动脉粥样硬化斑块易损性与RANTES的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分IFNy及CD40L诱导钙调神经磷酸酶依赖的VSMCs凋亡及其RANTES变化
     目的:
     观察γ干扰素(interferon-γ, IFNy)和CD40配体(CD40 ligand,CD40L)刺激下,大鼠血管平滑肌细胞(vascular smooth muscle cells, VSMCs)发生钙调神经磷酸酶(calcineurin, CaN)依赖的凋亡及其受激活调节正常T细胞表达和分泌因子(Regulated on Activated Normal T-Cell Expressed and Secreted, RANTES)表达水平的关系。
     方法:
     采用组织贴块法体外原代培养大鼠胸主动脉平滑肌细胞,并随机分为6组。A组:DMEM培养基培养24h;B组和C组:分别在培养基中加入大鼠重组INFy (rINFy, 20ng/ml)和重组CD40L (rCD40L, 100ng/ml)培养24h;D组:在培养基中同时加入rIFNy及rCD40L(剂量同前)培养24h;E组:给予CaN抑制剂FK506(10ng/ml)预培养1h后再按D组条件培养24h;F组:给予RANTES的小干扰RNA(siRNA)转染6h后再按D组条件培养24h。收集细胞用Western Blot检测CaN表达水平;酶化学法检测CaN活性,提取细胞RNA采用RT-PCR检测RANTES的:mRNA表达;ELISA法检测上清中RANTES浓度,流式细胞仪检测细胞表面CD40表达及VSMCs凋亡。
     结果:
     通过CD40-CD40L信号通路,rINFy和rCD40L的联合刺激强烈地诱导了VSMCs内CaN的合成和活力以及RANTES的转录和表达。但在上述炎症因子刺激下,与VSMCs凋亡率呈持续正相关的是RANTES转录和表达水平(P<0.01),而不是CaN活力(P>0.05)。
     结论:
     炎症因子IFNy和CD40L可能通过调节RANTES的表达及分泌,调控了CaN依赖的VSMCs凋亡。
     第二部分兔动脉粥样硬化斑块内VSMCs凋亡与RANTES水平的相关性研究
     目的:
     研究血浆和斑块局部受激活调节正常T细胞表达和分泌因子(Regulated on Activated Normal T Cell Expressed and Secreted, RANTES)表达水平与兔动脉粥样硬化斑块内血管平滑肌细胞(vascular smooth muscle cells, VSMCs)凋亡程度的相关性。方法:
     40只雄性家兔随机分为:(1)空白组(Blank组,10只)和(2)对照组(Control组,10只):均普通饲料喂养16W;(3)稳定斑块组(AS组,10只)和(4)易损斑块组(VAP组,10只):均高脂饮食(含胆固醇1%和猪油5%)喂养16W。Control和VAP组于16W处死前24和48h给予两次药物触发(蝰蛇毒±组织胺),Blank和AS组于16W处死前按上述时间、剂量、给药方法注射生理盐水。测定0W、16W各组血脂和血浆RANTES水平, Real Time-PCR和Western Blot检测主动脉RANTES转录和表达水平,TUNEL染色后计算各组斑块VSMCs凋亡率及其与RANTES水平的相关系数。
     结果:
     高脂喂养的家兔血脂较普通喂养组明显升高(P<0.01)。VAP组RANTES转录翻译水平和凋亡率明显高于AS组(P<0.01)、control组(P<0.0 1)和blank组(P<0.01);AS组明显高于control组(P<0.01)和blank组(P<0.01);但AS组和control组间无显著性差异(P>0.05)。各组的VSMCs凋亡率与RANTES转录翻译水平均成正相关(P<0.05)。
     结论:
     RANTES过表达可能通过加重斑块局部的炎症反应而诱导了斑块内VSMCs凋亡
     第三部分兔动脉粥样硬化斑块易损性与RANTES水平的相关性研究
     目的:
     研究血浆和斑块局部受激活调节正常T细胞表达和分泌因子(Regulated on Activated Normal T Cell Expressed and Secreted, RANTES)水平与家兔动脉粥样硬化斑块易损性的关系。
     方法:
     40只雄性家兔随机分为:(1)空白组(Blank组,10只)和(2)对照组(Control组,10只):均普通饲料喂养16W;(3)稳定斑块组(AS组,10只)和(4)易损斑块组(VAP组,10只):均高脂饮食(含胆固醇1%和猪油5%)喂养16W。Control和VAP组于16W处死前24和48h给予两次药物触发(蝰蛇毒±组织胺),Blank和AS组于16W处死前按上述时间、剂量、给药方法注射生理盐水。测定0W、16W各组血脂和血浆RANTES水平,检测16W各组斑块局部易损指数和校正的斑块面积、核因子-κB(nuclear factor-KB, NF-κB)和RANTES的转录和表达水平,计算易损指数和校正的斑块面积与RANTES转录和表达水平的相关性。
     结果:
     高脂喂养组的血脂较普通喂养组明显升高(P<0.01); Blank和Control组间的RANTES及斑块内NF-κB转录和表达水平无显著性差异(P>0.05);从Blank/Control组到AS、VAP组,RANTES及斑块内NF-κB转录表达水平同步逐渐升高;VAP组易损指数和校正的斑块面积明显高于AS组(P<0.01);血浆和局部的RANTES水平与易损指数和校正的斑块面积正相关(P<0.05)。
     结论:
     血浆和斑块局部的RANTES可能通过NF-κB信号通路诱导炎症反应导致了斑块不稳定。
PART I The role of RANTES as a crucial downstream cytokine in calcineurin-dependent VSMCs apoptosis stimulated by INFy and CD40L
     Objective:
     To evaluate the effects of RANTES (Regulated on Activated Normal T Cell Expressed and Secreted) on calcineurin-dependent vascular smooth muscle cells (VSMCs) apoptosis costimulated by IFN-y and CD40L (CD40 ligand).
     Materials and methods:
     VSMCs of SD rats cultured by tissue-sticking method were divided into six groups randomly. Group A was only incubated in DMEM medium for 24h; Group B and C were cultured with rat recombinant INFy (rINFy) at 20ng/ml and rCD40L at 100ng/ml for 24h, respectively; Group D was costimulated by rINFy (20ng/ml) and rCD40L (100ng/ml) for 24h;Group E was pretreated 1h with the CaN inhibitor FK506 (10ng/ml) before treatment according to group D; Group F was stimulated according to group D after transfected with the small interference RNA(siRNA) of RANTES for 6h. Expression of CD40 on the VSMC membranes in group A and B were investigated. The activity and level of CaN as well as the expression and transcription of RANTES were detected in all groups.Simultaneouly,the apoptosis rate was investigated in every group respectively.
