α-galactosylceramide活化NKT细胞在宿主抗衣原体生殖道感染中作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
衣原体(Chlamydia)是一类专性胞内寄生的原核细胞型微生物。沙眼衣原体泌尿生殖道感染是一种常见的性传播疾病,近年来在世界范围内发病率呈上升趋势。女性生殖道沙眼衣原体感染可引起宫颈炎、子宫内膜炎、输卵管炎等严重并发症进而导致不孕和异位妊娠,同时沙眼衣原体感染还能提高HIV感染以及HPV感染所致宫颈癌的机率。以往研究表明在宿主抗衣原体感染过程中,Th1细胞免疫应答,尤其是IFN-γ的产生对于宿主抗衣原体感染至关重要,但是目前对宿主抗衣原体感染的确切免疫机制还缺乏深入了解和认识。阐明衣原体感染过程中免疫保护和免疫病理损伤的机制是研制安全有效衣原体疫苗的首要条件。
     自然杀伤T细胞(Natural killer T cells, NKT细胞)是一类独特的T淋巴细胞亚群,同时表达T细胞和NK细胞的表面典型标志。NKT细胞的显著特点是当TCR受到CDld分子递呈的糖脂抗原的刺激后,能够迅速活化并产生一系列细胞因子。被激活的NKT细胞还能够活化其它细胞,如树突状细胞、NK细胞、巨噬细胞、B细胞以及T细胞。众多研究结果已证明了NKT细胞在自身免疫性疾病、变态反应、肿瘤的转移以及微生物感染中的重要作用,显示了其强大的免疫调节潜能。
     NKT细胞能够识别非经典的MHC Ⅰ类分子CDld递呈的糖脂抗原。α-galactosylceramide (a-GalCer,α-半乳糖神经酰胺)是一种海绵生物来源的化合物,可以与CD1d分子特异性结合,激活具有半恒定TCR的经典NKT细胞(以下简称为NKT细胞)。相反,拥有多变TCR的非经典NKT细胞不能被α-GalCer活化。
     大量研究结果表明NKT细胞在微生物感染中具有重要的免疫调节作用。研究显示不同种的衣原体,肺炎衣原体(C. pneumoniae)和鼠型衣原体(C.muridarum),在肺部感染模型中能诱导生成不同的NKT亚群,产生不同的细胞因子模式,从而导致不同的感染结局。此差异说明了NKT细胞群体作用的复杂性。要确切的揭示NKT在衣原体感染中的功能还需要更多的实验室证据。由于生殖道是沙眼衣原体的天然感染途径,生殖道又具有不同于呼吸道的特殊免疫微环境,因而有必要使用小鼠衣原体生殖道感染模型进行进一步的研究。
     C. muridarum是沙眼衣原体免疫学研究中最常使用的衣原体株,它是鼠类的天然病原体,有利于研究病原体与宿主间的关系。阴道接种C. muridarum后,小鼠感染的病理过程与女性生殖道衣原体急性感染在许多方面非常相似。因此,本研究利用C. muridarum小鼠生殖道感染模型,探讨了NKT细胞在衣原体生殖道感染中的作用。由于α-GalCer是NKT细胞的特异性配体,并已被广泛应用于观察NKT活化后的功能研究,因此我们对α-GalCer刺激的活化NKT细胞在抗C. muridarum生殖道感染中的作用进行了探讨。
     一、α-GalCer活化NKT细胞在小鼠C. muridarum生殖道感染中的作用
     1、α-GalCer能够增强生殖道局部淋巴结NKT细胞的活化
     首先检测了α-GalCer对小鼠C. muridarum生殖道感染时NKT细胞活化的影响。雌性BALB/c小鼠注射α-GalCer或者vehicle(溶媒对照)2小时后分别阴道接种衣原体,用四聚体染色方法对两组小鼠生殖道局部引流淋巴结NKT细胞的比例进行分析。结果表明,vehicle对照组小鼠与α-GalCer处理组小鼠的NKT(CDld tetramer+TCRβ+)细胞比例分别是1.55%和5.6%,两组之间有显著性差异(p<0.001)。
     CD69分子的表达,是NKT细胞的一个重要早期活化标志。因此,我们通过流式细胞术检测了NKT细胞CD69的表达水平,以进一步比较α-GalCer处理组和vehicle对照组小鼠NKT细胞的活化情况。尽管在感染前,NKT细胞已经有较高基础水平CD69的表达,但是感染后,CD69表达水平明显升高,而α-GalCer能够进一步上调衣原体感染局部NKT细胞CD69分子的表达。
     2、α-GalCer活化NKT细胞能减轻小鼠C. muridarum生殖道感染和炎症病理损伤
     我们对α-GalCer活化NKT细胞在C. muridarum生殖道感染过程的作用进行了观察分析。小鼠注射α-GalCer后阴道接种衣原体。感染后检测小鼠一般状况和体重变化,并在不同时间点取小鼠阴道拭子检测衣原体存活数(IFU);对小鼠生殖道标本进行病理组织学分析。
     重复实验结果表明,与对照组小鼠相比,α-GalCer处理组小鼠一般状况较好,体重下降较少。自感染第3天开始,α-GalCer处理组小鼠IFU即较对照组轻度减少,第9天时两组的IFU差异显著(p<0.001)。在整个感染过程中α-GalCer处理组小鼠的阴道衣原体IFU明显低于对照组存活数较低(p<0.05)。
     肉眼生殖道组织大体观察结果表明,α-GalCer处理组小鼠较少发生子宫角扩张和输卵管积水。镜下观察病理组织切片,α-GalCer处理组小鼠的生嬗道局部组织炎症病变较轻,而对照组小鼠组织中的中性粒细胞等炎性细胞浸润严重、管腔内可见大量的脓性分泌物,可见部分上皮细胞发生炎性脱落。两组小鼠局部病变的差异在上生殖道(子宫角和输卵管)尤为明显。
     上述结果表明,在小鼠C.muridarum生殖道感染时,α-GalCer活化NKT细胞能够减轻C. muridarum的生殖道感染和炎性损伤,增强小鼠抗衣原体感染的保护性作用。
     二、活化NKT细胞在C. muridarum生殖道感染中发挥保护性作用的机制
     1、C.muridarum生殖道感染能够诱导局部淋巴结NKT细胞活化
     首先检测了NKT细胞对C. muridarum生殖道感染的反应。收集衣原体感染前和感染后不同时间点的生殖道局部引流淋巴结单个核细胞,通过免疫荧光染色和流式细胞术分析NKT细胞的数量变化,结果显示NKT细胞比例在感染后明显增加。我们还检测了NKT细胞表面的早期活化标志CD69的表达以确定感染后NKT细胞的活化状态,结果表明C. muridarum感染后NKT细胞CD69的表达快速上调。
     上述结果说明C. muridarum生殖道感染可以诱导NKT细胞的活化。
     2、C.muridarum生殖道感染能够诱导NKT细胞功能向IFN-γ方向极化
     为阐明C.muridarum生殖道感染时NKT细胞的功能,对NKT细胞分泌细胞因子的模式进行了检测。生殖道局部淋巴结细胞内细胞因子染色结果表明,未感染小鼠NKT细胞的IFN-γ和IL-4分泌水平均较低。衣原体感染后,NKT细胞产生的IFN-γ明显增加,感染前后有显著差异。尽管感染也促进了IL-4的分泌,但与IFN-y相比仍处于明显较低的水平。因此,小鼠C.muridarum生殖道感染能够诱导NKT细胞功能向IFN-γ方向极化。
     3、C.muridarum生殖道感染时,α-GalCer促使活化NKT细胞功能进一步向IFN-γ方向极化
     通过本论文的第一部分内容NKT细胞活化检测实验,已经证实了α-GalCer能够促进C. muridarum生殖道感染时NKT细胞的活化。
     进一步利用细胞内细胞因子染色技术对NKT细胞产生细胞因子的模式进行检测。发现在衣原体生殖道感染时,与vehicle处理组相比,α-GalCer处理组小鼠NKT细胞产生的IFN-γ明显增加(16%比33%,p<0.001)。而两组小鼠NKT细胞的IL-4分泌均处在较低水平。值得注意的是,单纯α-GalCer注射而无衣原体感染组小鼠的NKT细胞分泌IFN-γ和IL-4均明显增加,展示了与α-GalCer处理合并感染小鼠截然不同的细胞因子模式。因此,α-GalCer处理组小鼠C.muridarum生殖道感染后,NKT细胞功能向IFN-γ方向明显极化,是衣原体感染诱导了极化作用的产生,α-GalCer处理则进一步加强了此极化作用。
     4、NKT细胞活化能够提高小鼠生殖道局部Thl保护性免疫应答
     为明确α-GalCer活化NKT细胞增强小鼠抗C.muridarum生殖道感染的保护性作用是否与Thl型免疫反应的加强有关,首先对感染小鼠生殖道组织细胞因子的表达进行了检测。荧光定量PCR结果表明,与对照组相比,α-GalCer处理小鼠生殖道组织的IFN-γ和IL-12mRNA水平升高,而IL-10水平下降。
