天然免疫分子HMGB1在肾脏缺血再灌注损伤和异种移植排斥反应中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分上调HO-1对缺血再灌注损伤的保护机制与抑制HMGB1释放有关
     [目的]本课题组已经发现Copp诱导HO-1高表达能减轻大鼠肾脏缺血再灌注损伤,目前实验为了进一步深入研究保护性基因HO-1在减轻大鼠肾脏缺血再灌注损伤中的作用及其机制,探讨HMGB1在其中是否发挥炎症因子效应。
     [方法]课题前期实验以Wistar大鼠为对象,建立大鼠肾脏在体原位缺血再灌注损伤模型,夹闭大鼠左侧肾蒂阻断血供47分钟,恢复血流后切除右肾。实验分三组:1)缺血对照组:缺血再灌后无处理;2)CoPP治疗组:手术前48h和24h分别腹腔内注射CoPP (2.5mg/kg);3)正常组。左肾恢复血供即再灌注24h后检测血清肌酐(Cr)和尿素氮(BUN)值,并取正常及缺血再灌注肾脏标本行HE病理检查,Western-blot检测肾脏组织中HO-1表达,观察CoPP治疗对肾脏长时间缺血(80min)再灌注后大鼠存活的影响。目前实验以免疫组化检测其肾组织内HMGB1、TLR4、MPO、TNF-α的表达情况,以及TUNEL法检测细胞凋亡并计数。
     [结果]CoPP治疗组与对照组相比肾功能(Cr和BUN)明显改善(p<0.05),存活实验发现CoPP治疗组5只大鼠全部存活,而对照组6只大鼠中,4只分别于观察第5、5、7、13天死亡,两组具有明显差异(p<0.05)。CoPP治疗组肾组织中HMGB1及TLR4表达明显弱于对照组,且代表单核细胞标志的MPO及细胞因子TNF-α也同样弱于对照组。细胞凋亡情况通过统计后对照组明显高于HO-1保护组,并具有统计学差异(p<0.05)。
     [结论]CoPP可效诱导肾脏HO-1高表达保护大鼠肾脏缺血再灌注损伤,其作用机制可能与抑制HMGB1的释放有关,进一步抑制炎症反应,减轻细胞凋亡,进而减少损伤。
     第二部分抗HMGB1中和抗体对小鼠肾脏缺血再灌注损伤的保护作用
     [目的]探讨高迁移率簇蛋白B1 (HMGB1)在小鼠肾脏缺血再灌注损伤(IRI)模型中的作用,通过抗体阻断HMGB1研究对小鼠肾脏IRI的保护作用。
     [方法]以BALB/C小鼠为实验对象,肾缺血前24小时和前30分钟实验组(n=7)分别于腹腔注射兔抗小鼠HMGB1抗体,而对照组(n=7)以等量生理盐水替代作为参照。在体阻断小鼠左肾血流60min,恢复左肾血流的同时切除小鼠右肾,恢复血供再灌注0,3,6或24小时后,在每组每个时间点(n=2)分别取其外周血及左肾。测定血清肌酐(sCr)和尿素氮(BUN)水平,观察肾组织学变化(PAS),免疫组化及Western blot检测肾组织中HMGB1的表达,并检测抗HMGB1抗体的沉积,免疫组化检测肾组织中髓过氧化物酶(MPO)表达,免疫荧光检测TNF-a表达,原位末端脱氧核苷酸转移酶标记法(TUNEL)检测肾组织中细胞凋亡情况。
     [结果]正常组肾脏内HMGB1均表达于细胞核内,而对照组HMGB1则在核外明显表达,且在缺血后即有核外表达,随着再灌注时间延长(分别为0,3,6,24小时),HMGB1表达量增多且部位分布更广(细胞外)。对照组肾脏缺血再灌注24小时后血清Cr及BUN分别为(82.46±30.13)μmol/L和(46.46±9.61)μmol/L显著高于实验组的(32.24±22.51)μmol/L和(25.81±11.41)μmol/L(p<0.05)。正常肾及对照组肾组织中未检测到HMGB1抗体沉积,使用抗HMGB1抗体的实验组可见明显HMGB1抗体沉积。PAS显示对照组肾小管细胞大片坏死,管型形成,并有大量出血,与之相比,抗HMGB1治疗组肾组织病变程度明显减轻。对照组肾组织中MPO表达明显强于使用HMGB1的实验组,同时对照组细胞凋亡较实验组显著增多,凋亡细胞数计数具有统计学差异(p<0.05):对照组肾组织中细胞因子TNF-α也明显强于实验组。
     [结论]HMGB1在肾脏IRI中发挥重要作用,而缺血前使用抗HMGB1抗体可明显减轻小鼠IRI,这种保护作用可能通过中和炎性因子HMGB1来抑制肾脏IRI中的炎症反应,并减少炎症导致的凋亡来实现。
     第三部分抗HMGB1中和抗体延长大鼠到小鼠异种心脏移植存活的实验研究
     [目的]探讨HMGB1对新生大鼠心脏移植到小鼠异种移植心的作用,及其通过抗HMGB1抗体阻断HMGB1能否延长异种移植心存活,并阐明其机制。
     [方法]以1周龄SD大鼠为供心供者,BALB/C小鼠为移植心受者,实施颈部心异位心脏移植,抗体治疗组(n=10)于心脏移植前1天起隔天腹腔注射兔抗小鼠HMGB1抗体,而对照组(n=7)不做任何处理。术后观察移植心存活时间,移植心停止搏动即为发生排斥时留取心脏及血清,治疗组另有3例行在第6天留取标本(与对照组进行同期对组),进行病理学检测(HE),免疫组化观察组织中MPO, HMGB1, TLT4的表达及抗体IgG、IgM的沉积,以及补体调节蛋白CD55和CD59,免疫荧光检测JG12表达,TUNEL法检测心脏组织内细胞凋亡情况,流式细胞仪分析循环中抗体IgG、IgM水平。
     [结果]对照组心脏存活5-6天,抗体治疗组为7-11天,明显长于对照组(p<0.01)。组织病理上发现对照组排斥心脏呈急性血管性排斥反应特征,而治疗组同期的病变明显轻于前者;同时通过细胞计数显示抗HMGB1抗体治疗组较对照组MPO阳性的浸润细胞显著减少,TUNEL显示细胞凋亡或坏死显著减轻,统计具有显著性差异(p<0.05),而血管内皮完整性的特异性标志JG12则显著强于对照组;另外组化显示抗体治疗组心脏组织内HMGB1及其受体TLR4表达均明显弱于对照组。流式检测以及免疫组化均显示对照组心脏组织内和循环中的异种抗体IgG显著增加,而同期的抗体治疗组IgG的产生和沉积显著减弱。此外,免疫组化显示对照组心脏组织中CD55和CD59明显弱于正常心脏及实验组。
     [结论]本研究首次证明,拮抗HMGB1可明显延长大鼠到小鼠异种移植心脏的存活,其可能的机制是通过中和炎性细胞释放的HMGB1,从而抑制一系列炎症反应,阻遏异种抗体的产生并增强补体调节蛋白表达。
PartⅠUpregulation of HO-1 to protect renal ischemia reperfusion injury via inhibiting release of HMGB1.