     Results:
     The synthesis and activity of CaN as well as the expression and transcription of RANTES depended strongly on the costimulation of rINFy and rCD40L. A positive relationship was presented persistently between the rate of apoptosis and the synthesis of RANTES (P<0.01) but not CaN activity(P>0.05).
     Conclusion:
     CD40-CD40L interaction enhanced by IFN-y prestimulation induces a CaN-dependent apoptosis signal pathway in VSMCs. RANTES is a potential treating target for vulnerable atherosclerotic plaque due to its crucial downstream regulating role in the CaN-dependent VSMCs apoptosis.
     PART II The correlations between the expression of RANTES and apoptosis of VSMCs in atherosclerotic rabbits
     Objective:
     To study the correlations between the expression of RANTES (Regulated on Activated Normal T Cell Expressed and Secreted) and apoptosis of vascular smooth muscle cells (VSMCs) in atherosclerotic rabbits.
     Materials and methods:
     40 male rabbits were divided into four groups randomly:(1) Blank group (n=10) and control group (n=10):received a standard diet for 16 weeks; (2)AS group (n=10) and VAP group (n=10):received a high-cholesterol diet(1% cholesterol,5% lard in rabbit food) for 16 weeks. Blank and AS groups were triggered by Russel's viper venom (RVV) and histamine at 24 and 48h before execution, control and AS groups were administered with the same dosage of sterile saline injection according to the above delivery time and location. Rabbits were euthanized at 16 weeks, blood-fat and plasma RANTES were measured in 0, 16 weeks. The transcription and expression of RANTES were calculated with Real-time PCR and Wester Blot. VSMCs apoptosis rate in plaques was detected with TUNEL and its correlation coefficients with RANTES were measured.
     Results:
     Blood-fats of high-cholesterol diet groups were high than that of standard diet groups (P<0.01). The levels of RANTES and apoptosis rates of VSMCs in AS and VAP groups increased significantly compared with that of blank and control groups (P<0.01). The distinctions of RANTES and apoptosis rates were presented between VAP and AS group (P<0.01) but not presented between blank and control group (P>0.05). VSMCs apoptosis rates were related positively with RANTES in all groups(P<0.05).
     Conclusion:
     The progression of VAMCs apoptosis may correlate with the local inflammatory reaction which induced by the overexpression of RANTES.
     PARTⅢThe correlations between the levels of RANTES and vulnerability of rabbit atherosclerotic plaques
     Objective:
     To study the correlations between the levels of RANTES (Regulated on Activated Normal T-Cell Expressed and Secreted) and the vulnerability of atherosclerotic plaques.
     Materials and methods:
     40 male rabbits were divided into four groups randomly:(1) Blank group (n=10) and control group (n=10):received a standard diet for 16 weeks; (2) AS group (n=10) and VAP group (n=10):received a high-cholesterol diet (1% cholesterol,5% lard in rabbit food) for 16 weeks. Blank and AS groups were triggered by Russel's viper venom (RVV) and histamine at 24 and 48h before execution, control and AS groups were administered with the same dosage of sterile saline injection according to the above delivery time and location. Rabbits were euthanized at 16 weeks, blood-fats and plasma RANTES were measured in 0, 16 weeks. The vulnerability index and corrected plaque area were evaluated in high-cholesterol diet groups. The local transcription and expression of NF-κB and RANTES were calculated in all groups. The correlation coefficients of the vulnerability index and corrected plaque area with transcription and expression of RANTES were measured in high-cholesterol diet groups.
     Results:
     Blood-fats of high-cholesterol diet groups were high than that of standard diet groups (P<0.01). The distinction of transcriptions and expressions of RANTES and local NF-κB was not presented between blank and control groups (P>0.05). The transcriptions and expressions of RANTES and NF-κB increased gradually from Blank/Control to AS and VAP group. The vulnerability index and corrected plaque area in VAP group were high than that in AS group obviously (P<0.01). Transcription and expressions of RANTES were related positively with the vulnerability index and corrected plaque area in VAP and AS groups(P<0.05).
     Conclusion:
     RANTES levels in plasma and in lesions may promote the vulnerability of atherosclerotic plaques by NF-κB signaling pathway.
引文
1. Martinet, W., D.M. Schrijvers, A.G. Herman, and G.R. De Meyer. z-VAD-fmk-induced non-apoptotic cell death of macrophages:possibilities and limitations for atherosclerotic plaque stabilization. Autophagy 2006;2:312-4.
    2. Martinet, W., S. Verheye, and G.R. De Meyer. Selective depletion of macrophages in atherosclerotic plaques via macrophage-specific initiation of cell death. Trends Cardiovasc Med 2007;17:69-75.
    3. Schrijvers, D.M., G.R. De Meyer, A.G. Herman, and W. Martinet. Phagocytosis in atherosclerosis:Molecular mechanisms and implications for plaque progression and stability. Cardiovasc Res 2007;73:470-80.
    4. Ji Q.W., Guo M., Zheng J.S., Mao X.B., Peng Y.D., Li S.N., Liang Z.S., Dai Z.Y., Mao Y.& Zeng Q.T. Downregulation of T helper cell type 3 in patients with acute coronary syndrome. Arch Med Res 2009;40:285-293.
    5. Chakrabarti, S., P. Blair, and J.E. Freedman. CD40-40L signaling in vascular inflammation. J Biol Chem 2007;282:18307-17.
    6. Lutgens, E., D. Lievens, L. Beckers, M. Donners, and M. Daemen. CD40 and its ligand in atherosclerosis. Trends Cardiovasc Med 2007;17:118-23.
    7. Robertson, A.K., and G.K. Hansson. T cells in atherogenesis:for better or for worse? Arterioscler Thromb Vasc Biol 2006;26:2421-32.
    8. Schonbeck, U., and P. Libby. CD40 signaling and plaque instability. Circ Res 2001;89:1092-103.
    9. Berthier A, Lemaire-Ewing S, Prunet C, Montange T, Vejux A, Pais de, Barros JP et al. 7-Ketocholesterol-induced apoptosis:involvement of several pro-apoptotic but also anti-apoptotic calcium-dependent transduction pathways. FEBS J2005;272:3093-104.
    10. Chandra A, Angle N. Vascular endothelial growth factor stimulates a novel calcium-signaling pathway in vascular smooth muscle cells. Surgery 2005;138:780-7.
    11. David KC, Scott RH, Nixon GF. Advanced glycation endproducts induce a proliferative response in vascular smooth muscle cells via altered calcium signaling. Biochem Pharmacol 2008; 76:1110-20.
    12. Donners MM, Bot I, De Windt LJ, van Berkel TJ, Daemen MJ, Biessen EA Biessen,, et al. Low-dose FK506 blocks collar-induced atherosclerotic plaque development and stabilizes plaques in ApoE-/-mice. Am J Transplant 2005;5:1204-15.