     随后用ELISA方法检测了感染后小鼠的生殖道引流淋巴结和生殖道冲洗液的细胞因子模式。结果表明,a-GalCer处理组小鼠感染后局部淋巴结细胞的IFN-γ分泌水平明显高于vehicle对照组。尽管细胞因子IFN-γ在生殖道分泌物中的水平要低于淋巴结细胞,但是α-GalCer处理组和vehicle对照组之间差异仍然明显(p<0.05)。另一细胞因子IL-12p70在α-GalCer处理组小鼠生殖道分泌物和淋巴结中的表达也明显增加。IL-10的检测结果表明,衣原体生殖道感染后,α-GalCer处理组小鼠产生的IL-10比对照组明显减少(P<0.05)。上述ELISA结果与荧光定量PCR的检测结果吻合。
     C.muridarum生殖道感染后局部细胞因子的检测结果表明,NKT细胞有利于提高宿主的Th1保护性免疫应答反应。
     5、C.muridarum生殖道感染时,NKT细胞促进NK细胞和T细胞的IFN-γ分泌
     研究显示,NKT细胞TCR受CDld分子递呈的糖脂抗原的刺激活化后对其它细胞具有活化作用,是连接固有免疫和适应性免疫的桥梁。因此,利用细胞内细胞因子染色技术,检测了NKT细胞在衣原体生殖道感染过程中对NK细胞和传统T细胞的调节作用。检测结果发现,与对照组相比,α-GalCer处理组小鼠生殖道淋巴结中NK细胞分泌的IFN-γ显著增加。同时,α-GalCer处理组小鼠的CD4和CD8T细胞的IFN-γ也明显增加,而IL-4分泌却较对照组明显减少。上述结果表明NKT细胞活化对NK细胞和T细胞的功能具有调节作用,能促进其IFN-y的产生。
     综上所述,本研究首次对NKT细胞在C. muridarum生殖道感染中的作用进行了观察研究,并对其作用机制进行了初步探讨。结果显示,经特异性配体α-GalCer处理小鼠的生殖道感染和炎症病理损伤显著减轻,说明α-GalCer活化NKT细胞对C. muridarum的生殖道感染具有保护性作用。NKT细胞发挥保护性作用的机制与衣原体生殖道感染诱导NKT细胞活化并向IFN-γ方向极化有关。NKT细胞增强了宿主抗衣原体生殖道感染的Th1免疫反应,并对小鼠NK细胞和T细胞有调节作用,促进细胞因子IFN-γ的产生。这些发现不仅有助于我们对沙眼衣原体感染免疫机制的认识,而且可为衣原体感染防治和疫苗研究提供新思路和实验依据,具有不可低估的科学应用价值。
Chlamydiae, an obligate intracellular bacterial pathogen, causes various human diseases. Chlamydia trachomatis genital tract infection is the most prevalent bacterial cause of sexually transmitted diseases in the world, with an estimated100million new cases each year in women. The genital tract chlamydial infection can result in severe complications, including pelvic inflammatory disease, ectopic pregnancy, and infertility. Moreover, chlamydial genital infection increases the risk of acquiring human immunodeficiency virus-related AIDS and human pappilloma virus-induced cervical carcinoma. Therefore, genital tract chlamydial infection is an important public health concern with a heavy financial burden. Previous studies have demonstrated that the Thl immune response, especially IFN-y production, is critical for protection against chlamydia infection. However, there is no clear and detail understanding of immune mechanisms to chlamydial infections.
     Natural killer T (NKT) cells are a unique lymphocyte subpopulation characterized by co-expression of surface markers with conventional T cells and NK cells. The most characteristic function of NKT cells is their ability to be rapidly activated and to produce cytokines in response to T-cell receptor engagement. Stimulation of NKT cells also results in the activation of other cells, including dendritic cells, NK cells, macrophages, B cells and conventional T cells. Because of their potent immuno-modulatory properties, NKT cells are considered to influence a wide range of diverse disease conditions such as autoimmune diseases, allergy and tumor rejection, as well as infections.
     NKT cells recognize lipid antigens that are presented by the nonclassical MHC I molecule CD1d. α-galactosylceramide (a-GalCer), a synthetic glycolipid ligand, which specifically binds to CD Id can stimulate classical NKT (invariant NKT) cells with semi-invariant TCR. In contrast, the nonclassical NKT cells with diverse TCR and CD1d-independent NKT-like cells do not respond to a-Galcer.
     Recent evidence suggests that NKT cells play an important immune regulatory role in the response to various microbial pathogens. Recent studies showed that NKT cells play a crucial protective role in the host defense against chlamydial infections. For example, NKT-knockout mice experience more severe disease and in vivo pathogen growth in lung C. pneumoniae infection. Moreover, the activation of NKT cells generated protection against C. trachomatis L2-induced arthritis. However, in a mouse model of C. muridarum lung infection, NKT cells was found to enhance the Th2immune response and promote chlamydial infection in vivo. These different observations reflect the functional complexity of NKT cells and the necessity for analyzing the role of NKT in different infection models including different infection routes.
