa-B DNA binding.J Biol Chem.1999.274(45):31868-74
    7.Groux H,Bigler M,de VriesJE,et al.Inhibitory and stimulatory effects of IL-10 on human CD8~+ T cells.J Immunol,1998,160(7):3188-3193
    8.Santin AD,Hermonat PL,Rsvaggi A,et al.Interleukin-10 increases Th1 cytokine prodution and cytotoxic potential in human papillomavirus-specific CD8~+ cytotoxic T lymphocytes.J Virol,2000,74(10):4729-4737.
    9.Fiorentino,DF,Zlotnik A,Vieira P,et al.IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells.J Immunol,1991,146:3444-3451
    10.Joyce DA,Steer JH,Kloda A.et al.Dexamethasone antagonizes IL-4 and IL-10-induced release of IL-1RA by monocytes but augments IL4,ILl0 and TGF-beta-induced suppression of TNF-alpha release.J Interferon Cytokine Res,1996,16:511-517
    11.Banchereau J,Steinman RM.Dendritic cells and the control of immunity.Nature.2006,392:245-252.
    12.Howard M,Muchamuel T,Andrade S,et al.Interleukin 10 protects mice from lethal endoxemia.J Exp Med,1993,177:1205-1208
    13.Arai T,Hiromatsu K,Kobayashi N,et al.IL-10 is involved in the protective effect of dibutyryl cyclic adenosine monophosphate on endotoxin-induced inflammatory liver injury.J Immunol,1995,155:5743-5749
    14.Asadullah K,Sterry W,Volk HD.Interleukin-10 therapy:Review of a new approach.J Pharmacol Rev.2003,55(2):241-269.
    15.Rennick DM,Fort MM.Lessons from genetically engineered animal models:IL-10-deficient(IL-10-/-) mice and intestinal inflammation.Am J PGL Physiol,2000,278:G829-G833.
    16.Holler E,Roncarolo MG,Hintermeier KR,et al.Prognostic significance of increased IL-10 production in patients prior to allogeneic bone marrow transplantation.Bone Marrow Transplant.2000;25(3):237-241.
    17.Korholz D,Kunst D,Hempel L,et al.Decreased interleukin 10 and increased interferon-gamma production in patients with chronic GVHD after allogeneic bone marrow transplantation.Bone Marrow Transplant.2006;29(7):691-695.
    18.Barker KS,Roncarolo MG.Peters C,et al.High spontaneous IL-10 production in unrelated BMT recipients is associated with fewer transplant-related complications and early deaths.Bone Marrow Transplant.1999,23:1123-1129.
    19.顾健人,曹雪涛.基因治疗.北京:科学出版社,2001;1-54
    20.Trapnell B C.Adenoviral Vector for Gene Transfer.Adv.Drug Deliv.1999,12(1):185-199
    20.Berns KI,Giraud C.Adenovirus and adeno-associated virus as vectors for gene therapy.Ann N Y Acad Sci.1995,772:95-104
    21.Bramson JL,Graham FL,Gauldie J.The use of adenoviral vectors for gene therapy and gene transfer in vivo.Curr Opin Biotechnol.1995,6(5):590-595
    22.Lusky M,Christ M,Rittner K,et al.In vitro and in vivo biology of recombinant adenovirus with E1,E2/E2A.or E1/E4 deleted.J Virology.1998,72:2022-2032.
    23.萨姆布鲁克J,弗里奇EF,曼尼阿帝斯T,等.分子克隆实验指南.北京:科学技术出版社,2002.
    24.He TC,Zhou S,Costa da LT,et al.A simplified system for generation recombinant adenoviruses.Proc Natl Acad Sci U SA,1998,95:2509-2514
    1. Koc ON, Gerson SL, Cooper BW, et al. Rapid hematopoietic recovery after co-infusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. Clin Oncol.2000;18:307-316
    
    2. Lazarus HM,Koc ON,Devine SM,et al. Cotransplantation of HLA-identical sibling culture-expanded MSC and HSC in hematologic malignancy patients. Bio Blood Marrow Transplant,2005,11:389-398.
    
