Foxp3+调节性T细胞及相关细胞因子在斑块型和点滴型银屑病中的差异表达及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:Foxp3+调节性T细胞在斑块型和点滴型银屑病皮损中的差异表达
     目的:了解寻常型银屑病皮损中Foxp3+细胞的数量与皮损严重程度及疾病分型、分期间的关系。
     方法:通过免疫组化单染或双染技术对41例寻常型银屑病患者和10例正常对照皮肤中Foxp3+细胞的数量及Foxp3+细胞占CD3+细胞的比例进行检测。采用PSI评分或PASI评分分别对活检部位皮损的严重程度及疾病的严重程度进行评估。
     结果:银屑病皮损中Foxp3+细胞主要位于真皮乳头层和网状层上方,表皮内较少,在皮损周边外观正常皮肤及正常对照皮肤中Foxp3+细胞较少或没有。银屑病皮损中Foxp3+细胞的数量与皮损的严重程度(PSI评分)呈正相关(p<0.0001),斑块型银屑病皮损中Foxp3+细胞的数量高于点滴型,进展期高于稳定期,稳定期高于消退期(p<0.05)。Foxp3+细胞占CD3+细胞的比例在真皮乳头层高于表皮层和真皮网状层(p<0.0001),且从皮损的中央到边界到周边外观正常皮肤逐渐减少。
     结论:Foxp3+细胞在斑块型和点滴型银屑病皮损中的差异表达提示两者可能代表银屑病皮损免疫反应过程中的不同阶段。Foxp3+细胞在真皮乳头层和皮损中央的高表达可能参与了银屑病皮损发生和维持。
     第二部分:Treg与Thl7细胞在斑块型和点滴型银屑病外周血中的差异表达
     目的:了解寻常型银屑病患者外周血Treg与Th17细胞的水平与疾病分型间的关系。
     方法:通过流式细胞学方法检测17例寻常型银屑病患者和12例正常对照外周血Foxp3+CD4+Treg细胞和IL-17+CD4+Th17细胞占CD4+细胞的比例。根据CD25和CD45RA的表达及CD25表达强弱的不同,分析了11例斑块型银屑病和10例正常对照aTreg、rTreg、non-Treg细胞的比例及CD4+CD25+T细胞中CD4+CD25high、CD4+CD25mid、CD4+CD25low细胞的比例。
     结果:寻常型银屑病患者外周血Foxp3+CD4+Treg细胞的水平与疾病严重程度(PASI评分)正相关(p<0.05)。斑块型银屑病患者外周血Foxp3+CD4+Treg细胞的水平高于点滴型(p<0.0001);而IL-17+CD4+Thl7细胞的水平低于点滴型(p<0.0001)。斑块型银屑病患者CD4+CD25highTreg和aTreg细胞的比例显著高于正常人(p<0.001,p<0.0001),差异有统计学意义。斑块型银屑病患者CD4+CD25+T细胞的比例高于正常人(p<0.05);但rTreg、non-Treg及CD4+CD25mid、CD4+CD25low细胞的比例在斑块型银屑病和正常人间无显著差异。
     结论:Treg与Thl7细胞间的失衡在斑块型和点滴型银屑病发病中起重要作用。
     第三部分:Treg细胞对炎症细胞因子的抑制功能在斑块型和点滴型银屑病间的差异
     目的:了解寻常型银屑病患者TGF-β-Foxp3+iTreg细胞对CD4+CD25-T细胞产生炎症细胞因子的抑制功能和血清中炎症细胞因子的含量与疾病分型间的关系。
     方法:将CD4+CD25-T细胞在有或无TGF-p刺激下培养5天,通过流式细胞学方法检测TGF-β刺激后CD4+CD25-T细胞中CD25+Foxp3+细胞的比例,培养上清和血清中炎症细胞因子TNF-α、IL-6、IL-1β、IL-17的含量通过ELISA方法检测。
     结果:斑块型银屑病患者CD4+CD25-T细胞受TGF-β刺激后CD25+Foxp3+细胞的比例显著高于点滴型银屑病和正常对照(p<0.0001),点滴型银屑病高于正常对照(p<0.05),差异有统计学意义。斑块型银屑病患者CD4+CD25-T细胞受TGF-β刺激后产生更多的TNF-α;点滴型银屑病患者则产生更多的IL-6和IL-1β;但正常人CD4+CD25-T细胞受TGF-p刺激后TNF-α、IL-6和IL-1β的产生均降低。点滴型银屑病患者血清中IL-17和IL-6水平高于斑块型,但TNF-α水平低于斑块型。
     结论:斑块型和点滴型银屑病患者TGF-β-Foxp3+iTreg细胞对CD4+CD25-T细胞产生炎症细胞因子的差异调控和血清中炎症细胞细胞因子的差异表达提示两者具有不同的免疫发病机理。
PartⅠFoxp3+ regulatory T cells differentially expressed in the skin lesions of plaque versus guttate psoriasis
     Objective To investigate the number of Foxp3+ cell in the skin lesions of psoriasis vulgaris in correlation with the severity of skin lesions and the subtype and staging of disease.
     Methods The number of Foxp3+ cell and the percentage of Foxp3+ cell among CD3+ cell were examined in the skin lesion of 41 patients with psoriasis vulgaris and 10 normal skin specimens as control by immunohistochemical single or double-staining technique. The severity of skin lesions biopsied and disease was evaluated by PSI scoring and PASI scoring, respectively.
     Results Foxp3+ cell in psoriatic lesions was predominantly located in papillary and upper reticular layers of dermis, minimally in epidermis, and it was absent or scant in perilesional normal-appearing skin and normal skin as control. The number of Foxp3+ cell in psoriatic lesions was positively correlated with the severity of skin lesions (PSI scoring) (p<0.0001), and it was higher in plaque psoriasis than in guttate psoriasis, and in progressive stage higher than, and higher in stable stage than in regressive stage(p<0.05). The percentage of Foxp3+ cell among CD3+ cell was higher in papillary dermis than in epidermis and upper reticular layer of dermis(p<0.0001), and it was gradually declined from the center lesion to the border and perilesional normal-appearing skin.