     The genital tract is the natural route of sexually transmitted C. trachomatis infection, and genital tract mucosa has unique immunological features different from the mucosal immune system of lung or other organs. In the current study, we investigated the role of NKT cells in genital tract infection with C. muridarum for studying chlamydial genital infections in mouse models. Since α-GalCer is a specific ligand of NKT cells and has been shown in numerous studies for its stimulating effect on NKT cells, we used α-GalCer to enhance the function of NKT cells and investigated the mechanisms by which NKT cells modulate the immune responses against genital tract chlamydial infection.
     Ⅰ. The role of α-GalCer stimulated NKT cells in genital tract infection with C. muridarum
     1. α-GalCer enhance the activation of NKT cells during C. muridarum genital infection
     We first investigated whether α-GalCer could influence the activation of NKT cells. BALB/c mice were infected intravaginally with1×105IFUs of C. muridarum2h after α-Galcer or vehicle intravenous injection. The a-GalCer-treated mice showed a significant increase in percentages of NKT (CD1d tetramer+TCRβ+) cells compared with the vehicle control (5.6%vs1.55%,p<0.001).
     In addition, the expression of CD69, an early activation marker, was significantly upregulated in α-GalCer-treated mice than that of control (p<0.05). These data suggest that α-GalCer effectively promoted NKT cells activation during C. muridarum genital infection.
     2. α-Galcer-treated mice show enhanced clearance of C. muridarum genital infection and reduced inflammatory pathologic changes
     We evaluated the role of NKT cells in host defense against the infection. The body weight loss of the α-GalCer-treated mice was less than that of control. The IFU level was significantly different between α-GalCer-treated group and vehicle-treated control group(p<0.05). Mice pretreated with α-GalCer showed clear reduction in chlamydial shedding at as early as day3postinfection. The difference expanded with time until day9post-infection when the α-GalCer-treated mice showed approximately10-folds lower chlamydial burden than the ones without α-GalCer-treatment.
     We further compared the histopathological changes in the genital tract between the two groups. Gross examination showed that the incidence of hydrosalpinx and dilatation of uterine horn was significantly reduced in the α-GalCer-treated mice. Detailed histopathological comparisons were performed by light microscopy. The a-GalCer-treated mice showed less severe tissue inflammation, in contrast, the vehicle-treated mice showed more severe inflammatory cellular, tissue inflammatory exudates and hyperemia infiltration.
     Therefore, NKT cells play a protective role in the host defense against C. muridarum genital infection in both pathogen clearance and pathological changes. Ⅱ. The mechanism by which activated a-GalCer-activated NKT cells play a promoting role in host resistance to C. muridarum genital tract infection
     1. NKT cells become activated during C. muridarum genital infection
     We investigated whether NKT cells could respond to chlamydial genital infection. At different time points after infection, the mice showed a significant increase in percentages of NKT (CD1d tetramer+TCRβ+) cells compared with the uninfection control. In addition, the expression of CD69was significantly upregulated after infection. These data suggest that C. muridarum genital infection effectively induce NKT cells activation.
     2. C. muridarum genital infection induces IFN-γ polarization of NKT cells
     Next, we investigated the intracellular cytokine profile of NKT cells during genital chlamydial infection. Compared with the unfected control, the infected mice showed a significantly higher expression level of IFN-γ. Therefore, the pattern of cytokine production suggested that C. muridarum infection can skew the cytokine response of NKT cells to IFN-γ polarization.
     3. NKT activation by α-GalCer enhances IFN-γ polarization of NKT cells following genital chlamydial infection
     We further investigated the influence of α-GalCer on the cytokine pattern of NKT cells during chlamydial infection. Intracellular cytokine analysis showed that prior treatment with α-GalCer followed by C. muridarum infection enhanced the IFN-γ production by NKT after infection (p<0.001). Notably, NKT cells activated by α-GalCer alone (without C. muridarum infection) showed typically high levels of both IFN-γ and IL-4production. Therefore, the pattern of cytokine production by NKT cells was determined by C. muridarum genital tract infection, while α-GalCer treatment enhanced the IFN-γ polarization of NKT cells during genital chlamydial infection.
     4. α-GalCer-treated mice show enhanced type1immune response during C. muridarum genital tract infection
     To explore whether the improved protective effect in host defense against C. muridarum genital infection in α-GalCer-treated mice was associated with an enhanced Chlamydia-specific Thl immune response, we evaluated cytokine production in genital tract tissues and local lymph node cells of the different groups of mice. First, real-time PCR results suggested α-GalCer-treated mice showed a significantly higher expression level of IFN-y and IL-12mRNA but decreased IL-10expression in genital tissues compared with the control.
     We next determined the level of cytokine protein by ELIS A. IFN-y production by lymph node cells and in genital secretions from a-GalCer-treated mice was significantly higher than those from vehicle-treated mice post-infection. Similarly, a-GalCer-treated mice showed high levels of IL-12production. In contrast, IL-10production was significantly lower in a-GalCer-treated mice than in vehicle-treated mice.
     Therefore, NKT cells activated by a-GalCer significantly increase Thl immune response in the genital infection model.
     5. α-GalCer-treated mice show increased IFN-y production by NK and T cells during chlamydial infection
     We further examined the influence of NKT cell activation on NK and T cells during genital chlamydial infection. Compared with cells from vehicle-treated mice, NK cells from lymph nodes isolated from α-GalCer-treated mice showed significantly enhanced IFN-γ production after infection. This suggested that enhanced NKT cells activation by α-GalCer promoted IFN-γ production of NK cells. Next, we compared intracellular IFN-γ and IL-4production by CD4+T and CD8+T cells in splenocytes from α-GalCer-treated mice and control mice. CD4+T and CD8+T cells from α-GalCer treatment mice produced a greater amount of IFN-γ than did untreated mice after infection. In contrast, the control mice induced more IL-4production by CD4and CD8T cells. Therefore, NKT cell activation by α-GalCer contributed to enhanced type1T cell response during C. muridarum genital tract infection.
     In conclusion, our results demonstrate that enhanced activation of NKT cells by the administration of a-Galcer led to an enhancement of protection against C. muridarum genital tract infection The beneficial effect of NKT cells is associated with a shift in cytokine profile of NKT cells to IFN-y polarization induced by C. muridarum genital tract infection. The results also suggested that activated NKT cells have an promoting effect on IFN-y production by NK and conventional T cells in this infection. These findings are helpful to enrich our understanding on the mechanism of chlamydial infection, moreover, the investigation provides novel strategy and experiment foundation for developing prophylactic vaccine against chlamydial infection.
引文
1. World Health Organization (2001) Global Prevalence and Incidence of Selected Curable Sexually Transmitted Infections:Overview and Estimates (World Health Organization, Geneva).