    13. von Hundelshausen P., Petersen F.& Brandt E.Platelet-derived chemokines in vascular biology. Thromb Haemost 2007;97:704-713.
    14. Braunersreuther, V, S. Steffens, C. Arnaud, G. Pelli, F. Burger, A. Proudfoot, et al. A novel RANTES antagonist prevents progression of established atherosclerotic lesions in mice. Arterioscler Thromb Vasc Biol 2008;28:1090-6.
    15. Veillard, N.R., B. Kwak, G. Pelli, F. Mulhaupt, R.W. James, A.E. Proudfoot, et al. Antagonism of RANTES receptors reduces atherosclerotic plaque formation in mice. Circ Res 2004;94:253-61.
    16. Kobusiak-Prokopowicz, M.,B. Jolda-Mydlowska, G. Mazur, and W. Kuliczkowski. Serum level of beta-chemokine RANTES in patients with coronary artery disease. Pol
    Arch Med Wewn 2003; 110:1289-97.
    17. Murooka, T.T., M.M. Wong, R. Rahbar, B. Majchrzak-Kita, A.E. Proudfoot, and E.N. Fish. CCL5-CCR5-mediated apoptosis in T cells:Requirement for glycosaminoglycan binding and CCL5 aggregation. JBiol Chem 2006;281:25184-94.
    18. Cheng C, Noordeloos AM, Jeney V, Soares MP, Moll F, Pasterkamp G, Serruys PW, Duckers HJ. Heme oxygenase 1 determines atherosclerotic lesion progression into a vulnerable plaque. Circulation.2009; 119:3017-3027.
    19. Stoneman VE, Bennett MR. Role of apoptosis in atherosclerosis and its therapeutic implications. Clin Sci (Lond).2004;107:343-354.
    20. Bennett MR. Apoptosis of vascular smooth muscle cells in vascular remodelling and atherosclerotic plaque rupture. Cardiovasc Res.1999;41:361-368.
    21. Bauriedel G, Hutter R, Welsch U, Bach R, Sievert H, Luderitz B. Role of smooth muscle cell death in advanced coronary primary lesions:implications for plaque instability. Cardiovasc Res.1999;41:480-488.
    22. Kockx MM, Herman AG. Apoptosis in atherosclerosis:beneficial or detrimental? Cardiovasc Res.2000;45:736-746.
    23. Geng YJ, Libby P. Progression of atheroma:a struggle between death and procreation. Arterioscler Thromb:Vasc Biol.2002;22:1370-1380.
    24. Krohn R, Raffetseder U, Bot I, Zernecke A, Shagdarsuren E, Liehn EA, van Santbrink PJ, Nelson PJ, Biessen EA, Mertens PR, Weber C. Y-box binding protein-1 controls CC chemokine ligand-5 (CCL5) expression in smooth muscle cells and contributes to neointima formation in atherosclerosis-prone mice. Circulation.2007; 116:1812-1820.
    25. Kraaijeveld AO, de Jager SC, de Jager WJ, Prakken BJ, McColl SR, Haspels I, Putter H, van Berkel TJ, Nagelkerken L, Jukema JW, Biessen EA. CC chemokine ligand-5 (CCL5/RANTES) and CC chemokine ligand-18 (CCL18/PARC) are specific markers of refractory unstable angina pectoris and are transiently raised during severe ischemic symptoms. Circulation.2007;116:1931-1941.
    26. de Winther MP, Kanters E, Kraal G, Hofker MH. Nuclear factor kappaB signaling in atherogenesis. Arterioscler Thromb Vasc Biol.2005;25:904-914
    27. Genin P, Algarte M, Roof P, Lin R, Hiscott J. Regulation of RANTES chemokine gene expression requires cooperativity between NF-kappa B and IFN-regulatory factor transcription factors. J Immunol.2000;164:5352-5361.
    28. Abela GS, Picon PD, Friedl SE, Gebara OC, Miyamoto A, Federman M, Tofler GH, Muller JE. Triggering of plaque disruption and arterial thrombosis in an atherosclerotic rabbit model. Circulation.1995;91:776-784.
    29. Shiomi M, Ito T, Hirouchi Y, Enomoto M. Fibromuscular cap composition is important for the stability of established atherosclerotic plaques in mature WHHL rabbits treated with statins. Atherosclerosis.2001; 157:75-84.
    30. Zhou M, Xu H, Pan L, Wen J, Liao W, Chen K. Rosiglitazone promotes atherosclerotic plaque stability in fat-fed ApoE-knockout mice. Eur J Pharmacol.2008;590:297-302.
    31. Yao R, Cheng X, Liao YH, Chen Y, Xie JJ, Yu X, Ding YJ, Tang TT. Molecular mechanisms of felodipine suppressing atherosclerosis in high-cholesterol-diet apolipoprotein E-knockout mice. J Cardiovasc Pharmacol.2008;51:188-195.
    32. Shimizu T, Nakai K, Morimoto Y, Ishihara M, Oishi H, Kikuchi M, Arai H. Simple rabbit model of vulnerable atherosclerotic plaque. Neurol Med Chir (Tokyo).2009; 49:327-332; discussion 332.
    33. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med.2005;352:1685-1695.
    1. Martinet, W., D.M. Schrijvers, A.G. Herman, and G.R. De Meyer. z-VAD-fmk- induced non-apoptotic cell death of macrophages:possibilities and limitations for atherosclerotic plaque stabilization. Autophagy 2006;2:312-4.
    2. Martinet, W., S. Verheye, and G.R. De Meyer. Selective depletion of macrophages in atherosclerotic plaques via macrophage-specific initiation of cell death. Trends Cardiovasc Med 2007;17:69-75.
    3. Schrijvers, D.M., G.R. De Meyer, A.G. Herman, and W. Martinet. Phagocytosis in atherosclerosis:Molecular mechanisms and implications for plaque progression and stability. Cardiovasc Res 2007;73:470-80.
    4. Ji Q.W., Guo M., Zheng J.S., Mao·X.B., Peng Y.D., Li S.N., Liang Z.S., Dai Z.Y., Mao Y.& Zeng Q.T. Downregulation of T helper cell type 3 in patients with acute coronary syndrome. Arch Med Res 2009;40:285-293.
    5. Chakrabarti, S., P. Blair, and J.E. Freedman. CD40-40L signaling in vascular inflammation. JBiol Chem 2007;282:18307-17.
    6. Lutgens, E., D. Lievens, L. Beckers, M. Donners, and M. Daemen. CD40 and its ligand in atherosclerosis. Trends Cardiovasc Med 2007; 17:118-23.