     [Objective] Based on the results of the previous experiments, the mechanism of protection of the protective gene HO-1 on the rat renal ischemia reperfusion injury is studied more thoroughly.
     [Method] A dose of 2.5mg/kg of CoPP was administered intraperitoneally into rats 48h and 24h before 47min of renal ischemia. Blood and kidney samples were collected 24h after reperfusion. Serum Cr and BUN were determined to evaluate kidney function. HO-1 expression in kidney was detected by immunohistochemistry and western-blot. Prolongation of renal ischemia time to 80min was undertaken to study the protective effects of CoPP on rat mortality. The expression of HMGB1, TRL4, MPO, and TNF-αwas detected by immunohistochemistry, and the cell apoptosis was detected by TUNEL assay with cell counted.
     [Result] The mean serum Cr and BUN levels of the IRI control rats were 134.37±24.26μmol/L and 30.10±3.09mmol/L, CoPP treatment significantly improved renal function after I/R, the mean serum Cr and BUN levels were 48.92±12.92μmol/L and 13.99±5.00mmol/L respectively(p<0.05 vs.IRI control group). CoPP therapy significantly protected rats from lethal kidney ischemia. The expression of HMGB1 and TLR4 in the tissues treated with CoPP was significantly weaker than the control group and the marker of monocyte MPO and cytokine TNF-αin the protected group is also much weaker than the control. The apoptotic cells counted in the HO-1 protected group were statistically less than in the control group.
     [Conclusion] Inhibition the release of HMGB1 maybe one of the mechanisms that protective gene HO-1 prevents rat renal ischemia reperfusion injury; furthermore it inhibits the inflammation response and reduces injury.
     PartⅡNeutralizing extracellular HMGB1 by using antibody prevents mice from renal ischemia-reperfusion injury
     [Objective] To investigate the pattern that High mobility group box 1 (HMGB1) releases during renal ischemia/reperfusion injury (IRI) and relative mechanism that neutralizing the extracellular HMGB1 prevents mice from renal IRI.
     [Methods] Renal IRI was induced by clamping the left renal pedicle for 60 min, and some of the kidneys were removed immediately as others collected 24 h later for detection of HMGB1 expression with Immunohistocheistry and Western blot. Rabbit anti-mouse HMGB1 antibody was administered 24 h and 30 min before ischemia as control mice with normal sodium. The therapeutic effects were evaluated in renal function after 24 h of reperfusion, also with histologic examination. Deposits of anti-HMGB1 antibody were detected by Immunohistochemistry and MPO expression was measured by Immunofluorescence. Additionally, TUNEL assays were used to evaluate the apoptosis of renal cells.