     Conclusion The differential expression of Foxp3+ cell in plaque versus guttate psoriasis implicate their different stage of immunopathogenesis. The highest expression of Foxp3+ cell in papillary dermis and center lesion might participate in the initiation and maintenance of psoriasis vulgaris.
     Part II Treg and Th17 cells differentially expressed in peripheral blood of plaque versus guttate psoriasis
     Objective To investigate the level of Treg cell and Th17 cell in peripheral blood of psoriasis vulgaris in correlation with the subtype of disease.
     Methods The level of Foxp3+CD4+Treg cell and IL-17+CD4+Th17 cell among CD4+ cell in peripheral blood of 17 patients with psoriasis vulgaris and 12 normal controls was measured by flow cytometry. The percentage of aTreg, rTreg, non-Treg cell and the percentage of CD4+CD25high, CD4+CD25mid, CD4+CD251ow cell among CD4+CD25+T cell in 11 plaque psoriasis and normal controls were analyzed according to the expression of CD25 and CD45RA and the difference in strength of CD25 expression.
     Results The level of Foxp3+CD4+Treg cell in peripheral blood of psoriasis vulgaris was positively correlated with the severity of disease (PASI scoring) (p<0.05). The level of Foxp3+CD4+Treg cell in peripheral blood of plaque psoriasis was higher than in guttate psoriasis(p<0.0001); whereas, the level of IL-17+CD4+ Th17 cell was lower than in guttate psoriasis(p<0.0001). The percentage of CD4+CD25highTreg and aTreg in plaque psoriasis was obvious higher than normal controls(p<0.001, p<0.0001). The difference was statistically significant. The percentage of CD4+CD25+ cell in plaque psoriasis was higher than in normal controls(p<0.05); however, no significant difference in the percentage of rTreg, non-Treg cell and CD4+CD25mid, CD4+CD251ow cell was found between plaque psoriasis and normal controls.
     Conclusion The imbalance between of Treg and Thl7 cells play an important role in the pathogenesis of plaque versus guttate psoriasis.
     PartⅢThe difference in inhibitory function of Treg cell to inflammatory cytokines between plaque and guttate psoriasis
     Objective To investigate the inhibitory function of TGF-(3-Foxp3+iTreg cell in psoriasis vulgaris to inflammatory cytokines produced by CD4+CD25-T cells and the content of inflammatory cytokines in serum in correlation with the subtype of disease.
     Methods CD4+CD25-T cells with or without TGF-βstimulation were cultured for 5 days. The percentage of CD25+Foxp3+ cell in CD4+CD25-T cell stimulated with TGF-βwas detected by flow cytometry. The content of cytokines such as TNF-α, IL-6, IL-1β, IL-17 and IFN-y in serum and supernatants were determined by ELISA.
     Results The percentage of CD25+Foxp3+ cell among CD4+CD25-T cell stimulated with TGF-βin plaque psoriasis was significant higher than in guttate psoriasis and normal controls(p<0.0001), and in guttate psoriasis was higher than in normal controls(p<0.05). The difference was statistically significant. CD4+CD25-T cells in plaque psoriasis produced more TNF-a after stimulated with TGF-β; CD4+CD25-T cells in guttate psoriasis produced more IL-6 and IL-1β; however, the level of TNF-a, IL-6 and IL-1(3 produced by CD4+CD25-T cells in normal controls was reduced after stimulated with TGF-β. The level of IL-17 and IL-6 in serum of guttate psoriasis was higher than in plaque psoriasis; however, the level of TNF-a was lower than in plaque psoriasis.
     Conclusion The differential expression of inflammatory cytokines in serum and regulation of TGF-β-Foxp3+iTreg cells to inflammatory cytokines produced by CD4+CD25-T cells in plaque versus guttate psoriasis implicate their different immunopathogenesis.
引文
[1]Vestergaard C, Deleuran M, Gesser B, et al. Expression of the T-helper 2-specific chemokine receptor CCR4 on CCR10-positive lymphocytes in atopic dermatitis skin but not in psoriasis skin. Br J Dermatol,2003,149(3):457-63.
    [2]Bowcock AM, Krueger JG. Getting under the skin:the immunogenetics of psoriasis. Nat Rev Immunol,2005,5(9):699-711.
    [3]Bhalerao J, Bowcock AM. The genetics of psoriasis:a complex disorder of the skin and immune system. Hum Mol Genet,1998,7(10):1537-45.
    [4]Bowcock AM, Cookson WO. The genetics of psoriasis, psoriatic arthritis and atopic dermatitis. Hum Mol Genet,2004,13 Spec No 1:R43-55.
    [5]Caproni M, Antiga E, Melani L, et al. Serum levels of IL-17 and IL-22 are reduced by etanercept, but not by acitretin, in patients with psoriasis:a randomized-controlled trial. J Clin Immunol,2009,29(2):210-4.
    [6]Ferrandiz C, Pujol RM, Garcia-Patos V, et al. Psoriasis of early and late onset: a clinical and epidemiologic study from Spain. J Am Acad Dermatol,2002,46(6):867-73.
    [7]Henseler T, Christophers E. Psoriasis of early and late onset: characterization of two types of psoriasis vulgaris. J Am Acad Dermatol,1985,13(3):450-6.
    [8]Griffiths CE, Barker JN. Pathogenesis and clinical features of psoriasis. Lancet, 2007,370(9583):263-71.
    [9]Martin BA, Chalmers RJ, Telfer NR. How great is the risk of further psoriasis following a single episode of acute guttate psoriasis. Arch Dermatol,1996,132(6):717-8.
    [10]Gudjonsson JE, Thorarinsson AM, Sigurgeirsson B, et al. Streptococcal throat infections and exacerbation of chronic plaque psoriasis:a prospective study. Br J Dermatol, 2003,149(3):530-4.
    [11]Conrad C, Boyman O, Tonel G, et al. Alphalbetal integrin is crucial for accumulation of epidermal T cells and the development of psoriasis. Nat Med,2007,13(7):836-42.
    [12]Mueller W, Herrmann B. Cyclosporin A for psoriasis. N Engl J Med,1979,301(10):555.
    [13]Nicolas JF, Chamchick N, Thivolet J, et al. CD4 antibody treatment of severe psoriasis. Lancet,1991,338(8762):321.