    2. Parish WL, Laumann EO, Cohen MS, Pan S, Zheng H, Hoffman I, Wang T, Ng KH (2003) Population-based study of chlamydial infection in China:a hidden epidemic. JAMA 289,1265-1273.
    3. Silins I, Ryd W, Strand A, Wadell G., Tornberg S, Tornberg S, Tornberg S, Hansson BG, Wang X, Arnheim L, Dahl V, Bremell D, Persson K, Dillner J, Rylander E (2005) Chlamydia trachomatis infection and persistence of human papillomavirus. Int J Cancer 16:110-115.
    4. Nusbaum MR, Wallace RR, Slatt LM & Kondrad EC (2004) Sexually Transmitted Infections and Increased Risk of Co-infection with Human Immunodeficiency Virus. J Am Osteopath Assoc 104:527-535.
    5. Brunham RC, and Rey-Ladino J (2005) Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine. Nat Rev Immunol 5:149-161.
    6. Peipert JF (2003) Clinical practice. Genital chlamydial infections. N Engl J Med 349:2424-2430.
    7. Su H, Messer R, Whitmire W, Hughes S, Caldwell HD (2000) Subclinical chlamydial infection of the female mouse genital tract generates a potent protective immune response:implications for development of live attenuated chlamydial vaccine strains. Infect Immun.68(1):192-196.
    8. Kyle H. Ramsey,Todd W. Cotter, Rena D. Salyer, Gurwattan S. Miranpuri, Michael A. Yanez, Christoffer E. Poulsen, Jennifer L. DeWolfe, and Gerald I. Byrne (1999) Prior Genital Tract Infection with a Murine or Human Biovar of Chlamydia trachomatis Protects Mice against Heterotypic Challenge Infection. Infect Immun Jun;67(6):3019-3025.
    9.王红枫,刘全忠沙眼衣原体生殖道感染动物模型的研究进展(2005).国外医学皮肤性病学分册,31(2):127-129.
    10.陈木开,韩建德,陈小红,涂裕英(2004)MoPn沙眼衣原体致小鼠生殖道感染模型的初步研究.中国人兽共患病杂志20(8):687-689.
    11. Russell MW (2002) Immunization for protection of the reproductive tract:a review. Am J Reprod Immunol 47:265-268.
    12. Beagley KW. & Gockel CM (2003) Regulation of innate and adaptive immunity by the female sex hormones oestradiol and progesterone. FEMS Immunol Med Microbiol 38:13-22.
    13. Johansson M. & Lycke NY (2003) Immunology of the human genital tract. Curr Opin Infect Dis 16:43-49.
    14. Miller CJ, McChesney M & Moore PF (1992) Langerhans cells, macrophages and lymphocyte subsets in the cervix and vagina of Rhesus macaques. Lab Invest 67: 628-634.
    15. Fidel PL Jr, Wolf NA & KuKuruga MA (1996) T lymphocytes in the murine vaginal mucosa are phenotypically distinct from those in the periphery. Infect Immun 64:3793-3799.
    16. Magee DM, Williams DM, Smith JG, Bleicker CA, Grubbs BG, Schachter J, Rank RG. (1995) Role of CD8 T cells in primary Chlamydia infection. Infect Immun 63:516-521.
    17. Su H & Caldwell HD (1995) CD4+ T cells play a significant role in adoptive immunity to Chlamydia trachomatis infection of the mouse genital tract. Infect Immun 63:3302-3308.
    18. Brunham RC, Zhang DJ, Yang X, McClarty GM (2000) The potential for vaccine development against chlamydial infection and disease. J Infect Dis 181: S538-S543.
    19. Zhang D, Yang X, Berry J, Shen C, McClarty G, Brunham RC (1997) DNA vaccination with the major outer-membrane protein gene induces acquired immunity to Chlamydia trachomatis (mouse pneumonitis) infection.J Infect Dis 176:1035-1040.
    20. Pal S, Barnhart KM, Wei Q, Abai AM, Peterson EM, de la Maza LM (1999) Vaccination of mice with DNA plasmids coding for the Chlamydia trachomatis major outer membrane protein elicits an immune response but fails to protect against a genital challenge. Vaccine 17:459-465.
    21. Williams DM., Grubbs BG, Darville T, K. Kelly & Rank RG (1998) A role for interleukin-6 in host defense against murine Chlamydia trachomatis infection. Infect Immun 66:4564-4567.
    22. Nagarajan UM, Prantner D, Sikes JD, Andrews CW Jr, Goodwin AM, Nagarajan S, Darville T (2008) Type I interferon signaling exacerbates Chlamydia muridarum genital infection in a murine model. Infect Immun 76:4642-4648.
    23. Kelly KA, Natarajan S, Ruther P, Wisse A, Chang MH, Ault KA (2001) Chlamydia trachomatis infection induces mucosal addressin cell adhesion molecule-1 and vascular cell adhesion molecule-1, providing an immunologic link between the fallopian tube and other mucosal tissues. J Infect Dis 184,885-891.
    24. King NJ, Parr EL & Parr MB (1998) Migration of lymphoid cells from vaginal epithelium to iliac lymph nodes in relation to vaginal infection by herpes simplex virus type 2. J Immunol 160:1173-1180.
    25. Yang X, HayGlass KT & Brunham RC (1996) Genetically determined differences in IL-10 and IFN-γ responses correlate with clearance of Chlamydia trachomatis mouse pneumonitis infection. J Immunol 156:4338-4344.
    26. Geng Y, Berencsi K, Gyulai Z, Valyi-Nagy T, Gonczol E, Trinchieri G (2000) Roles of interleukin-12 and interferon in murine Chlamydia pneumoniae infection. Infect Immun 68:2245-2253.
    27. Igietseme JU, Ananaba GA, Candal DH, Lyn D, Black CM (1998) Immune control of chlamydial growth in the human epithelial cell line RT4 involves multiple mechanisms that include nitric oxide induction, tryptophan catabolism and iron deprivation. Microbiol Immunol 42:617-625.
    28. Ramsey KH, Miranpuri GS, Sigar IM, Ouellette S, Byrne GI. (2001)Chlamydia trachomatis persistence in the female mouse genital tract:inducible nitric oxide synthase and infection outcome. Infect Immun 69:5131-5137.
    29. Freidank HM, Billing H, Wiedmann-Al-Ahmad M (2001) Influence of iron restriction on Chlamydia pneumoniae and C. trachomatis. Journal of medical microbiology 50(3):223-7.
    30. Zhong GM, de la Maza LM (1988)Activation of mouse peritoneal macrophages in vitro or in vivo by recombinant murine gamma interferon inhibits the growth of Chlamydia trachomatis serovar L1. Infect Immun 56(12):3322-3325.
    31. Ito JI, Lyons JM. (1999) Role of gamma interferon in controlling murine chlamydial genital tract infection. Infect Immun 67(10):5518-5521.