     [Results] HMGB1 expressed in cell nucleus was passively released by ischemic renal cells as to cytoplasm or even out of cells early as the time prior to reperfusion. When mice were treated, the therapic anti-HMGB1 antibody was detected to deposit at local renal tubules, peritubular capillaries and glomcruli, but no deposits were found in control mice. Consequently, levels of serum creatinine and blood urea nitrogen were significantly decreased in mice treated with anti-HMGB1 antibody ((32.24±22.51)μmol/L, (25.81±11.41)μmol/L, respectively) compared with control mice ((82.46±30.13)μmol/L, (46.46±9.61)μmol/L, respectively,p<0.05). Correspondently, Tissue damage caused by IRI was markedly reduced with less necrosis and hemorrhage as a result of neutralizing antibody treatment. In addition, MPO expression was extremely diminished in treated mice compared with control kidneys, and apoptosis was also significantly decreased (p<0.05).
     [Conclusion] HMGB1 may act as a crucial mediator during IRI, and blockage of HMGB1 before ischemia can protect mice against renal IRI, and the mechanism of protection might come from targeting HMGB1 to interfering process of inflammation induce by IRI.
     PartⅢAnti-HMGB1 antibody prolongs rat to mouse cardiac xenograft survival xia inhibiting products of anti-donor antibody.
     [Objective] To investigate the role of High mobility group box 1 (HMGB1) in the rejection of rat to mouse cardiac xenotransplantation, and relative mechanism that neutralizing the extracellular HMGB1 prolongs xenograft survival.
     [Methods] Heterotopic cardiac xenotransplantation was established from One-week-old SD rat to BALB/c mouse. Rabbit anti-mouse HMGB1 antibody was administered by intraperitoneal injection on day-1,0 and every other day until the study end point or graft rejection, while control mice was received control IgG or PBS instead of neutralizing antibody. The therapeutic effects were evaluated by the survival of xenograft, and some of hearts were obtained from recipients which were therapied at day 6 as symotanians control. MPO, CD3, HMGB1, TLR4 expression were measured by Immunohistochemical staining and cytockine TNF, IL2, IL10 were evaluated by RT-PCR. TUNEL assays were used to evaluate the apoptosis of renal cells. Additionally, serum or intra graft IgG and IgM were measured and CRPs alse were avaluated to analyse the mechanism.
     [Results] The xenograft survival was significantly prolonged by neutrolizing antibody from 5 days to 9 days. In concurrent control groups, the neutralizing group exibited clear vessels, fewer interstitial hemorrhages, and integrated endothelial cell with mass JG12-positive cells and less apotosis cells. Furthermore, less MPO and CD3 positive cells were observed and HMGB1 with its receptor TLR4 were much weaker than the control group. More interestingly, the FCM and immunohistochemistry showed the less IgG and IgM in the circle and xenograft, and much more expression of CRPs in the treated gourp.
     [Conclusion] we have shown that anti-HMGBl antibody efficiently delayed AVR by markedly inhibiting anti-donor xAb production and up-regulating CRPs in the xenograft in rat to mouse cardiac transplantation.
引文
1. 肖芳,陈刚,李俊华等.钻原卟啉诱导血红素氧合酶-1高表达减轻大鼠肾脏缺血再灌注损伤.中华器官移植杂志2008;29(3):164.
    2. Morse D, Pischke SE, Zhou Z, et al. Suppression of inflammatory cytokine production by carbon monoxide involves the JNK pathway and AP-1.J Biol Chem 2003; 278 (39):36993.
    3. Otterbein LE, Bach FH, Alam J, et al. Carbon monoxide has anti-分 inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 2000; 6 (4):422.
    4. Brune B, Ullrich V. Inhibition of platelet aggregation by carbon monoxide is mediated by activation of guanylate cyclase. Mol Pharmacol 1987; 32 (4): 497.
    5. Brouard S, Otterbein LE, Anrather J, et al. Carbon monoxide generated by heme oxygenase 1 suppresses endothelial cell apoptosis. J Exp Med 2000; 192 (7):1015.
    6. Duckers HJ, Boehm M, True AL, et al. Heme oxygenase-1 protects against vascular constriction and proliferation. Nat Med 2001;7 (6):693.
    7. Wang H, Bloom O, Zhang M, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 1999; 285 (5425):248.
    8. Zhu M, Zhang W, Liu F, et al. Resistance to anti-xenogeneic response by combining alpha-Gal silencing with HO-1 upregulation. Transpl Immunol 2008; 19 (3-4):202.
    9. Raucci A, Palumbo R, Bianchi ME. HMGB1:a signal of necrosis. Autoimmunity 2007; 40 (4):285.
    10. Tsung A, Sahai R, Tanaka H, et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med 2005; 201 (7):1135.
    11. Andrassy M, Volz HC, Igwe JC, et al. High-mobility group box-1 in ischemia-reperfusion injury of the heart. Circulation 2008; 117 (25):3216.
    12. Park JS, Svetkauskaite D, He Q, et al. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 2004; 279 (9):7370.
    13. Donnahoo KK, Meng X, Ayala A, Cain MP, Harken AH, Meldrum DR. Early kidney TNF-alpha expression mediates neutrophil infiltration and injury after renal ischemia-reperfusion. Am J Physiol 1999; 277 (3 Pt 2):R922.
    14. Katori M, Busuttil RW, Kupiec-Weglinski JW. Heme oxygenase-1 system in organ transplantation. Transplantation 2002; 74 (7):905.