    [14]Gottlieb AB, Lebwohl M, Shirin S, et al. Anti-CD4 monoclonal antibody treatment of moderate to severe psoriasis vulgaris:results of a pilot, multicenter, multiple-dose, placebo-controlled study. J Am Acad Dermatol,2000,43(4):595-604.
    [15]Prinz J, Braun-Falco O, Meurer M, et al. Chimaeric CD4 monoclonal antibody in treatment of generalised pustular psoriasis. Lancet,1991,338(8762):320-1.
    [16]Gottlieb AB, Casale TB, Frankel E, et al. CD4+ T-cell-directed antibody responses are maintained in patients with psoriasis receiving alefacept: results of a randomized study. J Am Acad Dermatol,2003,49(5):816-25.
    [17]Mrowietz U, Zhu K, Christophers E. Treatment of severe psoriasis with anti-CD25 monoclonal antibodies. Arch Dermatol,2000,136(5):675-6.
    [18]Gottlieb SL, Gilleaudeau P, Johnson R, et al. Response of psoriasis to a lymphocyte-selective toxin (DAB389IL-2) suggests a primary immune, but not keratinocyte, pathogenic basis. Nat Med,1995,1(5):442-7.
    [19]Eedy DJ, Burrows D, Bridges JM, et al. Clearance of severe psoriasis after allogenic bone marrow transplantation. BMJ,1990,300(6729):908.
    [20]Eedy DJ, Burrows D, Bridges JM, et al. Clearance of severe psoriasis after allogenic bone marrow transplantation. BMJ,1990,300(6729):908.
    [21]Wrone-Smith T, Nickoloff BJ. Dermal injection of immunocytes induces psoriasis. J Clin Invest,1996,98(8):1878-87.
    [22]Ozawa M, Aiba S. Immunopathogenesis of psoriasis. Curr Drug Targets Inflamm Allergy, 2004,3(2):137-44.
    [23]Lowes MA, Kikuchi T, Fuentes-Duculan J, et al. Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J Invest Dermatol,2008,128(5):1207-11.
    [24]Kryczek I, Bruce AT, Gudjonsson JE, et al. Induction of IL-17+ T cell trafficking and development by IFN-gamma: mechanism and pathological relevance in psoriasis. J Immunol, 2008,181 (7):4733-41.
    [25]Zaba LC, Fuentes-Duculan J, Eungdamrong NJ, et al. Psoriasis is characterized by accumulation of immunostimulatory and Th1/Th17 cell-polarizing myeloid dendritic cells. J Invest Dermatol,2009,129(1):79-88.
    [26]Kryczek I, Bruce AT, Gudjonsson JE, et al. Induction of IL-17+ T cell trafficking and development by IFN-gamma: mechanism and pathological relevance in psoriasis. J Immunol, 2008,181(7):4733-41.
    [27]Lee YK, Turner H, Maynard CL, et al. Late developmental plasticity in the T helper 17 lineage. Immunity,2009,30(1):92-107.
    [28]Zheng Y, Danilenko DM, Valdez P, et al. Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature,2007,445(7128):648-51.
    [29]Ma HL, Liang S, Li J, et al. IL-22 is required for Th17 cell-mediated pathology in a mouse model of psoriasis-like skin inflammation. J Clin Invest,2008,118(2):597-607.
    [30]Witowski J, Ksiazek K, Jorres A. Interleukin-17:a mediator of inflammatory responses. Cell Mol Life Sci,2004,61(5):567-79.
    [31]Prens EP, Benne K, van DJ, et al. Interleukin-1 and interleukin-6 in psoriasis. J Invest Dermatol,1990,95(6 Suppl):121S-124S.
    [32]Verhagen J, Akdis M, Traidl-Hoffmann C, et al. Absence of T-regulatory cell expression and function in atopic dermatitis skin. J Allergy Clin Immunol,2006,117(1):176-83.
    [33]Jonuleit H, Schmitt E. The regulatory T cell family:distinct subsets and their interrelations. J Immunol,2003,171(12):6323-7.
    [34]Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science,2003,299(5609):1057-61.
    [35]Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol,2003,4(4):330-6.
    [36]Khattri R, Cox T, Yasayko SA, et al. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol,2003,4(4):337-42.
    [37]Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet, 2001,27(1):20-1.
    [38]de Boer OJ, der Loos CM v, Teeling P, et al. Immunohistochemical analysis of regulatory T cell markers FOXP3 and GITR on CD4+CD25+ T cells in normal skin and inflammatory dermatoses. J Histochem Cytochem,2007,55(9):891-8.
    [39]Bovenschen HJ, van VIM, de Kerkhof PC v, et al. Identification of lesional CD4+ CD25+ Foxp3+ regulatory T cells in Psoriasis. Dermatology,2006,213(2):111-7.
    [40]Chen L, Shen Z, Wang G, et al. Dynamic frequency of CD4+CD25+Foxp3+ Treg cells in psoriasis vulgaris. J Dermatol Sci,2008,51(3):200-3.
    [41]Wei G, Wei L, Zhu J, et al. Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity, 2009,30(1):155-67.
    [42]Yang XO, Nurieva R, Martinez GJ, et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity,2008,29(1):44-56.
    [43]Xu L, Kitani A, Fuss I, et al. Cutting edge:regulatory T cells induce CD4+CD25-Foxp3- T cells or are self-induced to become Thl7 cells in the absence of exogenous TGF-beta. J Immunol,2007,178(11):6725-9.
    [44]Koenen HJ, Smeets RL, Vink PM, et al. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood,2008,112(6):2340-52.
    [45]Miyara M, Yoshioka Y, Kitoh A, et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity, 2009,30(6):899-911.
    [46]Vukmanovic-Stejic M, Zhang Y, Cook JE, et al. Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J Clin Invest, 2006,116(9):2423-33.
    [47]Booth NJ, McQuaid AJ, Sobande T, et al. Different Proliferative Potential and Migratory Characteristics of Human CD4+ Regulatory T Cells That Express either CD45RA or CD45RO.J Immunol,2010.
    [48]Ichiyama K, Yoshida H, Wakabayashi Y, et al. Foxp3 inhibits RORgammat-mediated IL-17A mRNA transcription through direct interaction with RORgammat. J Biol Chem, 2008,283(25):17003-8.