    32. Perry LL, Su H, Feilzer K, Messer R, Hughes S, Whitmire W, Caldwell HD (1999) Differential sensitivity of distinct Chlamydia trachomatis isolates to IFN-gamma-mediated inhibition. J Immunol 162(6):3541-3548.
    33. Cotter TW, Ramsey KH, Miranpuri GS, Poulsen CE & Byrne GI (1997) Dissemination of Chlamydia trachomatis chronic genital tract infection in gamma interferon gene knockout mice. Infect Immun 65:2145-2152.
    34. Johansson M, Schon K, Ward M & Lycke N (1997) Genital tract infection with Chlamydia trachomatis fails to induce protective immunity in gamma interferon receptor-deficient mice despite a strong local immunoglobulin A response. Infect Immun 65:1032-1044.
    35. Li W, Murthy AK, Guentzel MN, Seshu J, Forsthuber TG, Zhong G, Arulanandam BP (2008) Antigen-specific CD4+T cells produce sufficient IFN-gamma to mediate robust protective immunity against genital Chlamydia muridarum infection. J Immunol 180(5):3375-3382.
    36. Cohen CR, Nguti R, Bukusi EA, Lu H, Shen C, Luo M, Sinei S, Plummer F, Bwayo J, Brunham RC (2000) Human immunodeficiency virus type 1-infected women exhibit reduced interferon-gamma secretion after Chlamydia trachomatis stimulation of peripheral blood lymphocytes. J Infect Dis 182:1672-1677.
    37. Morrison SG, Morrison RP (2000) In situ analysis of the evolution of the primary immune response in murine Chlamydia trachomatis genital tract infection, Infect Immun 68:2870-2879.
    38. Rank RG, Bowlin AK, Kelly KA (2000) Characterization of lymphocyte response in the female genital tract during ascending Chlamydial genital infection in the guinea pig model, Infect Immun 68:5293-5298.
    39. Wizel B, Nystrom-Asklin J, Cortes C, Tvinnereim A (2008) Role of CD8(+)T cells in the host response to Chlamydia. Microbes Infect 10:1420-1430.
    40. Loomis WP and Starnbach MN (2002) T cell responses to Chlamydia trachomatis. Current Opinion in Microbiology 5:87-91.
    41. Morrison RP, Feilzer K, Tumas DB (1995) Gene knockout mice establish a primary protective role for major histocompatibility complex class II-restricted responses in Chlamydia trachomatis genital tract infection. Infection and immunity 63(12):4661-4668.
    42. Morrison SG, Su H, Caldwell HD, Morrison RP (2000) Immunity to murine Chlamydia trachomatis genital tract reinfection involves B cells and CD4(+) T cells but not CD8(+) T cells. Infection and immunity 68(12):6979-6987.
    43. Su H, Caldwell HD (1995) CD4+T cells play a significant role in adoptive immunity to Chlamydia trachomatis infection of the mouse genital tract. Infect Immun 63:3302-3308.
    44. Thoma-Uszynski S, Simnacher U, Marre R, Essig A (1998) Clearance of Chlamydia trachomatis-induced polyserositis in SCID mice requires both CD4+ and CD8+ cells. Med Microbiol Immunol (Berl) 187:71-78.
    45. Igietseme JU, Magee DM, Williams DM, Rank RG (1994) Role for CD8+T cells in antichlamydial immunity defined by Chlamydia-specific T-lymphocyte clones. Infect Immun 62:5195-5197.
    46. Magee DM, Williams DM, Smith JG, Bleicker CA, Grubbs BG, Schachter J, Rank RG (1995) Role of CD8+T cells in primary Chlamydia infection, Infect Immun 63 516-521.
    47. Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L (2004) NKT cells:what's in a name? Nat Rev Immunol 4:231-237.
    48. Budd RC, Miescher GC, Howe RC, Lees RK, Bron C, MacDonald HR (1987) Developmentally regulated expression of T cell receptor β-chain variable domains in immature thymocytes. J Exp Med 166:577-582.
    49. Fowlkes BJ, Kruisbeek AM, Ton-That H, Weston MA, Coligan JE, Schwartz RH, Pardoll DM (1987) A novel population of T-cell receptor αβ-bearing thymocytes which predominantly expresses a single Vp-gene family. Nature 329:251-254.
    50. Zlotnik A, Godfrey DI, Fischer M & Suda T (1992) Cytokine production by mature and immature CD4-CD8-T cells, αβ-T cell receptor+CD4-CD8-T cells produce IL-4. J Immunol 149:1211-1215.
    51. Kronenberg M (2005) Toward an understanding of NKT cell biology:Progress and Paradoxes. Annu Rev Immunol 26:877-900.
    52. Beckman EM, Porcelli SA, Morita CT, Behar SM, Furlong ST, Brenner MB (1994) Recognition of a lipid antigen by CD1-restricted alpha beta+T cells. Nature 372(6507):691-694.
    53. Godfrey DI, Kronenberg M (2004)Going both ways:immune regulation via CD1d-dependent NKT cells J Clin Invest.114(10):1379-1388.
    54. Hammond KJ, Pelikan SB, Crowe NY, Randle-Barrett E, Nakayama T, Taniguchi M, Smyth MJ, van Driel IR, Scollay R, Baxter AG, Godfrey DI (1999) NKT cells are phenotypically and functionally diverse. Eur J Immunol 29:3768-3781.
    55. Eberl G, Lees R, Smiley ST, Taniguchi M, Grusby MJ, MacDonald HR (1999) Tissue-specific segregation of CD1d-dependent and CD1d-independent NKT cells. J Immunol 162:6410-6419.
    56. Kenna T, Golden-Mason L, Porcelli SA, Koezuka Y, Hegarty JE, O'Farrelly C, Doherty DG (2003) NKT cells from normal and tumor-bearing human livers are phenotypically and functionally distinct from murine NKT cells. J Immunol 171:1775-1779.
    57. Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E (1997) CD Id-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 278:1626-1629.
    58. Burdin N, Brossay L, Koezuka Y, Smiley ST, Grusby MJ, Gui M,. Taniguchi M, Hayakawa K, Kronenberg M (1998) Selective ability of mouse CD1to present glycolipids:α-galactosylceramide specifically stimulates Val4+NKT lymphocytes. J Immunol 161:3271-3281
    59. Nieda M, Nicol A, Koezuka Y, Kikuchi A, Takahashi T, Nakamura H, Furukawa H, Yabe T, Ishikawa Y, Tadokoro K, et al. (1999) Activation of human Vα24NKT cells by a-glycosylceramide in a CD 1 d-restricted and Va24 TCR-mediated manner. Hum Immunol 60:10-19.
    60. Wilson MT, Johansson C, Olivares-Villagomez D, Singh AK, Stanic AK, Wang CR, Joyce S, Wick MJ, Van Kaer L (2003) The response of natural killer T cells to glycolipid antigens is characterized by surface receptor down-modulation and expansion.Proc Natl Acad Sci U S A100(19):10913-10918.