    3. Lee ST, Jang JH, Cheong J-W, et al. Treatment of high-risk acute myelogenous leukaemia by myeloablative chemoradiotherapy followed by co-infusion of T cell-depleted haematopoietic stem cells and culture-expanded marrow mesenchymal stem cells from a related donor with one fully mismatched human leucocyte antigen haplotype. BrJHaematol.2002;118:1128-1131.
    
    4. Frassoni F, Labopin M, Bacigalupo A, et al. Expanded mesenchymal stem cells (MSC), co-infused with HLA-identical hematopoietic stem cell transplants, reduce acute and chronic graft-vs-host disease: a matched pair analysis. Bone Marrow Transplant 2002;29(suppl 2):S2[abstr 75].
    
    5.Krampera M, Glennie S, Dyson J, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide.Blood. 2003; 101:3 722-3729
    
    6.Rasmusson I, Ringd(?)n O, Sundberg B, et al .Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation. 2003;76:1208-1213
    
    7. William H, Peranteau M, Andrea T,et al. Murine mesenchymal stem cell fail to suppress acute graft versus host disease. Blood,2005,106:5353-5257
    
    8..Majumdar MK,Thiede MA,Haynesworth SE,et al.Huaman MSCs express hematopoietic cytokines and support long -term hematopoiesis when differentiated toward stromal and osteogenic lineages.Hamatother Stem Cell Res.2000,9(6):841-848.
    9.Peled A,Kollet O,Ponomaryov T,et al.Tke cytokine SDF-1 activates the intergrins LFA-1,V LA-4,and VLA-5 on immature human CD34~+ cells;role in transendothelial/stromal migration and engraftment of NOD/SCID mice.Blood, 1995(11);3289-3296.
    
    10.Comapagnoli C, Robert IA,Kumar S, et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood,liver,and bone marrow.Blood,2001,98(8);2396-2402.
    
    11.Kadereit S,Deeds LS,Haynesworth SE,et al.Expansion of LTC-ICs and maintenance of p21 and BCL-2 expression in cord blood CD34~+/CD38~- early progenitors cultured over human MSCs as a feeder layer.Stem Cells,2002,22 (6) :573-582.
    
    12. int'Anker P, Noort W, Kruisselbrink A, et al. Nonexpanded primary lung and bone marrow-derived mesenchymal cells promote the engraftment of umbilical cord blood-derived CD34~- cells in NOD/SCID mice. Exp Hematol. 2003;31:881-889.
    
    13. Maitra B, Szekely E, Gjini K, et al. Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transplant. 2004;33: 597-604.
    
    14. Di Nicola M, Carlostella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002; 99:3838-3 843.
    
    15. Tse WT, Pendleton JD, Beyer WM, et al. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation. 2003;75:389-397.
    
    16. Le Blanc K, Tammik C, Sundberg B, et al.Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility system. Scand J Immunol. 2003; 57:11-20.
    
    17.Gureitch O,Prigozhina TB, Kidd A,et al. Allogeneic mesenchymal stem cells can mitigate early,ongoning,and severe GVHD in mice .Transplantation, 1999,68:1362
    18. Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and pro-long skin graft survival in vivo. Exp Hematol. 2002;30:42-48
    
    19. Frassoni F, Labopin M, Bacigalupo A, et al. Expanded mesenchymal stem cells (MSC), co-infused with HLA-identical hematopoietic stem cell transplants, reduce acute and chronic graft-vs-host disease: a matched pair analysis. Bone Marrow Transplant 2002;29(suppl 2):S2[abstr 75].
    
    20. Lee ST, Jang JH,Cheong J-W, et al. Treatment of high-risk acute myelogenous leukaemia by myeloablative chemoradiotherapy followed by co-infusion of T cell-depleted haematopoietic stem cells and culture-expanded marrow mesenchymal stem cells from a related donor with one fully mismatched human leucocyte antigen haplotype. BrJHaematol.2002;118: 1128-113 1.
    
    21. Le Blanc K, Rasmusson I, Sundberg B, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells.Lancet. 2004;363:1439-1441.
    
    22. Molineux T,Hill GR,Pan L,et al.IL-11 separates GVL effects from GVHD after bone marrow transplantation.J Clin Invest 1999;104:317-335.
    