    [49]Zhou L, Lopes JE, Chong MM, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature,2008,453(7192):236-40.
    [50]Fletcher JM, Lonergan R, Costelloe L, et al. CD39+Foxp3+ regulatory T Cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis. J Immunol, 2009,183(11):7602-10.
    [51]Beriou G, Costantino CM, Ashley CW, et al. IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood,2009,113(18):4240-9.
    [52]Voo KS, Wang YH, Santori FR, et al. Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Proc Natl Acad Sci U S A,2009,106(12):4793-8.
    [53]Sugiyama H, Gyulai R, Toichi E, et al. Dysfunctional blood and target tissue CD4+CD25high regulatory T cells in psoriasis:mechanism underlying unrestrained pathogenic effector T cell proliferation. J Immunol,2005,174(1):164-73.
    [54]Marie JC, Letterio JJ, Gavin M, et al. TGF-betal maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J Exp Med,2005,201(7):1061-7.
    [55]Nakamura K, Kitani A, Fuss I, et al. TGF-beta 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J Immunol, 2004,172(2):834-42.
    [56]Zheng SG, Gray JD, Ohtsuka K, et al. Generation ex vivo of TGF-beta-producing regulatory T cells from CD4+CD25- precursors. J Immunol,2002,169(8):4183-9.
    [57]Peng Y, Laouar Y, Li MO, et al. TGF-beta regulates in vivo expansion of Foxp3-expressing CD4+CD25+ regulatory T cells responsible for protection against diabetes. Proc Natl Acad Sci USA,2004,101(13):4572-7.
    [58]Siemasko KF, Gao J, Calder VL, et al. In vitro expanded CD4+CD25+Foxp3+ regulatory T cells maintain a normal phenotype and suppress immune-mediated ocular surface inflammation. Invest Ophthalmol Vis Sci,2008,49(12):5434-40.
    [59]Tran DQ, Ramsey H, Shevach EM. Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood,2007,110(8):2983-90.
    [60]Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol, 1995,155(3):1151-64.
    [61]Baecher-Allan C, Viglietta V, Hafler DA. Human CD4+CD25+ regulatory T cells. Semin Immunol,2004,16(2):89-98.
    [62]Roncador G, Brown PJ, Maestre L, et al. Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the single-cell level. Eur J Immunol,2005,35(6):1681-91.
    [63]Schubert LA, Jeffery E, Zhang Y, et al. Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. J Biol Chem,2001,276(40):37672-9.
    [64]Brunkow ME, Jeffery EW, Hjerrild KA, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet,2001,27(1):68-73.
    [65]Gambineri E, Torgerson TR, Ochs HD. Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr Opin Rheumatol, 2003,15(4):430-5.
    [66]Telfer NR, Chalmers RJ, Whale K, et al. The role of streptococcal infection in the initiation of guttate psoriasis. Arch Dermatol,1992,128(1):39-42.
    [67]Gudjonsson JE, Thorarinsson AM, Sigurgeirsson B, et al. Streptococcal throat infections and exacerbation of chronic plaque psoriasis:a prospective study. Br J Dermatol, 2003,149(3):530-4.
    [68]de Boer OJ, der Meer JJ v, Teeling P, et al. Low numbers of FOXP3 positive regulatory T cells are present in all developmental stages of human atherosclerotic lesions. PLoS One, 2007,2(1):e779.
    [69]Tovar-Castillo LE, Cancino-Diaz JC, Garcia-Vazquez F, et al. Under-expression of VHL and over-expression of HDAC-1, HIF-1 alpha, LL-37, and IAP-2 in affected skin biopsies of patients with psoriasis. Int J Dermatol,2007,46(3):239-46.
    [70]McLaughlin F, La Thangue NB. Histone deacetylase inhibitors in psoriasis therapy. Curr Drug Targets Inflamm Allergy,2004,3(2):213-9.
    [71]Zaba LC, Fuentes-Duculan J, Eungdamrong NJ, et al. Psoriasis is characterized by accumulation of immunostimulatory and Thl/Th17 cell-polarizing myeloid dendritic cells. J Invest Dermatol,2009,129(1):79-88.
    [72]Goodman WA, Levine AD, Massari JV, et al. IL-6 Signaling in Psoriasis Prevents Immune Suppression by Regulatory T Cells. J Immunol,2009.
    [73]Sarigul M, Yazisiz V, Bassorgun CI, et al. The numbers of Foxp3+ Treg cells are positively correlated with higher grade of infiltration at the salivary glands in primary Sjogren's syndrome. Lupus,2009.
    [74]Okui T, Ito H, Honda T, et al. Characterization of CD4+ FOXP3+ T-cell clones established from chronic inflammatory lesions. Oral Microbiol Immunol,2008,23(1):49-54.
    [75]Yu QT, Saruta M, Avanesyan A, et al. Expression and functional characterization of FOXP3+ CD4+ regulatory T cells in ulcerative colitis. Inflamm Bowel Dis,2007,13(2):191-9.
    [76]Murray HW, Spitalny GL, Nathan CF. Activation of mouse peritoneal macrophages in vitro and in vivo by interferon-gamma. J Immunol,1985,134(3):1619-22.
    [77]Wilson NJ, Boniface K, Chan JR, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol,2007,8(9):950-7.
    [78]Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol,2005,6(11):1133-41.
    [79]Weaver CT, Harrington LE, Mangan PR, et al. Th17:an effector CD4 T cell lineage with regulatory T cell ties. Immunity,2006,24(6):677-88.
    [80]Yamagiwa S, Gray JD, Hashimoto S, et al. A role for TGF-beta in the generation and expansion of CD4+CD25+ regulatory T cells from human peripheral blood. J Immunol, 2001,166(12):7282-9.
    [81]Ansel KM, Djuretic I, Tanasa B, et al. Regulation of Th2 differentiation and 114 locus accessibility. Annu Rev Immunol,2006,24:607-56.
    [82]Uyemura K, Yamamura M, Fivenson DF, et al. The cytokine network in lesional and lesion-free psoriatic skin is characterized by a T-helper type 1 cell-mediated response. J Invest Dermatol,1993,101(5):701-5.