    15. Klune JR, Dhupar R, Cardinal J, Billiar TR, Tsung A. HMGB1:endogenous danger signaling. Mol Med 2008;14 (7-8):476.
    16. Gong Q, Yin H, Fang M, et al. Heme oxygenase-1 upregulation significantly inhibits TNF-alpha and Hmgbl releasing and attenuates lipopolysaccharide-induced acute lung injury in mice. Int Immunopharmacol 2008; 8 (6):792.
    17. Takamiya R, Hung CC, Hall SR, et al. High-mobility group box 1 contributes to lethality of endotoxemia in heme oxygenase-1-deficient mice. Am J Respir Cell Mol Biol 2009; 41 (2):129.
    1.肖芳,陈刚,李俊华等.钴原卟啉诱导血红素氧合酶-1高表达减轻大鼠肾脏缺血再灌注损伤.中华器官移植杂志2008;29(3):164.
    2. Bonventre JV, Zuk A. Ischemic acute renal failure:an inflammatory disease? Kidney Int 2004; 66 (2):480.
    3. Kruger B, Krick S, Dhillon N, et al. Donor Toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation. Proc Natl Acad Sci U S A 2009; 106 (9):3390.
    4. Takahashi M. High-mobility group box 1 protein (HMGB1) in ischaemic heart disease:beneficial or deleterious? Cardiovasc Res 2008; 80 (1):5.
    5. Oozawa S, Mori S, Kanke T, et al. Effects of HMGB1 on ischemia-reperfusion injury in the rat heart. Circ J 2008;72 (7):1178.
    6. Andrassy M, Volz HC, Igwe JC, et al. High-mobility group box-1 in ischemia-reperfusion injury of the heart. Circulation 2008;117 (25):3216.
    7. Kim JB, Lim CM, Yu YM, Lee JK. Induction and subcellular localization of high-mobility group box-1 (HMGBl) in the postischemic rat brain. JNeurosci Res 2008;86 (5):1125.
    8. Wang H, Bloom O, Zhang M, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 1999; 285 (5425):248.
    9. Tsung A, Sahai R, Tanaka H, et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med 2005;201 (7):1135.
    10. Kitahara T, Takeishi Y, Harada M, et al. High-mobility group box 1 restores cardiac function after myocardial infarction in transgenic mice. Cardiovasc Res 2008;80(1):40.
    11. Bolisetty S, Agarwal A. Neutrophils in acute kidney injury:not neutral any more. Kidney Int 2009; 75 (7):674.
    12. Mollnes TE. High mobility group box-1 protein-one step closer to the clinic? Crit Care 2008;12 (4):168.
    13. Hori O, Brett J, Slattery T, et al. The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. JBiol Chem 1995; 270 (43):25752.
    14. Park JS, Arcaroli J, Yum HK, et al. Activation of gene expression in human neutrophils by high mobility group box 1 protein. Am J Physiol Cell Physiol 2003; 284 (4):C870.
    15. Wu H, Chen G, Wyburn KR, et al. TLR4 activation mediates kidney ischemia/reperfusion injury. JClin Invest 2007; 117 (10):2847.
    1. Tsung A, Sahai R, Tanaka H, et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med 2005;201 (7):1135.
    2. Andrassy M, Volz HC, Igwe JC, et al. High-mobility group box-1 in ischemia-reperfusion injury of the heart. Circulation 2008;117 (25):3216.
    3. Huang Y, Yin H, Han J, et al. Extracellular hmgbl functions as an innate immune-mediator implicated in murine cardiac allograft acute rejection. Am J Transplant 2007; 7 (4):799.
    4. Goldstein RS, Gallowitsch-Puerta M, Yang L, et al. Elevated high-mobility group box 1 levels in patients with cerebral and myocardial ischemia. Shock 2006; 25 (6):571.
    5. Chen G, Qian H, Starzl T, et al. Acute rejection is associated with antibodies to non-Gal antigens in baboons using Gal-knockout pig kidneys. Nat Med 2005; 11 (12):1295.
    6. Platt JL, Lin SS, McGregor CG. Acute vascular rejection. Xenotransplantation 1998;5 (3):169.
    7. Gonzalez Martin M, Garcia Buitron J, Alonso Hernandez A, et al. [Renal xenotransplant. Acute vascular rejection]. Actas Urol Esp 2008;32 (1):152.
    8. Bolisetty S, Agarwal A. Neutrophils in acute kidney injury:not neutral any more. Kidney Int 2009; 75 (7):674.
    9. Chang AT, Platt JL. The role of antibodies in transplantation. Transplant Rev (Orlando) 2009;23 (4):191.
    10. Yin D, Zeng H, Ma L, et al. Cutting Edge:NK cells mediate IgGl-dependent hyperacute rejection of xenografts. J Immunol 2004; 172 (12):7235.
    11. Rieben R, Seebach JD. Xenograft rejection:IgGl, complement and NK cells team up to activate and destroy the endothelium. Trends Immunol 2005;26 (1): 2.
    12. Laumonier T, Mohacsi PJ, Matozan KM, et al. Endothelial cell protection by dextran sulfate:a novel strategy to prevent acute vascular rejection in xenotransplantation. Am J Transplant 2004; 4 (2):181.