    7. Robertson, A.K., and G.K. Hansson. T cells in atherogenesis:for better or for worse? Arterioscler Thromb Vasc Biol 2006;26:2421-32.
    8. Schonbeck, U., and. P. Libby. CD40 signaling and plaque instability. Circ Res 2001;89:1092-103.
    9. von Hundelshausen P., Petersen F.& Brandt E. Platelet-derived chemokines in vascular biology. Thromb Haemost 2007;97:704-713.
    10. Braunersreuther, V., S. Steffens, C. Arnaud, G. Pelli, F. Burger, A. Proudfoot, et al. A novel RANTES antagonist prevents progression of established atherosclerotic lesions in mice. Arterioscler Thromb Vasc Biol 2008;28:1090-6.
    11. Veillard, N.R., B. Kwak, G. Pelli, F. Mulhaupt, R.W. James, A.E. Proudfoot, et al. Antagonism of RANTES receptors reduces atherosclerotic plaque formation in mice. Circ Res 2004;94:253-61.
    12. Kobusiak-Prokopowicz, M., B. Jolda-Mydlowska, G. Mazur, and W. Kuliczkowski. Serum level of beta-chemokine RANTES in patients with coronary artery disease. Pol
    Arch Med Wewn 2003; 110:1289-97.
    13. Murooka, T.T., M.M. Wong, R. Rahbar, B. Majchrzak-Kita, A.E. Proudfoot, and E.N. Fish. CCL5-CCR5-mediated apoptosis in T cells:Requirement for glycosaminoglycan binding and CCL5 aggregation. JBiol Chem 2006;281:25184-94.
    14. Martinet, W., M. De Bie, D.M. Schrijvers, G.R. De Meyer, A.G. Herman, and M.M. Kockx.7-ketocholesterol induces protein ubiquitination, myelin figure formation, and light chain 3 processing in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2004;24:2296-301.
    15. Mach, F., U. Schonbeck, G.K. Sukhova, T. Bourcier, J.Y. Bonnefoy, J.S. Pober, et al. Functional CD40 ligand is expressed on human vascular endothelial cells, smooth muscle cells, and macrophages:implications for CD40-CD40 ligand signaling in atherosclerosis. Proc Natl Acad Sci USA 1997;94:1931-6.
    16. Chen, K., J. Huang, W. Gong, L. Zhang, P. Yu, and J.M. Wang. CD40/CD40L dyad in the inflammatory and immune responses in the central nervous system. Cell Mol Immunol 2006;3:163-9.
    17. Phipps, R.P. Atherosclerosis:the emerging role of inflammation and the CD40-CD40 ligand system. Proc Natl Acad Sci USA 2000;97:6930-2.
    18. Woszczek, G, L.Y. Chen, S. Nagineni, and J.H. Shelhamer. IL-10 inhibits cysteinyl leukotriene-induced activation of human monocytes and monocyte-derived dendritic cells. Immunol 2008:;180:7597-603.
    19. Shibasaki, F., and F. McKeon. Calcineurin functions in Ca(2+)-activated cell death in mammalian cells. J Cell Biol 1995;131:735-43.
    20. Okamura, H., J. Aramburu, C. Garcia-Rodriguez, J.P. Viola, A. Raghavan, M. Tahiliani, et al. Concerted dephosphorylation of the transcription factor NFAT1 induces a conformational switch that regulates transcriptional activity. Mol Cell 2000;6:539-50.
    21. Orr, A.W., M.Y. Lee, J.A. Lemmon, A. Yurdagul, Jr., M.F. Gomez, P.D. Bortz, et al. Molecular mechanisms of collagen isotype-specific modulation of smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol 2009;29:225-31.
    22. Saeki, M., Y. Irie, L. Ni, Y. Itsuki, Y. Terao, S. Kawabata, et al. Calcineurin potentiates the activation of procaspase-3 by accelerating its proteolytic maturation. J Biol Chem 2007;282:11786-94.
    23. Jayanthi, S., X. Deng, B. Ladenheim, M.T. McCoy, A. Cluster, N.S. Cai, et al. Calcineurin/NFAT-induced up-regulation of the Fas ligand/Fas death pathway is involved in methamphetamine-induced neuronal apoptosis. Proc Natl Acad Sci U S A 2005; 102:868-73.
    24. Miyata, Y., S. Muto, and E. Kusano. Mechanisms for nongenomic and genomic effects of aldosterone on Na+/H+ exchange in vascular smooth muscle cells. J Hypertens 2005;23:2237-50.
    25. David, K.C., R.H. Scott, and G.F. Nixon. Advanced glycation endproducts induce a proliferative response in vascular smooth muscle cells via altered calcium signaling. Biochem Pharmacol 2008;76:1110-20.
    26. Pang, X., and N.L. Sun. Calcineurin-NFAT signaling is involved in phenylephrine-induced vascular smooth muscle cell proliferation. Acta Pharmacol Sin 2009;30:537-44.
    27. Berger, O., X. Gan, C. Gujuluva, A.R. Burns, G. Sulur, M. Stins, et al. CXC.and CC chemokine receptors on coronary and brain endothelia. Mol Med 1999;5:795-805.
    28. Schecter, A.D., T.M. Calderon, A.B. Berman, C.M. McManus, J.T. Fallon, M. Rossikhina, et al. Human vascular smooth muscle cells possess functional CCR5. J Biol Chem 2000;275:5466-71.
    29. Kuziel, W.A., T.C. Dawson, M. Quinones, E. Garavito, G. Chenaux, S.S. Ahuja, et al. CCR5 deficiency is not protective in the early stages of atherogenesis in apoE knockout mice. Atherosclerosis 2003; 167:25-32.
    30. Yamashita, M., M. Katsumata, M. Iwashima, M. Kimura, C. Shimizu, T. Kamata, et al. T cell receptor-induced calcineurin activation regulates T helper type 2 cell development by modifying the interleukin 4 receptor signaling complex. J Exp Med 2000; 191:1869-79.
    31. Yao, R., X. Cheng, Y.H. Liao, Y. Chen, J.J. Xie, X. Yu, et al. Molecular mechanisms of felodipine suppressing atherosclerosis in high-cholesterol-diet apolipoprotein E-knockout mice. J Cardiovasc Pharmacol 2008;51:188-95.
    32. Genin, P., M. Algarte, P. Roof, R. Lin, and J. Hiscott. Regulation of RANTES chemokine gene expression requires cooperativity between NF-kappa B and IFN-regulatory factor transcription factors. J Immunol 2000;164:5352-61.