    [83]Szabo SK, Hammerberg C, Yoshida Y, et al. Identification and quantitation of interferon-gamma producing T cells in psoriatic lesions:localization to both CD4+ and CD8+ subsets. J Invest Dermatol,1998,111(6):1072-8.
    [84]Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol, 2005,6(11):1123-32.
    [85]Li J, Chen X, Liu Z, et al. Expression of Th17 cytokines in skin lesions of patients with psoriasis. J Huazhong Univ Sci Technolog Med Sci,2007,27(3):330-2.
    [86]Lee E, Trepicchio WL, Oestreicher JL, et al. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J Exp Med,2004,199(1):125-30.
    [87]Johansen C, Usher PA, Kjellerup RB, et al. Characterization of the interleukin-17 isoforms and receptors in lesional psoriatic skin. Br J Dermatol,2009,160(2):319-24.
    [88]Kryczek I, Bruce AT, Gudjonsson JE, et al. Induction of IL-17+ T cell trafficking and development by IFN-gamma: mechanism and pathological relevance in psoriasis. J Immunol, 2008,181(7):4733-41.
    [89]Lowes MA, Kikuchi T, Fuentes-Duculan J, et al. Psoriasis vulgaris lesions contain discrete populations of Thl and Th17 T cells. J Invest Dermatol,2008,128(5):1207-11.
    [90]Lowes MA, Kikuchi T, Fuentes-Duculan J, et al. Psoriasis vulgaris lesions contain discrete populations of Thl and Th17 T cells. J Invest Dermatol,2008,128(5):1207-11.
    [91]Harris TJ, Grosso JF, Yen HR, et al. Cutting edge: An in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. J Immunol, 2007,179(7):4313-7.
    [92]Lee E, Trepicchio WL, Oestreicher JL, et al. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J Exp Med,2004,199(1):125-30.
    [93]Cohn M. What roles do regulatory T cells play in the control of the adaptive immune response. Int Immunol,2008,20(9):1107-18.
    [94]Oldenhove G, de Heusch M, Urbain-Vansanten G, et al. CD4+ CD25+ regulatory T cells control T helper cell type 1 responses to foreign antigens induced by mature dendritic cells in vivo. J Exp Med,2003,198(2):259-66.
    [95]Salomon B, Lenschow DJ, Rhee L, et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity,2000,12(4):431-40.
    [96]Wu AJ, Hua H, Munson SH, et al. Tumor necrosis factor-alpha regulation of CD4+CD25+ T cell levels in NOD mice. Proc Natl Acad Sci U S A,2002,99(19):12287-92.
    [97]Fantini MC, Becker C, Tubbe I, et al. Transforming growth factor beta induced FoxP3+ regulatory T cells suppress Thl mediated experimental colitis. Gut,2006,55(5):671-80.
    [98]Zheng SG, Wang J, Horwitz DA. Cutting edge:Foxp3+CD4+CD25+ regulatory T cells induced by IL-2 and TGF-beta are resistant to Th17 conversion by IL-6. J Immunol, 2008,180(11):7112-6.
    [99]Horwitz DA, Zheng SG, Gray JD. Natural and TGF-beta-induced Foxp3(+)CD4(+) CD25(+) regulatory T cells are not mirror images of each other. Trends Immunol,2008,29(9):429-35.
    [100]Chen X, Baumel M, Mannel DN, et al. Interaction of TNF with TNF receptor type 2 promotes expansion and function of mouse CD4+CD25+ T regulatory cells. J Immunol, 2007,179(1):154-61.
    [101]Chen X, Subleski JJ, Hamano R, et al. Co-expression of TNFR2 and CD25 identifies more of the functional CD4(+)FoxP3(+) regulatory T cells in human peripheral blood. Eur J Immunol,2010.
    [102]O'Sullivan BJ, Thomas HE, Pai S, et al. IL-1 beta breaks tolerance through expansion of CD25+ effector T cells. J Immunol,2006,176(12):7278-87.
    [103]Lohr J, Knoechel B, Caretto D, et al. Balance of Thl and Thl7 effector and peripheral regulatory T cells. Microbes Infect,2009,11(5):589-93.
    [104]Carlen LM, Sanchez F, Bergman AC, et al. Proteome analysis of skin distinguishes acute guttate from chronic plaque psoriasis. J Invest Dermatol,2005,124(1):63-9.
    [105]Basset-Seguin N, Escot C, Moles JP, et al. C-fos and c-jun proto-oncogene expression is decreased in psoriasis:an in situ quantitative analysis. J Invest Dermatol,1991,97(4):672-8.
    [106]Yazici AC, Karabulut AA, Ozen O, et al. Expression of p53 in lesions and unaffected skin of patients with plaque-type and guttate psoriasis:a quantitative comparative study. J Dermatol,2007,34(6):367-74.
    [107]Uhoda I, Pierard GE, Pierard-Franchimont C, et al. Vascularity and fractal dimension of the dermo-epidermal interface in guttate and plaque-type psoriasis. Dermatology, 2005,210(3):189-93.
    [108]王小霞,余春艳,张英起,等.银屑病和白癜风患者外周血CD4+CD25+调节性T细胞的检测.中国麻风皮肤病杂志,2009,25(8):576-578.
    [109]蒋昕,李承新,朱旭,等.进行期寻常型银屑病患者外周血CD4+CD25+调节性T细胞分析.武警医学,2009,20(8):705-706.
    [110]陈凌,沈柱,伍津津,等.不同病程寻常型银屑病患者外周血中CD4+ CD25high调节性T细胞的比较与分析.细胞与分子免疫学杂志,2007,23(10):939-940.
    [111]关宁,沈柱,刘玉峰,等.寻常型银屑病患者治疗前后外周血中单个核细胞Foxp3 mRNA水平的检测分析.中国皮肤性病学杂志,2007,21(5):257-259.
    [112]韩凌,黄琼,方栩,等.银屑病外周血CD4+CD25+Foxp3+调节性T细胞的表达.中国麻风皮肤病杂志,2009,25(10):722-724.
    [113]Hori S, Sakaguchi S. Foxp3:a critical regulator of the development and function of regulatory T cells. Microbes Infect,2004,6(8):745-51.
    [114]Khattri R, Cox T, Yasayko SA, et al. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol,2003,4(4):337-42.
    [115]Allan SE, Crome SQ, Crellin NK, et al. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int Immunol,2007,19(4):345-54.