    23.Panoskaltsis MA,Price A,Hermanson JR,et al.In vivo imaging of graft-versus-host disease in mice.Blood,2004;103:3590-3598.
    
    24. Le Blanc K, Tammik C, Sundberg B, et al. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility system. ScandJImmunol. 2003; 57:11-20.
    
    25. Maitra B, Szekely E, Gjini K, et al. Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transplant. 2004;33: 597-604.
    
    26.Feinberg MB,Silverstri GTs cells and immmune tolerance:a regulartory renaissance?Nat Immunol.2002,3(3):215-217.
    
    27.Taylor PA,Lees CJ,Blazar BR,et al.The infusion of ex vivo activated and expanded CD4~+CD25~+ immune regulatory cells inhibit GVHD lethality.Blood,2002;99:3493-3499.
    28.Holler E,Roncarolo MG,Hintermeier KR,et al.Prognostic significance of increased IL-10 production in patients prior to allogeneic bone marrow transplantation. Bone Marrow Transplant. 2000;25(3): 237-241.
    
    29.Korholz D,Kunst D,Hempel L,et al.Decreased interleukin 10 and increased interferon-gamma production in patients with chronic GVHD after allogeneic bone marrow transplantation. Bone Marrow Transplant. 2006;29(7):691-695.
    
    30.Bajsh D,Song L,Tuan RS,et al. Adult mesenchymal stem cells: characterization,differentiation ,and application in cell and gene therapy.J Cell Mol Med,2004,3(8):301-316.
    
    31.Tschetter JR,Mozes E,Schearer GM,et al.Progression from acute to chronic disease in a murine parent-into-F1 model of GVHD.J Immunol,2000,165(10):5984-5994.
    
    32.Bryson JS,Jennings CD,Caywood BE,et al.Enhanced GVHD in older recipient mice following allogeneic bone marrow transplantation. Bone Marrow Transplant,1997,19:721-728.
    
    33. Aggarwal E,Mosca JD,Zernetkina V. T cell respones to allogeneic human mesenchymal stem cells: immunogenicity,tolerance,and suppression. J Biomed Sci, 2006;12(1):42-57.
    1.Friedenstein AJ,Petrakova KV,Kurolesova AI,et al.Heterotypic transplants of bone marrow:analysis of precursor cells for osteogenic and hematopoietic tissues.Transplantation.1968;6:230-247.
    2.Friedenstein AJ.Precursor cells of mechanocytes.Int Rev Cytol.1976;47:327-345.
    3.Friedenstein AJ,Chailakhyan RK,Gerasimov UV.Bone marrow osteogenic stem cells: in vitro cultivation and transplantation into diffusion chambers. Cel Tissue Kinet.1987;20:263-272.
    
    4.Owen ME, Friedenstein AJ. Stromal stem cell: marrow-derived osteogenic precursors.SIBA Found Symp. 1988;136:42-60.
    
    5.De Ugarte D, Morizono K, ElbarbaryA, et al. Comparison of multilineage cells from human adipose tissue and bone marrow. Cels Tissues Organs. 2003;174:101-109.
    6.Campagnoli C, Roberts IA, Kumar S, et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood.2001;98:2396-2402.
    
    7.Noort WA, Kruysselbrink AB, in't Anker PS, et al. Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34~ cells in NOD/SCID mice.Exp Hematol. 2002;30:870-878.
    
    8.Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. BrJHaematol. 2000;109: 235-242
    
    9.Haynesworth SE, Goshima J, Goldberg VM, et al .Characterization of cells with osteogenic potential from human marrow. Bone. 1992;13:81-88.
    10.Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of human mesenchymal stem cells. Science. 1999;284: 143 -147.
    
    11.Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues.Science. 1997;276:71-74.
    
    12.Bruder SP, Fink DJ, Caplan AI. Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem. 1994;56:283-294.
    13.Bruder SP, Kraus KH, Goldberg VM, et al .The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am. 1998;80:985-996.
    
    14.Bruder SP, Kurth AA, Shea M, et al .Bone regeneration by implantation of purified,culture-expanded human mesenchymal stem cells. J Orthop Res. 1998; 16:155-162
    15.Grande DA, Southerland SS, Manji R, et al .Repair of articular cartilage defects using mesenchymal stem cells. Tissue Eng. 1995; 1:345-353.
    