    1. Mattern HM, Hardin CD. Vascular metabolic dysfunction and lipotoxicity. Physiol Res. 2007;56(2):149-158.
    2. Peng YD, Cheng LX, Zeng QT, Shi Y, Bao XX, Mao XB, Ji QW, Li SN, Guo M, Liang ZS, Wu TC. The role of RANTES as a crucial downstream cytokine in calcineurin-dependent VSMC apoptosis stimulated by INFgamma and CD40L. Cell Biol Int.2010; 34(5):447-453.
    3. Bennett MR, Boyle JJ. Apoptosis of vascular smooth muscle cells in atherosclerosis. Atherosclerosis.1998;138(1):3-9.
    4. Geng YJ, Wu Q, Muszynski M, Hansson GK, Libby P. Apoptosis of vascular smooth muscle cells induced by in vitro stimulation with interferon-gamma, tumor necrosis factor-alpha, and interleukin-1 beta. Arterioscler Thromb Vasc Biol.1996; 16(1):19-27.
    5. Leskinen MJ, Heikkila HM, Speer MY, Hakala JK, Laine M, Kovanen PT, Lindstedt KA. Mast cell chymase induces smooth muscle cell apoptosis by disrupting NF-kappaB-mediated survival signaling. Exp Cell Res.2006;312(8):1289-1298.
    6. Martinet W, Verheye S, De Meyer GR. Selective depletion of macrophages in atherosclerotic plaques via macrophage-specific initiation of cell death. Trends Cardiovasc Med. 2007;17(2):69-75.
    7. Cheng C, Noordeloos AM, Jeney V, Soares MP, Moll F, Pasterkamp G, Serruys PW, Duckers HJ. Heme oxygenase 1 determines atherosclerotic lesion progression into a vulnerable plaque. Circulation.2009;119(23):3017-3027.
    8. Stoneman VE, Bennett MR. Role of apoptosis in atherosclerosis and its therapeutic implications. Clin Sci (Lond).2004;107(4):343-354.
    9. Bennett-MR. Apoptosis of vascular smooth-muscle cells in vascular remodelling and atherosclerotic plaque rupture. Cardiovasc Res.1999;41(2):361-368.
    10. Bauriedel G, Hutter R, Welsch U, Bach R, Sievert H, Luderitz B. Role of smooth muscle cell death in advanced coronary primary lesions:implications for plaque instability. Cardiovasc Res.1999;41(2):480-488.
    11. Kockx MM, Herman AG. Apoptosis in atherosclerosis:beneficial or detrimental? Cardiovasc Res.2000;45(3):736-746.
    12. Geng YJ, Libby P. Progression of atheroma:a struggle between death and procreation. Arterioscler Thromb Vasc Biol.2002;22(9):1370-1380.
    13. Krohn R, Raffetseder U, Bot I, Zernecke A, Shagdarsuren E, Liehn EA, van Santbrink
    PJ, Nelson PJ, Biessen EA, Mertens PR, Weber C. Y-box binding protein-1 controls CC chemokine ligand-5 (CCL5) expression in smooth muscle cells and contributes to neointima formation in atherosclerosis-prone mice. Circulation.2007; 116(16): 1812-1820.
    14. Kraaijeveld AO, de Jager SC, de Jager WJ, Prakken BJ, McColl SR, Haspels I, Putter H, van Berkel TJ, Nagelkerken L, Jukema JW, Biessen EA. CC chemokine ligand-5 (CCL5/RANTES) and CC chemokine ligand-18 (CCL18/PARC) are specific markers of refractory unstable angina pectoris and are transiently raised during severe ischemic symptoms. Circulation.2007;116(17):1931-1941.
    15. Braunersreuther V, Steffens S, Arnaud C, Pelli G, Burger F, Proudfoot A, Mach F. A novel RANTES antagonist prevents progression of established atherosclerotic lesions in mice. Arterioscler Thromb Vasc Biol.2008;28(6):1090-1096.
    16. Kobusiak-Prokopowicz M, Jolda-Mydlowska B, Mazur G, Kuliczkowski W. Serum level of beta-chemokine RANTES in patients with coronary artery disease. Pol Arch Med Wewn.2003;110(5):1289-1297.
    17. Abela GS, Picon PD, Friedl SE, Gebara OC, Miyamoto A, Federman M, Tofler GH, Muller JE. Triggering of plaque disruption and arterial thrombosis in an atherosclerotic rabbit model. Circulation.1995;91 (3):776-784.
    18. Schrijvers DM, De Meyer GR, Herman AG, Martinet W. Phagocytosis in atherosclerosis:Molecular mechanisms and implications for plaque progression and stability. Cardiovasc Res.2007;73(3):470-480.
    19. Martinet W, Schrijvers DM, Herman AG, De Meyer GR. z-VAD-fmk-induced non-apoptotic cell death of macrophages:possibilities and limitations for atherosclerotic plaque stabilization. Autophagy.2006;2(4):312-314.
    20. Koenen RR, von Hundelshausen P, Nesmelova IV, Zernecke A, Liehn EA, Sarabi A, Kramp BK, Piccinini AM, Paludan SR, Kowalska MA, Kungl AJ, Hackeng TM, Mayo KH, Weber C. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat Med.2009;15(1):97-103.
    21. Kuziel WA, Dawson TC, Quinones M, Garavito E, Chenaux G, Ahuja SS, Reddick RL, Maeda N. CCR5 deficiency is not protective in the early stages of atherogenesis in apoE knockout mice. Atherosclerosis.2003;167(1):25-32.
    22. Schonbeck U, Libby P. CD40 signaling and plaque instability. Cire Res.2001;89 (12):1092-1103.
    23. Woszczek G, Chen LY, Nagineni S, Shelhamer JH. IL-10 inhibits cysteinyl leukotriene-induced activation of human monocytes and monocyte-derived dendritic cells. J Immunol.2008;180(11):7597-7603.
    1. Rekhter M. Vulnerable atherosclerotic plaque:emerging challenge for animal models. Curr Opin Cardiol.2002;17(6):626-632.
    2. Zernecke A, Shagdarsuren E, Weber C. Chemokines in atherosclerosis:an update. Arterioscler Thromb Vasc Biol.2008;28(11):1897-1908.
    3. von Hundelshausen P, Petersen F, Brandt E. Platelet-derived chemokines in vascular biology. Thromb Haemost.2007;97(5):704-713
    4. Kobusiak-Prokopowicz M, Jolda-Mydlowska B, Mazur G, Kuliczkowski W. Serum level of beta-chemokine RANTES in patients with coronary artery disease. Pol Arch Med Wewn.2003;110(5):1289-1297.
    5. Kraaijeveld AO, de Jager SC, de Jager WJ, Prakken BJ, McColl SR, Haspels I, Putter H, van Berkel TJ, Nagelkerken L, Jukema JW, Biessen EA. CC chemokine ligand-5 (CCL5/RANTES) and CC chemokine ligand-18 (CCL18/PARC) are specific markers of refractory unstable angina pectoris and are transiently raised during severe ischemic symptoms. Circulation.2007;116(17):1931-1941.