    13. Kawahara K, Setoyama K, Kikuchi K, et al. HMGB1 release in co-cultures of porcine endothelial and human T cells. Xenotransplantation 2007; 14 (6):636.
    14. Wang H, DeVries ME, Deng S, et al. The axis of interleukin 12 and gamma interferon regulates acute vascular xenogeneic rejection. Nat Med 2000; 6 (5): 549.
    15. Wang H, Bloom O, Zhang M, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 1999; 285 (5425):248.
    16. Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1):nuclear weapon in the immune arsenal. Nat Rev Immunol 2005;5 (4):331.
    17. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002; 418 (6894):191.
    18. Wu H, Chen G, Wyburn KR, et al. TLR4 activation mediates kidney ischemia/reperfusion injury. J Clin Invest 2007; 117 (10):2847.
    19. Han J, Zhong J, Wei W, et al. Extracellular high-mobility group box 1 acts as an innate immune mediator to enhance autoimmune progression and diabetes onset in NOD mice. Diabetes 2008; 57 (8):2118.
    20. Guo H, Chen G, Wang XM, et al. Pathologic alternations of delayed xenograft rejection of pig-to-monkey cardiac transplants. Transplant Proc 2003; 35 (1): 535.
    21. Wang H, Hosiawa KA, Garcia B, et al. Attenuation of acute xenograft rejection by short-term treatment with LF15-0195 and monoclonal antibody against CD45RB in a rat-to-mouse cardiac transplantation model. Transplantation 2003; 75 (9):1475.
    22. Chen GH, Fu BS, Cai CJ, et al. A single-center experience of retransplantation for liver transplant recipients with a failing graft. Transplant Proc 2008; 40 (5): 1485.
    1. Ulloa L. The vagus nerve and the nicotinic anti-inflammatory pathway. Nat Rev Drug Discov 2005; 4 (8):673.
    2. Ulloa L, Tracey KJ. The "cytokine profile":a code for sepsis. Trends Mol Med 2005; 11 (2):56.
    3. Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1):nuclear weapon in the immune arsenal. Nat Rev Immunol 2005; 5 (4):331.
    4. Ulloa L, Batliwalla FM, Andersson U, Gregersen PK, Tracey KJ. High mobility group box chromosomal protein 1 as a nuclear protein, cytokine, and potential therapeutic target in arthritis. Arthritis Rheum 2003; 48 (4):876.
    5. Muller S, Ronfani L, Bianchi ME. Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function. J Intern Med 2004; 255 (3):332.
    6. Bianchi ME. Significant (re)location:how to use chromatin and/or abundant proteins as messages of life and death. Trends Cell Biol 2004; 14 (6):287.
    7. Calogero S, Grassi F, Aguzzi A, et al. The lack of chromosomal protein Hmgl does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice. Nat Genet 1999; 22 (3):276.
    8. Savill J, Dransfield I, Gregory C, Haslett C. A blast from the past:clearance of apoptotic cells regulates immune responses. Nat Rev Immunol 2002; 2 (12): 965.
    9. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 2002; 418 (6894):191.
    10. Dumitriu IE, Baruah P, Manfredi AA, Bianchi ME, Rovere-Querini P. HMGB1:guiding immunity from within. Trends Immunol 2005; 26 (7):381.
    11. Bonaldi T, Talamo F, Scaffidi P, et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. Embo J 2003;22 (20):5551.
    12. Gardella S, Andrei C, Ferrera D, et al. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep 2002; 3 (10):995.
    13. Alexandrova EA, Beltchev BG Acetylated HMG1 protein interacts specifically with homologous DNA polymerase alpha in vitro. Biochem Biophys Res Commun 1988; 154 (3):918.
    14. Dimov SI, Alexandrova EA, Beltchev BG Differences between some properties of acetylated and nonacetylated forms of HMG1 protein. Biochem Biophys Res Commun 1990; 166 (2):819.
    15. Ugrinova I, Pasheva EA, Armengaud J, Pashev IG In vivo acetylation of HMG1 protein enhances its binding affinity to distorted DNA structures. Biochemistry 2001; 40 (48):14655.
    16. Degryse B, de Virgilio M. The nuclear protein HMGB1, a new kind of chemokine? FEBS Lett 2003;553 (1-2):11.
    17. Andersson U, Wang H, Palmblad K, et al. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med 2000; 192 (4):565.
    18. Park JS, Arcaroli J, Yum HK, et al. Activation of gene expression in human neutrophils by high mobility group box 1 protein. Am J Physiol Cell Physiol 2003; 284 (4):C870.
    19. Ke B, Shen XD, Gao F, et al. Gene therapy for liver transplantation using adenoviral vectors:CD40-CD154 blockade by gene transfer of CD40Ig protects rat livers from cold ischemia and reperfusion injury. Mol Ther 2004; 9 (1):38.
    20. Kokkola R, Andersson A, Mullins G, et al. RAGE is the major receptor for the proinflammatory activity of HMGB1 in rodent macrophages. Scand J Immunol 2005;61 (1):1.