    16.Wakitani S, Goto T, Pineda SJ, et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint SurgAm. 1994;76:579-592.
    
    17.Young RG, Butler DL, Weber W, et al .Mesenchymal stem cell-based repair of rabbit Achilles tendon. Trans Orthop Res Soc. 1997;22:249-254.
    
    18.De Ban C, Dell'Accio F, Vandenabeele F, et al . Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J Cell Biol.2003; 160:909-918.
    
    19.Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest. 1999; 103 :697-705.
    
    20.WangJS, Shum-Tim D, GalipeauJ, et al .Marrow stromal cells for cellular cardiomyoplasty: feasibility and clinical advantages. J Thorac Cardiovasc Surg.2000; 120:999-1006.
    
    21.WangJS, Shum-Tim D, Chedrawy E, et al .The coronary delivery of marrow stromal cells for myocardial regeneration: pathophysiologic and therapeutic implications. J Thorac Cardiovasc Surg 2001;122:699-705.
    
    22.Toma C, Pittenger MF, Cahill KS, et al .Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002;105 :93-98
    
    23. Di Nicola M, Carlostella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002; 99:3838-3 843.
    
    24. Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and pro-long skin graft survival in vivo. Exp Hematol.2002;30:42-48.
    
    25.Le Blanc K, Tammik C, Sundberg B, et al .Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility system. ScandJImmunol. 2003; 57:11-20
    26.Tse WT, Pendleton JD, Beyer WM, et al .Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation.Transplantation. 2003;75:389-397.
    
    27.Krampera M, Glennie S, Dyson J, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood. 2003; 101:3 722-3729.
    
    28.Maitra B, Szekely E, Gjini K, et al. Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation. Bone Marrow Transplant. 2004;33: 597-604.
    
    29.Le Blanc K, Rasmusson I, Sundberg B, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells.Lancet. 2004;363:1439-1441
    
    30.Deans RJ, Moseley A-M. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol. 2000;28:875-884.
    
    31.Majumdar M, Keane-Moore M, Buyaner D, et al. Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci.2003;10:228-241
    
    32.Conget PA, Minguell JJ. Phenotypical and functional proper-ties of human bone marrow mesenchymal progenitor cells. J Cell Physiol. 1999; 181:67-73
    
    33.Majumdar MK, Thiede MA, MoscaJD, et al.Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSC) and stromal cells. J Cell Physiol. 1998; 176:57-66.
    
    34.De Ugarte D, Alfonso Z, Zuk P, et al. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. ImmunolLett. 2003;89:267-270.
    
    35.Mbalaviele G, Jaiswal N, Meng A, et al .Human mesenchymal stem cells promote human osteoclast differentiation from CD34~ bone marrow hematopoietic progenitors.Endocrinology. 1999;140:3736-3743.
    36.Cheng L, Qasba P, Vanguri P, et al .Human mesenchymal stem cells support megacaryocyte and pro-platelet formation from CD34~ hematopoietic progenitor cells.J Cell Physiol. 2000;184:58-59
    
    37. Majumdar MK, Banks V, Peluso DP, et al .Isolation, characterisation and chondrogenic potential of human bone marrow-derived multi-potential stromal cells. J Cel Physiol. 2000; 185 :98-106.
    
    38. Miyake K, Weisman IL, GreenbergerJS, et al. Evidence for a role of the integrin VLA4 in lympho-hemopoiesis. J Exp Med. 199 1; 173 :599-607.
    
    39. Kierney PC, Dorshkind K. B-lymphocyte precursors and myeloid progenitors survive in diffusion chamber cultures but B-cell differentiation requires close association with stromal cells. Blood. 1987;70:1418-1424
    
    40. Barda-Saad M, Rozenszajn LA, Globerson A, et al .Selective adhesion of immature thymocytes to bone marrow stromal cells: relevance to T-cell lymphopoiesis. Exp Hematol. 1996;24:386-391.
    
    41.Barda-Saad M, Rozenszajn LA, Ashush H, et al .Adhesion molecules involved in the interactions between early T-cells and mesenchymal bone marrow stromal cells. Exp Hematol. 1999;27:834-844.
    