    6. Braunersreuther V, Steffens S, Arnaud C, Pelli G, Burger F, Proudfoot A, Mach F. A novel RANTES antagonist prevents progression of established atherosclerotic lesions in mice. Arterioscler Thromb Vasc Biol.2008;28(6):1090-1096.
    7. Veillard NR, Kwak B, Pelli G, Mulhaupt F, James RW, Proudfoot AE, Mach F. Antagonism of RANTES receptors reduces atherosclerotic plaque formation in mice. Circ Res.2004;94(2):253-261.
    8. Rothenbacher D, Muller-Scholze S, Herder C, Koenig W, Kolb H. Differential expression of chemokines, risk of stable coronary heart disease, and correlation with established cardiovascular risk markers. Arterioscler Thromb Vasc Biol. 2006;26(1):194-199.
    9. Cavusoglu E, Eng C, Chopra V, Clark LT, Pinsky DJ, Marmur JD. Low plasma RANTES levels are an independent predictor of cardiac mortality in patients referred for coronary angiography. Arterioscler Thromb Vasc Biol.2007;27(4):929-935.
    10. de Winther MP, Kanters E, Kraal G, Hofker MH. Nuclear factor kappaB signaling in atherogenesis. Arterioscler Thromb Vasc Biol.2005;25(5):904-914
    11. Genin P, Algarte M, Roof P, Lin R, Hiscott J. Regulation of RANTES chemokine gene expression requires cooperativity between NF-kappa B and IFN-regulatory factor transcription factors. J Immunol.2000;164(10):5352-5361.
    12. Abela GS, Picon PD, Friedl SE, Gebara OC, Miyamoto A, Federman M, Tofler GH, Muller JE. Triggering of plaque disruption and arterial thrombosis in an atherosclerotic rabbit model. Circulation.1995;91(3):776-784.
    13. Shiomi M, Ito T, Hirouchi Y, Enomoto M. Fibromuscular cap composition is important for the stability of established atherosclerotic plaques in mature WHHL rabbits treated with statins. Atherosclerosis.2001;157(1):75-84.
    14. Zhou M, Xu H, Pan L, Wen J, Liao W, Chen K. Rosiglitazone promotes atherosclerotic plaque stability in fat-fed ApoE-knockout mice. Eur J Pharmacol. 2008;590(1-3):297-302.
    15. Yao R, Cheng X, Liao YH, Chen Y, Xie JJ, Yu X, Ding YJ, Tang TT. Molecular mechanisms of felodipine suppressing atherosclerosis in high-cholesterol-diet apolipoprotein E-knockout mice. J Cardiovasc Pharmacol.2008;51(2):188-195.
    16. Shimizu T, Nakai K, Morimoto Y, Ishihara M, Oishi H, Kikuchi M, Arai H. Simple rabbit model of vulnerable atherosclerotic plaque. Neurol Med Chir (Tokyo). 2009;49(8):327-332; discussion 332.
    17. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med.2005;352(16):1685-1695.
    18. Packard RR, Libby P. Inflammation in atherosclerosis:from vascular biology to biomarker discovery and risk prediction. Clin Chem.2008;54(l):24-38.
    19. Schoonbroodt S, Piette J. Oxidative stress interference with the nuclear factor-kappa B activation pathways. Biochemical Pharmacology.2000;60(8):1075-1083.
    20. Loree HM, Tobias BJ, Gibson LJ, Kamm RD, Small DM, Lee RT. Mechanical properties of model atherosclerotic lesion lipid pools. Arterioscler Thromb. 1994;14(2):230-234.
    21. Huo Y, Schober A, Forlow SB, Smith DF, Hyman MC, Jung S, Littman DR, Weber C, Ley K. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med.2003;9(1):61-67.
    22. Rekhter MD. How to evaluate plaque vulnerability in animal models of atherosclerosis? Cardiovasc Res.2002;54(1):36-41.
    23. Hayden MS, Ghosh S. Signaling to NF-kappaB. Genes Dev.2004; 18(18):2195-2224.
    24. Yamamoto Y, Gaynor RB. IkappaB kinases:key regulators of the NF-kappaB pathway. Trends Biochem Sci.2004;29(2):72-79.
    25. Baldwin AS, Jr. Series introduction:the transcription factor NF-kappaB and human disease. J Clin Invest.2001;107(1):3-6.
    26. Krohn R, Raffetseder U, Bot I, Zernecke A, Shagdarsuren E, Liehn EA, van Santbrink PJ, Nelson PJ, Biessen EA, Mertens PR, Weber C. Y-box binding protein-1 controls CC chemokine ligand-5 (CCL5) expression in smooth muscle cells and contributes to neointima formation in atherosclerosis-prone mice. Circulation.2007;116(16): 1812-1820.
    27. Schecter AD, Spirn B, Rossikhina M, Giesen PL, Bogdanov V, Fallon JT, Fisher EA, Schnapp LM, Nemerson Y, Taubman MB. Release of active tissue factor by human arterial smooth muscle cells. Circ Res.2000;87(2):126-132.
    28. Murooka TT, Wong MM, Rahbar R, Majchrzak-Kita B, Proudfoot AE, Fish EN. CCL5-CCR5-mediated apoptosis in T cells:Requirement for glycosaminoglycan binding and CCL5 aggregation. JBiol Chem.2006;281 (35):25184-25194.
    29. Berger 0, Gan X, Gujuluva C, Burns AR, Sulur G, Stins M, Way D, Witte M, Weinand M, Said J, Kim KS, Taub D, Graves MC, Fiala M. CXC and CC chemokine receptors on coronary and brain endothelia. Mol Med.1999;5(12):795-805.
    30. Nomura S, Uehata S, Saito S, Osumi K, Ozeki Y, Kimura Y. Enzyme immunoassay detection of platelet-derived microparticles and RANTES in acute coronary syndrome. Thromb Haemost.2003;89(3):506-512.
    31. Parissis JT, Adamopoulos S, Venetsanou KF, Mentzikof DG, Karas SM, Kremastinos DT. Serum profiles of C-C chemokines in acute myocardial infarction:possible implication in postinfarction left ventricular remodeling. J Interferon Cytokine Res. 2002;22(2):223-229.
    32. Boger CA, Fischereder M, Deinzer M, Aslanidis C, Schmitz G, Stubanus M, Banas B, Kruger B, Riegger GA, Kramer BK. RANTES gene polymorphisms predict all-cause and cardiac mortality in type 2 diabetes mellitus hemodialysis patients. Atherosclerosis. 2005;183(1):121-129.