    21. Abraham E, Arcaroli J, Carmody A, Wang H, Tracey KJ. HMG-1 as a mediator of acute lung inflammation. J Immunol 2000; 165 (6):2950.
    22. Wang H, Bloom O, Zhang M, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 1999; 285 (5425):248.
    23. Wang H, Vishnubhakat JM, Bloom O, et al. Proinflammatory cytokines (tumor necrosis factor and interleukin 1) stimulate release of high mobility group protein-1 by pituicytes. Surgery 1999; 126 (2):389.
    24. Li J, Kokkola R, Tabibzadeh S, et al. Structural basis for the proinflammatory cytokine activity of high mobility group box 1. Mol Med 2003;9(1-2):37.
    25. Gallucci S, Lolkema M, Matzinger P. Natural adjuvants:endogenous activators of dendritic cells. Nat Med 1999; 5 (11):1249.
    26. Rouhiainen A, Kuja-Panula J, Wilkman E, et al. Regulation of monocyte migration by amphoterin(HMGB1).Blood 2004; 104(4):1174.
    27.Gallucci S, Matzinger P. Danger signals:SOS to the immune system. Curr Opin Immunol 2001;13 (1):114.
    28. Sauter B, Albert ML, Francisco L, Larsson M, Somersan S, Bhardwaj N. Consequences of cell death:exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. JExp Med 2000; 191 (3):423.
    29. Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 2000; 12 (11):1539.
    30. Hartmann G, Weiner GJ, Krieg AM. CpG DNA:a potent signal for growth, activation, and maturation of human dendritic cells. Proc Natl Acad Sci U S A 1999; 96 (16):9305.
    31. Messmer D, Yang H, Telusma G, et al. High mobility group box protein 1:an endogenous signal for dendritic cell maturation and Thl polarization. J Immunol 2004; 173(1):307.
    32. Marrack P, Kappler J. Control of T cell viability. Annu Rev Immunol 2004; 22: 765.
    33. Seder RA, Gazzinelli R, Sher A, Paul WE. Interleukin 12 acts directly on CD4+ T cells to enhance priming for interferon gamma production and diminishes interleukin 4 inhibition of such priming. Proc Natl Acad Sci U S A 1993;90 (21):10188.
    34. Telusma G, Datta S, Mihajlov I, et al. Dendritic cell activating peptides induce distinct cytokine profiles. Int Immunol 2006; 18 (11):1563.
    35. Dumitriu IE, Baruah P, Valentinis B, et al. Release of high mobility group box 1 by dendritic cells controls T cell activation via the receptor for advanced glycation end products. J Immunol 2005;174 (12):7506.
    36. Semino C, Angelini G, Poggi A, Rubartelli A. NK/iDC interaction results in IL-18 secretion by DCs at the synaptic cleft followed by NK cell activation and release of the DC maturation factor HMGB1.Blood 2005;106 (2):609.
    37. Rovere-Querini P, Capobianco A, Scaffidi P, et al. HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Rep 2004; 5 (8):825.
    38. Siegal FP, Kadowaki N, Shodell M, et al. The nature of the principal type 1 interferon-producing cells in human blood. Science 1999; 284 (5421):1835.
    39. Krug A, Rothenfusser S, Hornung V, et al. Identification of CpG oligonucleotide sequences with high induction of IFN-alpha/beta in plasmacytoid dendritic cells. Eur J Immunol 2001;31 (7):2154.
    40. Kadowaki N, Ho S, Antonenko S, et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. JExp Med 2001;194 (6):863.
    41. Huttunen HJ, Fages C, Kuja-Panula J, Ridley AJ, Rauvala H. Receptor for advanced glycation end products-binding COOH-terminal motif of amphoterin inhibits invasive migration and metastasis. Cancer Res 2002; 62 (16):4805.
    42. Hori O, Brett J, Slattery T, et al. The receptor for advanced glycation end products (RAGE) is a cellular binding site for amphoterin. Mediation of neurite outgrowth and co-expression of rage and amphoterin in the developing nervous system. JBiol Chem 1995;270 (43):25752.
    43. Huttunen HJ, Fages C, Rauvala H. Receptor for advanced glycation end products (RAGE)-mediated neurite outgrowth and activation of NF-kappaB require the cytoplasmic domain of the receptor but different downstream signaling pathways. JBiol Chem 1999; 274 (28):19919.
    44. Schmidt AM, Stern DM. Receptor for age (RAGE) is a gene within the major histocompatibility class Ⅲ region:implications for host response mechanisms in homeostasis and chronic disease. Front Biosci 2001; 6:D1151.
    45. Sugaya K, Fukagawa T, Matsumoto K, et al. Three genes in the human MHC class Ⅲ region near the junction with the class Ⅱ:gene for receptor of advanced glycosylation end products, PBX2 homeobox gene and a notch homolog, human counterpart of mouse mammary tumor gene int-3. Genomics 1994; 23 (2):408.
    46. Huttunen HJ, Kuja-Panula J, Sorci G, Agneletti AL, Donato R, Rauvala H. Coregulation of neurite outgrowth and cell survival by amphoterin and S100 proteins through receptor for advanced glycation end products (RAGE) activation. JBiol Chem 2000; 275 (51):40096.