    61. Harada M, Seino K, Wakao H, Sakata S, Ishizuka Y, Ito T, Kojo S, Nakayama T, Taniguchi M (2004)Down-regulation of the invariant Valpha14 antigen receptor in NKT cells upon activation.Int Immunol 16(2):241-247.
    62. Bendelac A, Lantz O, Quimby ME, Yewdell JW, Bennink JR, Brutkiewicz RR (1995) CD1 recognition by mouse NK1+T lymphocytes. Science 68(5212): 863-865.
    63. Spence PM, Sriram V, Van Kaer L, Hobbs JA, Brutkiewicz RR (2001) Generation of cellular immunity to lymphocytic choriomeningitis virus is independent of CD1d1 expression. Immunology 104:168-174.
    64. Oki S, Chiba A, Yamamura T, Miyake S. (2004) The clinical implication and molecular mechanism of preferential IL-4 production by modified glycolipidstimulated NKT cells. J Clin Invest 113:1631-1640.
    65. Brigl M, Bry L, Kent SC, Gumperz JE, Brenner MB (2003) Mechanism of CDldrestricted natural killer T cell activation during microbial infection. Nat. Immunol.4:1230-1237
    66. Kitamura H, Iwakabe K, Yahata T, Nishimura S, Ohta A, Ohmi Y, Sato M, Takeda K, Okumura K, Van Kaer L, Kawano T, Taniguchi M, Nishimura T. (1999) The natural killer T (NKT) cell ligand a-galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells. J Exp Med 189:1121-1128.
    67. Vincent MS, Leslie DS, Gumperz JE, Xiong X, Grant EP, Brenner MB. (2002) CD 1-dependent dendritic cell instruction. Nat. Immunol 3:1163-1168
    68. Metelitsa LS, Naidenko OV, Kant A, Wu HW, Loza MJ, Perussia B, Kronenberg M, Seeger RC (2001) Human NKT cells mediate antitumor cytotoxicity directly by recognizing target cell CD1d with bound ligand or indirectly by producing IL-2 to activate NK cells. J Immunol 167(6):3114-3122.
    69. Carnaud C, Lee D, Donnars O, Park SH, Beavis A, Koezuka Y, Bendelac A (1999) Cutting edge:Cross-talk between cells of the innate immune system:NKT cells rapidly activate NK cells. J Immunol 163(9):4647-4650.
    70. Singh N, Hong S, Scherer DC, Serizawa I, Burdin N, Kronenberg M, Koezuka Y, Van Kaer L (1999) Cutting edge:Activation of NK T cells by CD1d and α-galactosylceramide directs conventional T cells to the acquisition of a Th2 phenotype. J Immunol 163:2373-2377'.
    71. Nishimura T, Kitamura H, Iwakabe K, Yahata T, Ohta A, Sato M, Takeda K, Okumura K, Van Kaer L, Kawano T, Taniguchi M, Nakui M, Sekimoto M, Koda T (2000) The interface between innate and acquired immunity:glycolipid antigen presentation by CD1d-expressing dendritic cells to NKT cells induces the differentiation of antigen-specific cytotoxic T lymphocytes. Int Immunol 12:987-994.
    72. Kawakami K, Yamamoto N, Kinjo Y, Miyagi K, Nakasone C, Uezu K, Kinjo T, Nakayama T, Taniguchi M, Saito A (2003) Critical role of Valphal4+ natural killer T cells in the innate phase of host protection against Streptococcus pneumoniae infection. Eur J Immunol 33:3322-3330.
    73. Nieuwenhuis EE, Matsumoto T, Exley M, Schleipman RA, Glickman J, Bailey DT, Corazza N, Colgan SP, Onderdonk AB, Blumberg RS (2002) CD1d-dependent macrophage-mediated clearance of pseudomonas aeruginosa from lung. Nature Med 8:588-593.
    74. Kinjo Y, Kronenberg M (2005) Vα14i NKT cells are innate lymphocytes that participate in the immune response to diverse microbes. J Clin Immunol 25(6):522-533.
    75. Kawakami K, Kinjo Y, Yara S, Koguchi Y, Uezu K, Nakayama T, Taniguchi M, Saito A (2001) Activation of Vα14 natural killer T cells by a-galactosylceramide results in development of Thl response and local host resistance in mice infected with Cryptococcus neoformans. Infect Immun 69:213-220.
    76. Grubor-Bauk B, Simmons A, Mayrhofer G, Speck PG (2003) Impaired clearance of herpes simplex virus type 1 from mice lacking CD1d or NKT cells expressing the semivariant V alpha 14-J alpha 281 TCR. J Immunol 170(3):1430-1434.
    77.Cornish AL, Keating R, Kyparissoudis K, Smyth MJ, Carbone FR, Godfrey DI (2006) NKT cells are not critical for HSV-1 disease resolution. Immunol Cell Biol. 84(1):13-19.
    78. Kinjo T, Nakamatsu M, Nakasone C, Yamamoto N, Kinjo Y, Miyagi K, Uezu K, Nakamura K, Higa F, Tateyama M, Takeda K, Nakayama T, Taniguchi M, Kaku M, Fujita J, Kawakami K (2006) NKT cells play a limited role in the neutrophilic inflammatory responses and host defense to pulmonary infection with Pseudomonas aeruginosa.Microbes Infect 8(12-13):2679-2685.
    79. Tupin E, Kinjo Y, Kronenberg M (2007)The unique role of natural killer T cells in the response to microorganisms. Nat Rev Microbiol.5(6):405-417.
    80. Bharhani MS, Chiu B, Na KS, Inman RD (2009) Activation of invariant NKT cells confers protection against Chlamydia trachomatis-induced arthritis. Int Immunol 21:859-870
    81. Joyee AG, Qiu H, Wang S, Fan Y, Bilenki L, Yang X (2007) Distinct NKT cell subsets are induced by different Chlamydia species leading to differential adaptive immunity and host resistance to the infections. J Immunol 178:1048-1058.
    82. Bilenki L, Wang S, Yang J, Fan Y, Joyee AG, Yang X. (2005) NK T cell activation promotes Chlamydia trachomatis infection in vivo. J Immunol 175:3197-3206.
    1. Joyee AG, Qiu H, Wang S, Fan Y, Bilenki L, Yang X (2007) Distinct NKT cell subsets are induced by different Chlamydia species leading to differential adaptive immunity and host resistance to the infections. J Immunol 178:1048-1058.
    2. Bharhani MS, Chiu B, Na KS, Inman RD (2009) Activation of invariant NKT cells confers protection against Chlamydia trachomatis-induced arthritis. Int Immunol 21:859-870
    3. Bilenki L, Wang S, Yang J, Fan Y, Jiao L, Joyee AG, Han X & Yang X (2006) Adoptive transfer of CD8α+ dendritic cells (DC) isolated from mice infected with Chlamydia muridarum are potent in inducing protective immunity than CD8a-DC. J Immunol 177:7067-7075
    4.李学农.(2003)现代病理与实验诊断技术人民军医出版社
    5. Rank RG (1994) Animal models for urogenital infections. Methods Enzymol 235:83-93.
    6. Kawano T, Cui J, Koezuka Y, Toura I, Kaneko Y, Motoki K, Ueno H, Nakagawa R, Sato H, Kondo E (1997) CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 278:1626-1629.