    [116]Ebert LM, Tan BS, Browning J, et al. The regulatory T cell-associated transcription factor FoxP3 is expressed by tumor cells. Cancer Res,2008,68(8):3001-9.
    [117]Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol,2004,22:531-62.
    [118]Shevach EM, DiPaolo RA, Andersson J, et al. The lifestyle of naturally occurring CD4+ CD25+ Foxp3+ regulatory T cells. Immunol Rev,2006,212:60-73.
    [119]Bluestone JA, Abbas AK. Natural versus adaptive regulatory T cells. Nat Rev Immunol, 2003,3(3):253-7.
    [120]Gorelik L, Flavell RA. Transforming growth factor-beta in T-cell biology. Nat Rev Immunol,2002,2(1):46-53.
    [121]Gorelik L, Fields PE, Flavell RA. Cutting edge: TGF-beta inhibits Th type 2 development through inhibition of GATA-3 expression. J Immunol,2000,165(9):4773-7.
    [122]Heath VL, Murphy EE, Crain C, et al. TGF-betal down-regulates Th2 development and results in decreased IL-4-induced STAT6 activation and GATA-3 expression. Eur J Immunol, 2000,30(9):2639-49.
    [123]Veldhoen M, Hocking RJ, Atkins CJ, et al. TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity, 2006,24(2):179-89.
    [124]Sallusto F, Lenig D, Forster R, et al. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature,1999,401(6754):708-12.
    [125]Gray JD, Liu T, Huynh N, et al. Transforming growth factor beta enhances the expression of CD 154 (CD40L) and production of tumor necrosis factor alpha by human T lymphocytes. Immunol Lett,2001,78(2):83-8.
    [126]Goiriz R, Dauden E, Perez-Gala S, et al. Flare and change of psoriasis morphology during the course of treatment with tumour necrosis factor blockers. Clin Exp Dermatol, 2007,32(2):176-9.
    [127]Carpentier I, Coornaert B, Beyaert R. Function and regulation of tumor necrosis factor type 2. Curr Med Chem,2004,11(16):2205-12.
    [128]Aggarwal BB. Signalling pathways of the TNF superfamily:a double-edged sword. Nat Rev Immunol,2003,3(9):745-56.
    [129]Annunziato F, Cosmi L, Liotta F, et al. Phenotype, localization, and mechanism of suppression of CD4(+)CD25(+) human thymocytes. J Exp Med,2002,196(3):379-87.
    [130]Chen X, Baumel M, Mannel DN, et al. Interaction of TNF with TNF receptor type 2 promotes expansion and function of mouse CD4+CD25+ T regulatory cells. J Immunol, 2007,179(1):154-61.
    [131]Cope AP, Liblau RS, Yang XD, et al. Chronic tumor necrosis factor alters T cell responses by attenuating T cell receptor signaling. J Exp Med,1997,185(9):1573-84.
    [132]Cope AP, Londei M, Chu NR, et al. Chronic exposure to tumor necrosis factor (TNF) in vitro impairs the activation of T cells through the T cell receptor/CD3 complex; reversal in vivo by anti-TNF antibodies in patients with rheumatoid arthritis. J Clin Invest, 1994,94(2):749-60.
    [133]Chen X, Baumel M, Mannel DN, et al. Interaction of TNF with TNF receptor type 2 promotes expansion and function of mouse CD4+CD25+ T regulatory cells. J Immunol, 2007,179(1):154-61.
    [134]Ma HL, Napierata L, Stedman N, et al. Tumor necrosis factor alpha blockade exacerbates murine psoriasis-like disease by enhancing Th17 function and decreasing expansion of Treg cells. Arthritis Rheum,2010,62(2):430-40.
    [135]Kary S, Worm M, Audring H, et al. New onset or exacerbation of psoriatic skin lesions in patients with definite rheumatoid arthritis receiving tumour necrosis factor alpha antagonists. Ann Rheum Dis,2006,65(3):405-7.
    [136]de Gannes GC, Ghoreishi M, Pope J, et al. Psoriasis and pustular dermatitis triggered by TNF-{alpha} inhibitors in patients with rheumatologic conditions. Arch Dermatol, 2007,143(2):223-31.
    [137]Borras-Blasco J, Gracia-Perez A, Nunez-Cornejo C, et al. Exacerbation of psoriatic skin lesions in a patient with psoriatic arthritis receiving adalimumab. J Clin Pharm Ther, 2008,33(3):321-5.
    [138]Markatseli TE, Kaltsonoudis ES, Voulgari PV, et al. Induction of psoriatic skin lesions in a patient with rheumatoid arthritis treated with rituximab. Clin Exp Rheumatol, 2009,27(6):996-8.
    [139]Roux CH, Brocq O, Leccia N, et al. New-onset psoriatic palmoplantaris pustulosis following infliximab therapy:a class effect. J Rheumatol,2007,34(2):434-7.
    [140]Tigalonova M, Bjerke JR, Gallati H, et al. Serum levels of interferons and TNF-alpha are not correlated to psoriasis activity and therapy. Acta Derm Venereol Suppl (Stockh), 1994,186:25-7.
    [141]Serum levels of TNF-alpha, IFN-gamma, IL-6, IL-8, IL-12, IL-17, and IL-18 in patients with active psoriasis and correlation with disease severity.2005,2005(5):273-9.
    [142]Chen X, Oppenheim JJ. TNF-alpha: An Activator of CD4+FoxP3+TNFR2+ Regulatory T Cells. Curr Dir Autoimmun,2010,11:119-134.
    [1]Boyman O, Conrad C, Dudli C, et al. Activation of dendritic antigen-presenting cells expressing common heat shock protein receptor CD91 during induction of psoriasis. Br J Dermatol,2005,152(6):1211-8.
    [2]Lowes MA, Chamian F, Abello MV, et al. Increase in TNF-alpha and inducible nitric oxide synthase-expressing dendritic cells in psoriasis and reduction with efalizumab (anti-CD11a). Proc Natl Acad Sci U S A,2005,102(52):19057-62.
    [3]Zaba LC, Fuentes-Duculan J, Eungdamrong NJ, et al. Psoriasis is characterized by accumulation of immunostimulatory and Thl/Th17 cell-polarizing myeloid dendritic cells. J Invest Dermatol,2009,129(1):79-88.