    33. An P, Nelson GW, Wang L, Donfield S, Goedert JJ, Phair J, Vlahov D, Buchbinder S, Farrar WL, Modi W, O'Brien SJ, Winkler CA. Modulating influence on HIV/AIDS by interacting RANTES gene variants. Proc Natl Acad Sci U S A.2002;99(15): 10002-10007.
    34. Aukrust P, Halvorsen B, Yndestad A, Ueland T, Oie E, Otterdal K, Gullestad L, Damas JK. Chemokines and cardiovascular risk. Arterioscler Thromb Vasc Biol.2008;28 (11):1909-1919.
    35. Peng YD, Cheng LX, Zeng QT, Shi Y, Bao XX, Mao XB, Ji QW, Li SN, Guo M, Liang ZS, Wu TC. The role of RANTES as a crucial downstream cytokine in calcineurin-dependent VSMC apoptosis stimulated by INFgamma and CD40L. Cell Biol Int.2010; 34(5):447-453.
    36. Robertson AK, Hansson GK. T cells in atherogenesis:for better or for worse? Arterioscler Thromb Vasc Biol.2006;26(11):2421-2432.
    1. Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med.2006;354(6):610-621.
    2. Murphy PM, Baggiolini M, Charo IF, Hebert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, Power CA. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev.2000;52(1):145-176.
    3. van Buul JD, Kanters E, Hordijk PL. Endothelial signaling by Ig-like cell adhesion molecules. Arterioscler Thromb Vasc Biol.2007;27(9):1870-1876.
    4. von Hundelshausen P, Weber KS, Huo Y, Proudfoot AE, Nelson PJ, Ley K, Weber C. RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation.2001; 103(13):1772-1777.
    5. Zernecke A, Weber C. Inflammatory mediators in atherosclerotic vascular disease. Basic Res Cardiol 2005;100(2):93-101.
    6. Cavusoglu E, Eng C, Chopra V, Clark LT, Pinsky DJ, Marmur JD. Low plasma RANTES levels are an independent predictor of cardiac mortality in patients referred for coronary angiography. Arterioscler Thromb Vasc Biol.2007;27(4):929-935.
    7. Zernecke A, Shagdarsuren E, Weber C. Chemokines in atherosclerosis:an update. Arterioscler Thromb Vasc Biol.2008;28(11):1897-1908.
    8. Pocock J, Gomez-Guerrero C, Harendza S, Ayoub M, Hernandez-Vargas P, Zahner G, Stahl RA, Thaiss F. Differential activation of NF-kappa B, AP-1, and C/EBP in endotoxin-tolerant rats:mechanisms for in vivo regulation of glomerular RANTES/ CCL5 expression. J Immunol.2003;170(12):6280-6291.
    9. Balistreri CR, Candore G, Caruso M, Incalcaterra E, Franceschi C, Caruso C. Role of polymorphisms of CC-chemokine receptor-5 gene in acute myocardial infarction and biological implications for longevity. Haematologica.2008;93(4):637-638.
    10. Braunersreuther V, Mach F, Steffens S. The specific role of chemokines in atherosclerosis. Thromb Haemost.2007;97(5):714-721.
    11. Deckers JG, De Haij S, van der Woude FJ, van der Kooij SW, Daha MR, van Kooten C. IL-4 and IL-13 augment cytokine-and CD40-induced RANTES production by human renal tubular epithelial cells in vitro. J Am Soc Nephrol.1998;9(7):1187-1193.
    12. Taub DD, Turcovski-Corrales SM, Key ML, Longo DL, Murphy WJ. Chemokines and T lymphocyte activation:I. Beta chemokines costimulate human T lymphocyte activation in vitro. J Immunol.1996;156(6):2095-2103.
    13. Marino AP, Silva AA, Santos PV, Pinto LM, Gazinelli RT, Teixeira MM, Lannes-Vieira J. CC-chemokine receptors:a potential therapeutic target for Trypanosoma cruzi-elicited myocarditis. Mem Inst Oswaldo Cruz.2005; 100 Suppl 1:93-96.
    14. Shen B, Fazio VW, Remzi FH, Delaney CP, Bennett AE, Achkar JP, Brzezinski A, Khandwala F, Liu W, Bambrick ML, Bast J, Lashner B. Comprehensive evaluation of inflammatory and noninflammatory sequelae of ileal pouch-anal anastomoses. Am J Gastroenterol.2005;100(1):93-101.
    15. Oppermann M. Chemokine receptor CCR5:insights into structure, function, and regulation. Cell Signal.2004;16(11):1201-1210.
    16. Lee JB, Matsumoto T, Shin YO, Yang HM, Min YK, Timothy 0, Bae SJ, Quan FS. The role of RANTES in a murine model of food allergy. Immunol Invest.2004;33(1):27-38.
    17. Jennes W, Sawadogo S, Koblavi-Deme S, Vuylsteke B, Maurice C, Roels TH, Chorba T, Nkengasong JN, Kestens L. Cellular human immunodeficiency virus (HIV)-protective factors:a comparison of HIV-exposed seronegative female sex workers and female blood donors in Abidjan, Cote d'lvoire. J Infect Dis. 2003;187(2):206-214.
    18. Zhao XY, Lee SS, Wong KH, Chan KC, Ma S, Yam WC, Yuen KY, Ng MH, Zheng BJ. Effects of single nucleotide polymorphisms in the RANTES promoter region in healthy and HIV-infected indigenous Chinese. Eur J Immunogenet.2004;31 (4):179-183.
    19. Ji QW, Guo M, Zheng JS, Mao XB, Peng YD, Li SN, Liang ZS, Dai ZY, Mao Y, Zeng QT. Downregulation of T helper cell type 3 in patients with acute coronary syndrome. Arch Med Res.2009;40(4):285-293.
    20. Kraaijeveld AO, de Jager SC, de Jager WJ, Prakken BJ, McColl SR, Haspels I, Putter H, van Berkel TJ, Nagelkerken L, Jukema JW, Biessen EA. CC chemokine ligand-5 (CCL5/RANTES) and CC chemokine ligand-18 (CCL18/PARC) are specific markers of refractory unstable angina pectoris and are transiently raised during severe ischemic symptoms. Circulation.2007;116(17):1931-1941.
    21. Krohn R, Raffetseder U, Bot I, Zernecke A, Shagdarsuren E, Liehn EA, van Santbrink PJ, Nelson PJ, Biessen EA, Mertens PR, Weber C. Y-box binding protein-1 controls CC chemokine ligand-5 (CCL5) expression in smooth muscle cells and contributes to neointima formation in atherosclerosis-prone mice. Circulation.2007; 116(16): 1812-1820.
    22. Veillard NR, Kwak B, Pelli G, Mulhaupt F, James RW, Proudfoot AE, Mach F. Antagonism of RANTES receptors reduces atherosclerotic plaque formation in mice. Circ Res.2004;94(2):253-261.