    47. Kuniyasu H, Chihara Y, Takahashi T. Co-expression of receptor for advanced glycation end products and the ligand amphoterin associates closely with metastasis of colorectal cancer. Oncol Rep 2003;10 (2):445.
    48. Lander HM, Tauras JM, Ogiste JS, Hori O, Moss RA, Schmidt AM. Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. JBiol Chem 1997; 272 (28):17810.
    49. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998;392 (6673):245.
    50. Hou FF, Ren H, Owen WF, Jr., et al. Enhanced expression of receptor for advanced glycation end products in chronic kidney disease. J Am Soc Nephrol 2004; 15 (7):1889.
    51. Yan SS, Wu ZY, Zhang HP, et al. Suppression of experimental autoimmune encephalomyelitis by selective blockade of encephalitogenic T-cell infiltration of the central nervous system. Nat Med 2003;9 (3):287.
    52. Liliensiek B, Weigand MA, Bierhaus A, et al. Receptor for advanced glycation end products (RAGE) regulates sepsis but not the adaptive immune response. J Clin Invest 2004; 113 (11):1641.
    53. Rescigno M, Martino M, Sutherland CL, Gold MR, Ricciardi-Castagnoli P. Dendritic cell survival and maturation are regulated by different signaling pathways. JExp Med 1998;188 (11):2175.
    54. Wu H, Chen G, Wyburn KR, et al. TLR4 activation mediates kidney ischemia/reperfusion injury. JClin Invest 2007; 117 (10):2847.
    55. Fan J, Li Y, Levy RM, et al. Hemorrhagic shock induces NAD(P)H oxidase activation in neutrophils:role of HMGB1-TLR4 signaling. J Immunol 2007; 178 (10):6573.
    56. Park JS, Svetkauskaite D, He Q, et al. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 2004; 279 (9):7370.
    57. Tsung A, Sahai R, Tanaka H, et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med 2005; 201 (7):1135.
    58. Tsung A, Hoffman RA, Izuishi K, et al. Hepatic ischemia/reperfusion injury involves functional TLR4 signaling in nonparenchymal cells. J Immunol 2005; 175 (11):7661.
    59. Tsung A, Zheng N, Jeyabalan G, et al. Increasing numbers of hepatic dendritic cells promote HMGB1-mediated ischemia-reperfusion injury. J Leukoc Biol 2007; 81(1):119.
    60. Tsung A, Klune JR, Zhang X, et al. HMGB1 release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling. JExp Med 2007; 204 (12):2913.
    61. Goldstein RS, Gallowitsch-Puerta M, Yang L, et al. Elevated high-mobility group box 1 levels in patients with cerebral and myocardial ischemia. Shock 2006; 25 (6):571.
    62. Oyama J, Blais C, Jr., Liu X, et al. Reduced myocardial ischemia-reperfusion injury in toll-like receptor 4-deficient mice. Circulation 2004; 109 (6):784.
    63. Faraco G, Fossati S, Bianchi ME, et al. High mobility group box 1 protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration in vitro and in vivo. JNeurochem 2007; 103 (2):590.
    64.Kim JB, Lim CM, Yu YM, Lee JK. Induction and subcellular localization of high-mobility group box-1 (HMGB1) in the postischemic rat brain. JNeurosci Res 2008;86 (5):1125.
    65. Kim JB, Sig Choi J; Yu YM, et al. HMGB1,a novel cytokine-like mediator linking acute neuronal death and delayed neuroinflammation in the postischemic brain. JNeurosci 2006; 26 (24):6413.
    66. Wittemann B, Neuer Q Michels H, Truckenbrodt H, Bautz FA. Autoantibodies to nonhistone chromosomal proteins HMG-1 and HMG-2 in sera of patients with juvenile rheumatoid arthritis. Arthritis Rheum 1990; 33 (9):1378.
    67. Ayer LM, Rubin RL, Dixon GH, Fritzler MJ. Antibodies to HMG proteins in patients with drug-induced autoimmunity. Arthritis Rheum 1994; 37 (1):98.
    68. Kokkola R, Sundberg E, Ulfgren AK, et al. High mobility group box chromosomal protein 1:a novel proinflammatory mediator in synovitis. Arthritis Rheum 2002; 46 (10):2598.
    69. Taniguchi N, Kawahara K, Yone K, et al. High mobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine. Arthritis Rheum 2003;48 (4):971.
    70. Kokkola R, Li J, Sundberg E, et al. Successful treatment of collagen-induced arthritis in mice and rats by targeting extracellular high mobility group box chromosomal protein 1 activity. Arthritis Rheum 2003; 48 (7):2052.
    71. Pullerits R, Jonsson IM, Verdrengh M, et al. High mobility group box chromosomal protein 1, a DNA binding cytokine, induces arthritis. Arthritis Rheum 2003; 48 (6):1693.
    72. Ek M, Popovic K, Harris HE, Naucler CS, Wahren-Herlenius M. Increased extracellular levels of the novel proinflammatory cytokine high mobility group box chromosomal protein 1 in minor salivary glands of patients with Sjogren's syndrome. Arthritis Rheum 2006; 54 (7):2289.