    7. Burdin N, Brossay L, Koezuka Y, Smiley ST, Grusby MJ, Gui M,. Taniguchi M, Hayakawa K, Kronenberg M (1998) Selective ability of mouse CD1 to present glycolipids:α-galactosylceramide specifically stimulates Vα14+NKT lympho-cytes. J Immunol 161:3271-3281
    8. Nieda M, Nicol A, Koezuka Y, Kikuchi A, Takahashi T, Nakamura H, Furukawa H, Yabe T, Ishikawa Y, Tadokoro K, et al. (1999) Activation of human Va24NKT cells by α-glycosylceramide in a CD1d-restricted and Vα24 TCR-mediated manner. Hum Immunol 60:10-19.
    9. Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L (2004) NKT cells:what's in a name? Nat Rev Immunol 4:231-237.
    10. Matsuda JL, Naidenko OV, Gapin L, Nakayama T, Taniguchi M, Wang CR, Koezuka Y, Kronenberg M (2000) Tracking the response of natural killer T cells to glycolipid antigens using CD1d tetramer. J Exp Med 192:741-753
    11. Ault KA, Kelly KA, Ruther PE, Izzo AA, Izzo LS, Sigar IM, and Ramsey KH (2002) Chlamydia trachomatis enhances the expression of matrix metalloproteinases in an in vitro model of the human fallopian tube infection. Am. J Obstet Gynecol 187:1377-1383.
    12. Kelly KA (2003) Cellular immunity and Chlamydia genital infection:induction, recruitment, and effector mechanisms. Int Rev Immunol 22:3-41.
    13. Ramsey KH, Sigar IM, Schripsema JH, Shaba N, and Cohoon KP (2005) Expression of matrix metalloproteinases subsequent to urogenital Chlamydia muridarum infection of mice. Infect Immun.73:6962-6973.
    14. Murthy AK, Chambers JP, Meier PA, Zhong G & BP Arulanandam (2007) Intranasal vaccination with a secreted chlamydial protein enhances resolution of genital Chlamydia muridarum infection, protects against oviduct pathology, and is highly dependent upon endogenous gamma interferon production. Infect Immun 75:666-676.
    15. Ajonuma LC, Ng EH, and Chan HC (2002) New insights into the mechanisms underlying hydrosalpinx fluid formation and its adverse effect on IVF outcome. Hum Reprod Update 8:255-264.
    16. Shah AA, Schripsema JH, Imtiaz MT, Sigar IM, Kasimos J, Matos PG, Inouye S, and Ramsey KH (2005) Histopathologic changes related to fibrotic oviduct occlusion after genital tract infection of mice with Chlamydia muridarum. Sex Transm Dis 32:49-56.
    17. Kawakami K, Yamamoto N, Kinjo Y, Miyagi K, Nakasone C, Uezu K, Kinjo T, Nakayama T, Taniguchi M, Saito A (2003) Critical role of Vα14+ natural killer T cells in the innate phase of host protection against Streptococcus pneumoniae infection. Eur J Immunol 33; 3322-3330.
    18. Tupin E, Kinjo Y, Kronenberg M (2007) The unique role of natural killer T cells in the response to microbiol. Nat Rev Immunol 5:405-417
    19. Grubor-Bauk B, Simmons A, Mayrhofer G& Speck PG (2003) Impaired clearance of herpes simplex virus type 1 from mice lacking CD1d or NKT cells expressing the semivariant Vα14-Jα281 TCR. J. Immunol 170:1430-1434.
    20. Cornish AL, Keating R, Kyparissoudis K, Smyth MJ, Carbone FR & Godfrey DI (2006) NKT cells are not critical for HSV-1 disease resolution. Immuno Cell Biol 84:13-19.
    21. Kinjo T, Nakamatsu M, Nakasone C, Yamamoto N, Kinjo Y, Miyagi K, Uezu K, Nakamura K, Higa F, Tateyama M, Takeda K, Nakayama T, Taniguchi M, Kaku M, Fujita J, Kawakami K (2006) NKT cells play a limited role in the neutrophilic inflammatory responses and host defense to pulmonary infection with Pseudomonas aeruginosa. Microbes Infect 8:2679-2685.
    22. Magee DM, Williams DM, Smith JG, Bleicker CA, Grubbs BG, Schachter J, Rank RG. (1995) Role of CD8 T cells in primary Chlamydia infection. Infect Immun 63:516-521.
    23. Su H & Caldwell HD (1995) CD4+ T cells play a significant role in adoptive immunity to Chlamydia trachomatis infection of the mouse genital tract. Infect Immun 63:3302-3308.
    24. Brunham RC, Zhang DJ, Yang X, McClarty GM (2000) The potential for vaccine development against chlamydial infection and disease. J Infect Dis 181: S538-S543.
    25. Zhang D, Yang X, Berry J, Shen C, McClarty G, Brunham RC (1997) DNA vaccination with the major outer-membrane protein gene induces acquired immunity to Chlamydia trachomatis (mouse pneumonitis) infection.J Infect Dis 176:1035-1040.
    26. Pal S, Barnhart KM, Wei Q, Abai AM, Peterson EM, de la Maza LM (1999) Vaccination of mice with DNA plasmids coding for the Chlamydia trachomatis major outer membrane protein elicits an immune response but fails to protect against a genital challenge. Vaccine 17:459-465.
    27. Williams DM., Grubbs BG, Darville T, K. Kelly & Rank RG (1998) A role for interleukin-6 in host defense against murine Chlamydia trachomatis infection. Infect Immun 66:4564-4567.
    28. Miller CJ, McChesney M & Moore PF (1992) Langerhans cells, macrophages and lymphocyte subsets in the cervix and vagina of Rhesus macaques. Lab Invest 67: 628-634.
    29. Fidel PL Jr, Wolf NA & KuKuruga MA (1996) T lymphocytes in the murine vaginal mucosa are phenotypically distinct from those in the periphery. Infect Immun 64:3793-3799.
    1. Godfrey DI, MacDonald HR, Kronenberg M, Smyth MJ, Van Kaer L (2004) NKT cells:what's in a name? Nat Rev Immunol 4:231-237
    2. Matsuda JL, Naidenko OV, Gapin L, Nakayama T, Taniguchi M, Wang CR, Koezuka Y, Kronenberg M (2000) Tracking the response of natural killer T cells to glycolipid antigens using CD1d tetramer. J Exp Med 192:741-753
    3. Wilson, M. T., C. Johansson, D. Olivares-Villagomez, A. K. Singh, A. K. Stanic, C. R. Wang, S. Joyce, M. J. Wick, L. Van Kaer (2003) The response of natural killer T cells to glycolipid antigens is characterized by surface receptor down-modulation and expansion. Proc. Natl. Acad. Sci. U. S. A.100:10913-10918.