    23. Weber C, Weber KS, Klier C, Gu S, Wank R, Horuk R, Nelson PJ. Specialized roles of the chemokine receptors CCR1 and CCR5 in the recruitment of monocytes and T(H)1-like/CD45RO(+) T cells. Blood.2001;97(4):1144-1146.
    24. Peng YD, Cheng LX, Zeng QT, Shi Y, Bao XX, Mao XB, Ji QW, Li SN, Guo M, Liang ZS, Wu TC. The role of RANTES as a crucial downstream cytokine in calcineurin-dependent VSMC apoptosis stimulated by INFgamma and CD40L. Cell Biol Int.2010;34(5):447-453.
    25. Bennett MR, Boyle JJ. Apoptosis of vascular smooth muscle cells in atherosclerosis. Atherosclerosis.1998;138(1):3-9.
    26. Leskinen MJ, Heikkila HM, Speer MY, Hakala JK, Laine M, Kovanen PT, Lindstedt KA. Mast cell chymase induces smooth muscle cell apoptosis by disrupting NF-kappaB-mediated survival signaling. Exp Cell Res.2006;312(8):1289-1298.
    27. Kobusiak-Prokopowicz M, Jolda-Mydlowska B, Mazur G, Kuliczkowski W. [Serum level of beta-chemokine RANTES in patients with coronary artery disease]. Pol Arch Med Wewn.2003;110(5):1289-1297.
    28. Mattern HM, Hardin CD. Vascular metabolic dysfunction and lipotoxicity. Physiol Res. 2007;56(2):149-158.
    29. Martinet W, Verheye S, De Meyer GR. Selective depletion of macrophages in atherosclerotic plaques via macrophage-specific initiation of cell death. Trends Cardiovasc Med.2007;17(2):69-75.
    30. Cheng C, Noordeloos AM, Jeney V, Soares MP, Moll F, Pasterkamp G, Serruys PW, Duckers HJ. Heme oxygenase 1 determines atherosclerotic lesion progression into a vulnerable plaque. Circulation.2009; 119(23):3017-3027.
    31. Stoneman VE, Bennett MR. Role of apoptosis in atherosclerosis and its therapeutic implications. Clin Sci (Lond).2004;107(4):343-354.
    32. Bennett MR. Apoptosis of vascular smooth muscle cells in vascular remodelling and atherosclerotic plaque rupture. Cardiovasc Res.1999;41(2):361-368.
    33. Bauriedel G, Hutter R, Welsch U, Bach R, Sievert H, Luderitz B. Role of smooth muscle cell death in advanced coronary primary lesions:implications for plaque instability. Cardiovasc Res.1999;41(2):480-488.
    34. Kockx MM, Herman AG. Apoptosis in atherosclerosis:beneficial or detrimental? Cardiovasc Res.2000;45(3):736-746.
    35. Geng YJ, Libby P. Progression of atheroma:a struggle between death and procreation. Arterioscler Thromb Vasc Biol.2002;22(9):1370-1380.
    36. Koenen RR, von Hundelshausen P, Nesmelova IV, Zernecke A, Liehn EA, Sarabi A, Kramp BK, Piccinini AM, Paludan SR, Kowalska MA, Kungl AJ, Hackeng TM, Mayo KH, Weber C. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat Med.2009;15(1):97-103.
    37. Kuziel WA, Dawson TC, Quinones M, Garavito E, Chenaux G, Ahuja SS, Reddick RL, Maeda N. CCR5 deficiency is not protective in the early stages of atherogenesis in apoE knockout mice. Atherosclerosis.2003;167(1):25-32.
    38. Schonbeck U, Libby P. CD40 signaling and plaque instability. Circ Res.2001; 89(12):1092-1103.
    39. de Winther MP, Kanters E, Kraal G, Hofker MH. Nuclear factor kappaB signaling in atherogenesis. Arterioscler Thromb Vasc Biol.2005;25(5):904-914.
    40. Rothenbacher D, Muller-Scholze S, Herder C, Koenig W, Kolb H. Differential expression of chemokines, risk of stable coronary heart disease, and correlation with established cardiovascular risk markers. Arterioscler Thromb Vasc Biol. 2006;26(1):194-199.
    41. Potteaux S, Combadiere C, Esposito B, Lecureuil C, Ait-Oufella H, Merval R, Ardouin P, Tedgui A, Mallat Z. Role of bone marrow-derived CC-chemokine receptor 5 in the development of atherosclerosis of low-density lipoprotein receptor knockout mice. Arterioscler Thromb Vasc Biol.2006;26(8):1858-1863.
    42. Agarwal A, Thappa DM, Jayanthi S, Shivaswamy KN. Segmental neurofibromatosis of face. Dermatol Online J.2005;11(3):33.
    43. Zernecke A, Liehn EA, Gao JL, Kuziel WA, Murphy PM, Weber C. Deficiency in CCR5 but not CCR1 protects against neointima formation in atherosclerosis-prone mice:involvement of IL-10. Blood.2006;107(11):4240-4243.
    44. Braunersreuther V, Zernecke A, Arnaud C, Liehn EA, Steffens S, Shagdarsuren E, Bidzhekov K, Burger F, Pelli G, Luckow B, Mach F, Weber C. Ccr5 but not Ccrl deficiency reduces development of diet-induced atherosclerosis in mice. Arterioscler Thromb Vasc Biol.2007;27(2):373-379.
    45. Nomura S, Uehata S, Saito S, Osumi K, Ozeki Y, Kimura Y. Enzyme immunoassay detection of platelet-derived microparticles and RANTES in acute coronary syndrome. Thromb Haemost.2003;89(3):506-512.
    46. Parissis JT, Adamopoulos S, Venetsanou KF, Mentzikof DG, Karas SM, Kremastinos DT. Serum profiles of C-C chemokines in acute myocardial infarction:possible implication in postinfarction left ventricular remodeling. J Interferon Cytokine Res. 2002;22(2):223-229.
    47. Boger CA, Fischereder M, Deinzer M, Aslanidis C, Schmitz G, Stubanus M, Banas B, Kruger B, Riegger GA, Kramer BK. RANTES gene polymorphisms predict all-cause and cardiac mortality in type 2 diabetes mellitus hemodialysis patients. Atherosclerosis. 2005;183(1):121-129.
    48. An P, Nelson GW, Wang L, Donfield S, Goedert JJ, Phair J, Vlahov D, Buchbinder S, Farrar WL, Modi W, O'Brien SJ, Winkler CA. Modulating influence on HIV/AIDS by interacting RANTES gene variants. Proc Natl Acad Sci U S A.2002;99(15): 10002-10007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700