    [4]Stratis A, Pasparakis M, Rupec RA, et al. Pathogenic role for skin macrophages in a mouse model of keratinocyte-induced psoriasis-like skin inflammation. J Clin Invest, 2006,116(8):2094-104.
    [5]Wang H, Peters T, Kess D, et al. Activated macrophages are essential in a murine model for T cell-mediated chronic psoriasiform skin inflammation. J Clin Invest,2006,116(8):2105-14.
    [6]Ashenagar MS, Sugihara K, Maeda A, et al. The presence of tryptase-positive and bikunin-negative mast cells in psoriatic skin lesions. Arch Dermatol Res,2007,298(9):421-6.
    [7]Valdimarsson H, Baker BS, Jonsdottir I, et al. Psoriasis:a T-cell-mediated autoimmune disease induced by streptococcal superantigens. Immunol Today,1995,16(3):145-9.
    [8]Bovenschen HJ, Seyger MM, Van de Kerkhof PC. Plaque psoriasis vs. atopic dermatitis and lichen planus: a comparison for lesional T-cell subsets, epidermal proliferation and differentiation. Br J Dermatol,2005,153(1):72-8.
    [9]Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol,2004,22:745-63.
    [10]Conrad C, Boyman O, Tonel G, et al. Alphalbetal integrin is crucial for accumulation of epidermal T cells and the development of psoriasis. Nat Med,2007,13(7):836-42.
    [11]Teraki Y, Shiohara T. Preferential expression of alphaEbeta7 integrin (CD103) on CD8+ T cells in the psoriatic epidermis:regulation by interleukins 4 and 12 and transforming growth factor-beta. Br J Dermato],2002,147(6):1118-26.
    [12]Fischer M, Harvima IT, Carvalho RF, et al. Mast cell CD30 ligand is upregulated in cutaneous inflammation and mediates degranulation-independent chemokine secretion. J Clin Invest,2006,116(10):2748-56.
    [13]Zaba LC, Cardinale I, Gilleaudeau P, et al. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J Exp Med,2007,204(13):3183-94.
    [14]Wilson NJ, Boniface K, Chan JR, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol,2007,8(9):950-7.
    [15]Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol,2005,6(11):1133-41.
    [16]Uyemura K, Yamamura M, Fivenson DF, et al. The cytokine network in lesional and lesion-free psoriatic skin is characterized by a T-helper type 1 cell-mediated response. J Invest Dermatol,1993,101(5):701-5.
    [17]Szabo SK, Hammerberg C, Yoshida Y, et al. Identification and quantitation of interferon-gamma producing T cells in psoriatic lesions:localization to both CD4+ and CD8+ subsets. J Invest Dermatol,1998,111(6):1072-8.
    [18]Li J, Chen X, Liu Z, et al. Expression of Th17 cytokines in skin lesions of patients with psoriasis. J Huazhong Univ Sci Technolog Med Sci,2007,27(3):330-2.
    [19]Lee E, Trepicchio WL, Oestreicher JL, et al. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J Exp Med,2004,199(1):125-30.
    [20]Johansen C, Usher PA, Kjellerup RB, et al. Characterization of the interleukin-17 isoforms and receptors in lesional psoriatic skin. Br J Dermatol,2009,160(2):319-24.
    [21]Kryczek I, Bruce AT, Gudjonsson JE, et al. Induction of IL-17+ T cell trafficking and development by IFN-gamma: mechanism and pathological relevance in psoriasis. J Immunol, 2008,181(7):4733-41.
    [22]Lowes MA, Kikuchi T, Fuentes-Duculan J, et al. Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J Invest Dermatol,2008,128(5):1207-11.
    [23]Sugiyama H, Gyulai R, Toichi E, et al. Dysfunctional blood and target tissue CD4+CD25high regulatory T cells in psoriasis:mechanism underlying unrestrained pathogenic effector T cell proliferation. J Immunol,2005,174(1):164-73.
    [24]韩凌,黄琼,方栩,等.银屑病外周血CD4+CD25+Foxp3+调节性T细胞的表达.中国麻 风皮肤病杂志,2009,25(10):722-724.
    [25]Zhang L, Yang XQ, Cheng J, et al. Increased Th17 cells are accompanied by FoxP3(+) Treg cell accumulation and correlated with psoriasis disease severity. Clin Immunol,2009.
    [26]关宁,沈柱,刘玉峰,等.寻常型银屑病患者治疗前后外周血中单个核细胞Foxp3 mRNA水平的检测分析.中国皮肤性病学杂志,2007,21(5):257-259.
    [27]陈凌,沈柱,伍津津,等.不同病程寻常型银屑病患者外周血中CD4+ CD25high调节性T细胞的比较与分析.细胞与分子免疫学杂志,2007,23(10):939-940.
    [28]蒋听,李承新,朱旭,等.进行期寻常型银屑病患者外周血CD4+CD25+调节性T细胞分析.武警医学,2009,20(8):705-706.
    [29]Pitzalis C, Cauli A, Pipitone N, et al. Cutaneous lymphocyte antigen-positive T lymphocytes preferentially migrate to the skin but not to the joint in psoriatic arthritis. Arthritis Rheum, 1996,39(1):137-45.
    [30]Pont-Giralt M, Gimenez-Arnau AM, Pujol RM, et al. Circulating CLA(+) T cells from acute and chronic psoriasis patients manifest a different activation state and correlation with disease severity and extension. J Invest Dermatol,2006,126(1):227-8.
    [31]Lebwohl M, Tyring SK, Hamilton TK, et al. A novel targeted T-cell modulator, efalizumab, for plaque psoriasis. N Engl J Med,2003,349(21):2004-13.
    [32]Asadullah K, Docke WD, Sabat RV, et al. The treatment of psoriasis with IL-10:rationale and review of the first clinical trials. Expert Opin Investig Drugs,2000,9(1):95-102.
    [33]Kaneko F, Suzuki M, Takiguchi Y, et al. Immunohistopathologic studies in the development of psoriatic lesion influenced by gamma-interferon and the producing cells. J Dermatol Sci, 1990,1(6):425-34.