    4. Harada, M., K. I. Seino, H. Wakao, S. Sakata, Y. Ishizuka, T. Ito, S. Kojo, T. Nakayama, M. Taniguchi. (2004) Down-regulation of the invariant Val4 antigen receptor in NKT cells upon activation. Int Immunol 16:241-247.
    5. Kim S, Lalani S, Parekh V V, Vincent T L, Wu L, Van Kaer L (2008) Impact of bacteria on the phenotype, functions, and therapeutic activities of invariant NKT cells in mice. J Clin Invest.118:2301-2315.
    6. Brunham RC, and Rey-Ladino J (2005) Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine. Nat Rev Immunol 5:149-161.
    7. Yang X, HayGlass KT & Brunham RC (1996) Genetically determined differences in IL-10 and IFN-y responses correlate with clearance of Chlamydia trachomatis mouse pneumonitis infection. J Immunol 156:4338-4344.
    8. Geng Y, Berencsi K, Gyulai Z, Valyi-Nagy T, E. Gonczol, Trinchieri G (2000) Roles of interleukin-12 and interferon in murine Chlamydia pneumoniae infection. Infect Immun 68:2245-2253.
    9. Ito JI, Lyons JM (1999) Role of gamma interferon in controlling murine chlamydial genital tract infection. Infection and immunity 67(10):5518-5521
    10. Perry LL, Su H, Feilzer K, Messer R, Hughes S, Whitmire W, Caldwell HD (1999) Differential sensitivity of distinct Chlamydia trachomatis isolates to IFN-γ-mediated inhibition. J Immunol 162(6):3541-8.
    11. Cotter TW, Ramsey KH, Miranpuri, GS, Poulsen CE & Byrne GI (1997) Dissemination of Chlamydia trachomatis chronic genital tract infection in gamma interferon gene knockout mice. Infect Immun 65:2145-2152.
    12. Johansson M, Schon K, Ward M & Lycke N (1997) Genital tract infection with Chlamydia trachomatis fails to induce protective immunity in gamma interferon receptor-deficient mice despite a strong local immunoglobulin A response. Infect Immun 65:1032-1044.
    13. Williams DM, Byrne GI, Grubbs B, Marshal TJ, Schachter J (1988) Role in vivo for gamma interferon in control of pneumonia caused by Chlamydia trachomatis in mice. Infection and immunity 56(11):3004-3006.
    14. Li W, AK Murthy, M. N. Guentzel, J. Seshu, T. G. Forsthuber, G. Zhong, and B. P. Arulanandam (2008) Antigen-specific CD4+T cells produce sufficient IFN-gamma to mediate robust protective immunity against genital Chlamydia muridarum infection. J. Immunol.180:3375-3382
    15. Cohen CR, Nguti R, Bukusi EA, Lu H, Shen C, Luo M, Sinei S, Plummer F, Bwayo J, Brunham RC (2000) Human immunodeficiency virus type 1-infected women exhibit reduced interferon-gamma secretion after Chlamydia trachomatis stimulation of peripheral blood lymphocytes. J Infect Dis 182:1672-1677
    16. Igietseme JU, Ananaba GA, Candal DH, Lyn D, Black CM (1998) Immune control of chlamydial growth in the human epithelial cell line RT4 involves multiple mechanisms that include nitric oxide induction, tryptophan catabolism and iron deprivation. Microbiol Immunol 42:617-625.
    17. Ramsey KH, Miranpuri GS, Sigar IM, Ouellette S, Byrne GI (2001) Chlamydia trachomatis persistence in the female mouse genital tract:inducible nitric oxide synthase and infection outcome. Infect Immun 69:5131-5137
    18. Al-Younes HM, Rudel T, Brinkmann V, Szczepek AJ, Meyer TF (2001) Low iron availability modulates the course of Chlamydia pneumoniae infection. Cell Microbiol 3:427-437.
    19. Rottenberg ME, Gigliotti-Rothfuchs A, Wigzell H (2002) The role of IFN-gamma in the outcome of chlamydial infection. Curr Opin Immunol 14:444-451
    20. Carnaud C, Lee D, Donnars O, Park SH, Beavis A, Koezuka Y, Bendelac A (1999) Cutting edge:Cross-talk between cells of the innate immune system:NKT cells rapidly activate NK cells. J Immunol 163(9):4647-4650
    21. Metelitsa LS, Naidenko OV, Kant A, Wu HW, Loza MJ, Perussia B, Kronenberg M, Seeger RC (2001) Human NKT cells mediate antitumor cytotoxicity directly by recognizing target cell CD1d with bound ligand or indirectly by producing IL-2 to activate NK cells. J Immunol 167(6):3114-3122
    22. Zhao L, Gao X, Peng Y, Joyee AG, Bai H, Wang S, Yang J, Zhao W, Yang X (2011) Differential modulating effect of natural killer (NK) T cells on interferon-y production and cytotoxic function of NK cells and its relationship with NK subsets in Chlamydia muridarum infection. Immunology 134(2):172-184.
    23. Williams DM, Schachter J, Grubbs B (1987) Role of natural killer cells in infection with the mouse pneumonitis agent (murine Chlamydia trachomatis). Infect Immun 55(1):223-6.
    24. Tseng CT, Rank RG (1998) Role of NK cells in early host response to chlamydial genital infection. Infect Immun 66(12):5867-75.
    25. Hook CE, Telyatnikova N, Goodall JC, Braud VM, Carmichael AJ, Wills MR, Gaston JS (2004) Effects of Chlamydia trachomatis infection on the expression of natural killer (NK) cell ligands and susceptibility to NK cell lysis. Clin Exp Immunol 138(1):54-60.
    26. Jiao L, Gao X, Joyee AG, Zhao L, Qiu H, Yang M, Fan Y, Wang S, Yang X (2011) NK cells promote type 1 T cell immunity through modulating the function of dendritic cells during intracellular bacterial infection. J Immunol 187 (1): 401-411.
    27. Singh N, Hong S, Scherer DC, Serizawa I, Burdin N, Kronenberg M, Koezuka Y, Van Kaer L (1999) Cutting edge:Activation of NK T cells by CD1d and α-galactosylceramide directs conventional T cells to the acquisition of a Th2 phenotype. J. Immunol.163:2373-2377
    28. Stober D, Jomantaite I, Schirmbeck R, Reimann J (2003) NKT cells provide help for dendritic cell-dependent priming of MHC class I-restricted CD8+ T cells in vivo. J. Immunol 170:2540-2548.
    29. Joyee AG, Qiu H, Wang S, Fan Y, Bilenki L, Yang X (2007) Distinct NKT cell subsets are induced by different Chlamydia species leading to differential adaptive immunity and host resistance to the infections. J Immunol 178:1048-1058.
    30. Bharhani MS, Chiu B, Na KS, Inman RD (2009) Activation of invariant NKT cells confers protection against Chlamydia trachomatis-induced arthritis. Int Immunol 21:859-870.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700