    42.Li Y, Hisha H, Inaba M, et al. Evidence for migration of donor bone marrow stromal cells into recipient thymus after bone marrow transplantation plus bone grafts: a role for stromal cells in positive selection. Exp Hematol. 2000;28:950-960.
    
    43.Le Blanc K, Tammik C, Gotherstrom C, et al .HLA-expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol.2003;31:890-896.
    
    44.G(?)therstr(?)m C, Ringden O, Tammik C, et al .Immunological properties of human fetal mesenchymal stem cells. Am J Obstet Gynecol. 2004; 190:239-245
    
    45. Gotherstrom C, Ringden O, Westgren M, et al .Immunomodulatory effects of human foetal liver-derived mesenchymal stem cells. Bone Marrow Transplant.2003;32:265-272.
    46. Rasmusson I, Ringd(?)n O, Sundberg B, et al .Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation. 2003;76:1208-12 13.
    
    47. Devine SM, Bartholomew AM, Mahmud N, et al. Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol. 2001;29:244-255.
    
    48.Bartholomew A, Patil S, Mackay A, et al. Baboon mesenchymal stem cells can be genetically modified to secrete human erythropoietin in vivo. Hum Gene Ther.2001;12:1527-1591.
    
    49.Devine SM, Cobbs C, Jennings M, et al .Mesenchymal stem cells distribute to a wide range of tissues following systemic infusion into non-human primates. Blood. 2003;101:2999-3 001.
    
    50.Liechty KW, MacKenzie TC, Shaaban AF, et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med. 2000;6:1282-1286.
    
    51. Grinnemo K-H, M(?)nsson A, Dellgren G, et al. Xenoreactivity and engraftment of human mesenchymal stem cells transplanted into infarcted rat myocardium. J Thorac Cardiovasc Surg. 2004; 127:1293-1300.
    
    52. Potian J, Aviv H, Ponzio N, et al .Veto-like activity of mesenchymal stem cells:functional discrimination between cellular responses to allo-antigens and recall antigens.J Immunol. 2003;171:3426-3434.
    
    53. Aggarwal S, Pittenger F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105: 1815-1822
    
    54. Rasmusson I, Ringden O, Sundberg B, et al.Mesenchymal stem cells inhibit lymphocyte activation by mitogens and allogens by different mechanisms. Exp Cel Res.2006;84:3451-3466.
    
    55. Rasmusson I, Ringden O, Sundberg B, et al.Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation. 2003;76:1208-12 13
    
    56. Le Blanc K, Rasmusson I, G(?)therstr(?)m C, et al. Mesenchymal stem cells inhibit the expression of IL-2 receptor (CD25) and CD38 on phytohemagglutinin activated lymphocytes. ScandJ Immunol. 2004;60:307-3 15
    
    57. Djouad F, Plence P, Bony C, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood. 2003; 102:3837-3844
    58.Meisel R, Zibert A, Laryea M, et al .Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase mediated tryptophan degradation. Blood. 2004; 103:4619-4621.
    
    59.Munn DH, Zhou M, Attwood JT, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998; 281:1191-1193
    
    60. Lazarus HM, Haynesworth SE, Gerson SL, et al .Ex vivo expansion and subsequent infusion of human bone marrow derived stromal progenitor cells (mesenchymal progenitor cells): implications for therapeutic use. Bone Marrow Transplant.1995; 16:557-564
    
    61. Ko(?) ON, Gerson SL, Cooper BW, et al. Rapid hematopoietic recovery after co-infusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. Clin Oncol. 2000;18:307-316
    
    62. Airey J, Almeida-Porada G, Colletti E, et al. Human mesenchymal stem cells form Purkinje fibers in fetal sheep heart. Circulation. 2004;109:1401-1407.
    
    63.Horwitz EM, Gordon PL, Koo WK, et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci U S A.2002;99:8932-8937.
    