    [34]Kristensen M, Chu CQ, Eedy DJ, et al. Localization of tumour necrosis factor-alpha (TNF-alpha) and its receptors in normal and psoriatic skin:epidermal cells express the 55-kD but not the 75-kD TNF receptor. Clin Exp Immunol,1993,94(2):354-62.
    [35]Frucht DM. IL-23:a cytokine that acts on memory T cells. Sci STKE,2002,2002(114):pel.
    [36]Lee E, Trepicchio WL, Oestreicher JL, et al. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J Exp Med,2004,199(1):125-30.
    [37]Piskin G, Tursen U, Sylva-Steenland RM, et al. Clinical improvement in chronic plaque-type psoriasis lesions after narrow-band UVB therapy is accompanied by a decrease in the expression of IFN-gamma inducers - IL-12, IL-18 and IL-23. Exp Dermatol, 2004,13(12):764-72.
    [38]Krueger GG, Langley RG, Leonardi C, et al. A human interleukin-12/23 monoclonal antibody for the treatment of psoriasis. N Engl J Med,2007,356(6):580-92.
    [39]Piskin G, Sylva-Steenland RM, Bos JD, et al. In vitro and in situ expression of IL-23 by keratinocytes in healthy skin and psoriasis lesions:enhanced expression in psoriatic skin. J Immunol,2006,176(3):1908-15.
    [40]Re F, Strominger JL. Toll-like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells. J Biol Chem,2001,276(40):37692-9.
    [41]Begon E, Michel L, Flageul B, et al. Expression, subcellular localization and cytokinic modulation of Toll-like receptors (TLRs) in normal human keratinocytes:TLR2 up-regulation in psoriatic skin. Eur J Dermatol,2007,17(6):497-506.
    [42]Lupusoru CE, Tartau L, Ghiciuc C. [New inflammation modulator interleukins. Therapeutic implications]. Rev Med Chir Soc Med Nat Iasi,2002,106(1):24-9.
    [43]Aggarwal S, Ghilardi N, Xie MH, et al. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem, 2003,278(3):1910-4.
    [44]Harris TJ, Grosso JF, Yen HR, et al. Cutting edge:An in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. J Immunol, 2007,179(7):4313-7.
    [45]Chan JR, Blumenschein W, Murphy E, et al. IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J Exp Med, 2006,203(12):2577-87.
    [46]Zaba LC, Cardinale I, Gilleaudeau P, et al. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Thl7 responses. J Exp Med,2007,204(13):3183-94.
    [47]Xie MH, Aggarwal S, Ho WH, et al. Interleukin (IL)-22, a novel human cytokine that signals through the interferon receptor-related proteins CRF2-4 and IL-22R. J Biol Chem, 2000,275(40):31335-9.
    [48]Satoh-Takayama N, Vosshenrich CA, Lesjean-Pottier S, et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity,2008,29(6):958-70.
    [49]Chung Y, Yang X, Chang SH, et al. Expression and regulation of IL-22 in the IL-17-producing CD4+T lymphocytes. Cell Res,2006,16(11):902-7.
    [50]Wolk K, Kunz S, Witte E, et al. IL-22 increases the innate immunity of tissues. Immunity, 2004,21(2):241-54.
    [51]Wolk K, Witte E, Wallace E, et al. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes:a potential role in psoriasis. Eur J Immunol,2006,36(5):1309-23.
    [52]Boniface K, Guignouard E, Pedretti N, et al. A role for T cell-derived interleukin 22 in psoriatic skin inflammation. Clin Exp Immunol,2007,150(3):407-15.
    [53]Zheng Y, Danilenko DM, Valdez P, et al. Interleukin-22, a T(H)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature,2007,445(7128):648-51.
    [54]Kagami S, Rizzo HL, Lee JJ, et al. Circulating Th17, Th22, and Thl Cells Are Increased in Psoriasis. J Invest Dermatol,2009.
    [55]Nograles KE, Zaba LC, Shemer A, et al. IL-22-producing "T22" T cells account for upregulated IL-22 in atopic dermatitis despite reduced IL-17-producing TH17 T cells. J Allergy Clin Immunol,2009,123(6):1244-52.e2.
    [56]Nograles KE, Zaba LC, Guttman-Yassky E, et al. Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways. Br J Dermatol, 2008,159(5):1092-102.
    [57]Ma HL, Liang S, Li J, et al. IL-22 is required for Thl7 cell-mediated pathology in a mouse model of psoriasis-like skin inflammation. J Clin Invest,2008,118(2):597-607.
    [58]Wolk K, Haugen HS, Xu W, et al. IL-22 and IL-20 are key mediators of the epidermal alterations in psoriasis while IL-17 and IFN-gamma are not. J Mol Med,2009,87(5):523-36.
    [59]Wolk K, Witte E, Warszawska K, et al. The Th17 cytokine IL-22 induces IL-20 production in keratinocytes:a novel immunological cascade with potential relevance in psoriasis. Eur J Immunol,2009,39(12):3570-81.
    [60]Eyerich S, Eyerich K, Pennino D, et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest,2009,119(12):3573-85.
    [61]Duhen T, Geiger R, Jarrossay D, et al. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat Immunol,2009,10(8):857-63.
    [62]Trifari S, Kaplan CD, Tran EH, et al. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat Immunol,2009,10(8):864-71.
    [63]Komiyama Y, Nakae S, Matsuki T, et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol,2006,177(1):566-73.
    [64]Johansen C, Usher PA, Kjellerup RB, et al. Characterization of the interleukin-17 isoforms and receptors in lesional psoriatic skin. Br J Dermatol,2009,160(2):319-24.
    [65]Lowes MA, Kikuchi T, Fuentes-Duculan J, et al. Psoriasis vulgaris lesions contain discrete populations of Thl and Th17 T cells. J Invest Dermatol,2008,128(5):1207-11.
    [66]Fujishima S, Watanabe H, Kawaguchi M, et al. Involvement of IL-17F via the induction of IL-6 in psoriasis. Arch Dermatol Res,2010.
    [67]Fransson J, de la Torre B, Hammar H. Psoriatic fibroblasts secrete lower amounts of IL-6 than healthy fibroblasts before and after stimulation with TNF-alpha. Arch Dermatol Res, 1999,291(10):538-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700