    73. Popovic K, Ek M, Espinosa A, et al. Increased expression of the novel proinflammatory cytokine high mobility group box chromosomal protein 1 in skin lesions of patients with lupus erythematosus. Arthritis Rheum 2005;52 (11):3639.
    74. Fashena SJ, Reeves R, Ruddle NH. A poly(dA-dT) upstream activating sequence binds high-mobility group I protein and contributes to lymphotoxin (tumor necrosis factor-beta) gene regulation. Mol CellBiol 1992; 12 (2):894.
    75. Thanos D, Maniatis T. The high mobility group protein HMG I(Y) is required for NF-kappa B-dependent virus induction of the human IFN-beta gene. Cell 1992; 71 (5):777.
    76. Baldassarre G, Battista S, Belletti B, et al. Negative regulation of BRCA1 gene expression by HMGA1 proteins accounts for the reduced BRCA1 protein levels in sporadic breast carcinoma. Mol Cell Biol 2003; 23 (7):2225.
    77. Brunetti A, Manfioletti G, Chiefari E, Goldfine ID, Foti D. Transcriptional regulation of human insulin receptor gene by the high-mobility group protein HMGI(Y). Faseb J 2001;15 (2):492.
    78. Dong Xda E, Ito N, Lotze MT, et al. High mobility group box I (HMGB1) release from tumor cells after treatment:implications for development of targeted chemoimmunotherapy. J Immunother 2007; 30 (6):596.
    79. Bussemakers MJ, van de Ven WJ, Debruyne FM, Schalken JA. Identification of high mobility group protein I(Y) as potential progression marker for prostate cancer by differential hybridization analysis. Cancer Res 1991; 51 (2): 606.
    80. Leman ES, Madigan MC, Brunagel G, Takaha N, Coffey DS, Getzenberg RH. Nuclear matrix localization of high mobility group protein I(Y) in a transgenic mouse model for prostate cancer. J Cell Biochem 2003; 88 (3):599.
    81. Fedele M, Bandiera A, Chiappetta G, et al. Human colorectal carcinomas express high levels of high mobility group HMGI(Y) proteins. Cancer Res 1996; 56 (8):1896.
    82. Nestl A, Von Stein OD, Zatloukal K, et al. Gene expression patterns associated with the metastatic phenotype in rodent and human tumors. Cancer Res 2001; 61 (4):1569.
    83. Tarbe N, Evtimova V, Burtscher H, Jarsch M, Alves F, Weidle UH. Transcriptional profiling of cell lines derived from an orthotopic pancreatic tumor model reveals metastasis-associated genes. Anticancer Res 2001; 21 (5): 3221.
    84. Ram TG, Reeves R, Hosick HL. Elevated high mobility group-I(Y) gene expression is associated with progressive transformation of mouse mammary epithelial cells. Cancer Res 1993;53 (11):2655.
    85. Dolde CE, Mukherjee M, Cho C, Resar LM. HMG-I/Y in human breast cancer cell lines. Breast Cancer Res Treat 2002; 71 (3):181.
    86. Takaha N, Hawkins AL, Griffin CA, Isaacs WB, Coffey DS. High mobility group protein I(Y):a candidate architectural protein for chromosomal rearrangements in prostate cancer cells. Cancer Res 2002; 62 (3):647.
    87. Kuniyasu H, Chihara Y, Kondo H, Ohmori H, Ukai R. Amphoterin induction in prostatic stromal cells by androgen deprivation is associated with metastatic prostate cancer. Oncol Rep 2003; 10 (6):1863.
    88. Apetoh L, Ghiringhelli F, Tesniere A, et al. The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol Rev 2007; 220:47.
    89. Apetoh L, Ghiringhelli F, Tesniere A, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 2007; 13 (9):1050.
    90. Maeda S, Hikiba Y, Shibata W, et al. Essential roles of high-mobility group box 1 in the development of murine colitis and colitis-associated cancer. Biochem Biophys Res Commun 2007; 360 (2):394.
    91. Abraham E, Carmody A, Shenkar R, Arcaroli J. Neutrophils as early immunologic effectors in hemorrhage- or endotoxemia-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2000; 279 (6):L1137.
    92. Kim JY, Park JS, Strassheim D, et al. HMGB1 contributes to the development of acute lung injury after hemorrhage. Am J Physiol Lung Cell Mol Physiol 2005;288 (5):L958.
    93. Barsness KA, Arcaroli J, Harken AH, et al. Hemorrhage-induced acute lung injury is TLR-4 dependent. Am J Physiol Regul Integr Comp Physiol 2004; 287 (3):R592.
    94. Yang R, Harada T, Mollen KP, et al. Anti-HMGB1 neutralizing antibody ameliorates gut barrier dysfunction and improves survival after hemorrhagic shock. Mol Med 2006; 12 (4-6):105.
    95. Levy RM, Mollen KP, Prince JM, et al. Systemic inflammation and remote organ injury following trauma require HMGB1. Am J Physiol Regul Integr Comp Physiol 2007; 293 (4):R1538.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700