    64.Fouillard L, Bensidhoum M, Bories D, et al. Engraftment of allogeneic mesenchymal stem cells in the bone marrow of a patient with severe idiopathic aplastic anemia improves stroma. Leukemia. 2003; 17:474-476.
    65. Ko(?) O, Peters C, Raghavan S, et al. Bone marrow derived mesenchymal stem cells of patients with lysosomal and peroxisomal storage diseases remain host type following allogeneic bone marrow transplantation. Exp Hematol. 1999;27:1675-168 1
    
    66. Cilloni D, Carlostella C, Falzetti F, et al. Limited engraftment capacity of bone marrow-derived mesenchymal stem cells following T-cell depleted hematopoietic stem cell transplantation. Blood. 2002;96:3637-3643
    
    67. Almeida-Porada G, Porada C, Tran N, et al . Co-transplantation of human stromal cell progenitors into pre-immune fetal sheep results in an early appearance of human donor cells in circulation and boosts cell levels in bone marrow at a later timepoint after transplantation. Blood. 2000;95:3620-3627.
    
    68.Almeida-Porada G, Flake A, Glimp HA, et al . Co-transplantation of stroma results in enhancement of engraftment and early expression of donor hematopoietic stem cells in utero. Exp Hematol. 1999;27:1569-1575.
    
    69.int'Anker P, Noort W, Kruisselbrink A, et al. Nonexpanded primary lung and bone marrow-derived mesenchymal cells promote the engraftment of umbilical cord blood-derived CD34~ cells in NOD/SCID mice. Exp Hematol. 2003;3 1:881-889.
    
    70.Angeloupoulou M, Novelli E, Grove JE, et al. Cotransplantation of human mesenchymal stem cells enhances human myelopoiesis and megakaryocytopoiesis in NOD/SCID mice. Exp Hematol. 2003;31:413-420.
    
    7I.Ko(?) O, Mitra B, Ballas C, et al.Engraftment and in vivo enrichment of GFP/G156A-MGMT transduced human mesenchymal stem cells in NOD-SCID mice.Mol Ther. 2000;1: 85[abstr].
    
    72.Lazarus HM,Koc ON,Devine SM,et al. Cotransplantation of HLA-identical sibling culture-expanded MSC and HSC in hematologic malignancy patients. Bio Blood Marrow Transplant,2005,11:389-398.
    
    73. Gorin N, Labopin M, Rocha V, et al. Marrow versus peripheral blood for geno-identical allogeneic stem cell transplantation in acute myelocytic leukemia:influence of dose and stem cell source shows better outcome with rich marrow. Blood. 2003 ; 102:3043-305 1.
    
    74.Lee ST, Jang JH, Cheong J-W, et al. Treatment of high-risk acute myelogenous leukaemia by myeloablative chemoradiotherapy followed by co-infusion of T cell-depleted haematopoietic stem cells and culture-expanded marrow mesenchymal stem cells from a related donor with one fully mismatched human leucocyte antigen haplotype. BrJHaematol.2002;118: 1128-113 1.
    
    75.Frassoni F, Labopin M, Bacigalupo A, et al. Expanded mesenchymal stem cells (MSC), co-infused with HLA-identical hematopoietic stem cell transplants, reduce acute and chronic graft-vs-host disease: a matched pair analysis. Bone Marrow Transplant 2002;29(suppl 2):S2[abstr 75].
    
    76.Sullivan KM, Witherspoon RP, Storb R, et al . Prednisone and azathioprine compared with prednisone and placebo for treatment of chronic graft-v-host disease:prognostic influence of prolonged thrombocytopenia after allogeneic marrow transplantation. Blood. 1988;72:546-554.
    
    77. Le Blanc K, Rasmusson I, Sundberg B, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells.Lancet. 2004;363:1439-1441
    
    78. Studeny M, Marini FC, Champlin RE, et al . Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta-delivery into tumors. Cancer Res.2002;62:3603 -3608.
    
    79.Gang EL,Barko B,Camila AF, et al.SSEA-4~+ identifies mesenchymal stem cells from bone marrow compartment. .Blood,2007,24:1298-1306.
    
    80. Martinez C, Hofmann TJ, Marino R,et al.Human bone marrow mesenchymal stromal cells express the neural ganglioside GD2: a novel surface marker for the identification of MSCs. Blood,2007 ,30[Epub ahead of print]
    
    81.Dominici M,Le Blanc K,Muller I,et al.Minimal criteria for defining multipotent mesenchymal stromal cells. J Cytotherapy.2006,8:315-317.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700