酿酒酵母菌和白念珠菌中RCK2和HOG1蛋白激酶在高渗胁迫,氧化胁迫和细胞壁完整性方面的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酿酒酵母ScRck2p是一种MAP Knase激活的蛋白激酶,被Hog1p磷酸化而激活,响应于细胞对外界高渗透压胁迫和氧化胁迫。在本工作中我们发现酿酒酵母ScRCK2基因的缺失能够导致细胞对TOR抑制剂——雷帕霉素敏感,但ScRCK2在细胞对雷帕霉素敏感过程中的作用并不依赖于其激酶活性。在人体内最常见的机会致病菌-白念珠菌中,我们鉴定了ScRCK2的同源基因CaRCK2,并发现CaRCK2基因的缺失同样导致白念珠菌细胞对雷帕霉素敏感,CaRck2p的这一作用同样不依赖于其激酶活性。此外,我们发现白念珠菌CaHOG1的缺失也导致细胞对雷帕霉素的敏感。这些结果表明在酿酒酵母菌和白念珠菌中,作用于HOG途径下游的RCK2可能调控TOR信号途径的功能。
     同时,我们发现白念珠菌CaRCK2基因的缺失能够导致细胞对高渗胁迫、氧化胁迫和细胞壁完整性胁迫试剂敏感。比较而言,酿酒酵母ScRCK2基因的缺失只引起细胞对氧化胁迫敏感,而不影响细胞对高渗胁迫和细胞壁完整性胁迫试剂的敏感。但是,酿酒酵母ScRCK2基因却能够弥补白念珠菌CaRCK2基因缺失株对高渗胁迫、氧化胁迫和细胞壁完整性胁迫试剂的敏感性表型。这些结果说明RCK2在细胞内发挥多种功能,但在白念珠菌和酿酒酵母菌中的功能存在分歧。
     我们还发现,ScRCK2上游激酶基因ScHOG1和ScPBS2的缺失,以及受ScHOG1调控的转录因子基因ScHOT1,ScMSN1,ScMSN2,ScMSN4或ScRLM1的缺失,不影响酵母细胞对雷帕霉素的敏感性。但是,白念珠菌CaHOG1基因的缺失能够导致细胞对雷帕霉素敏感。这些结果表明白念珠菌HOG途径与酿酒酵母HOG途径在细胞功能调控方面存在分歧,它参与细胞对雷帕霉素敏感性的调控。
Rck2p is a Hog1p-MAP kinase activated protein kinase and regulates osmotic and oxidative stresses in budding yeast. In this study, we have demonstrated that in both Saccharomycese cerevisiae and, the most medically important human fungal pathogen, Candida albicans deletion of RCK2 causes cells sensitive to rapamycin, the inhibitor of TOR (target of rapamycin) protein kinase controlling cell growth. In addition, the kinase activity of Rck2p seems to be not required for this rapamycin sensitive function in both eukaryotic microorganisms. We also have found that CaRCK2 and its kinase activity are required for cell growth in C. albicans. Furthermore, we have found that Candida cells deleted for CaRCK2 display an increased sensitivity to high osmotic stress, oxidative stress and agents disrupting cell wall integrity, whereas yeast cells deleted for ScRCK2 only show an increased sensitivity to oxidative stress. Our results indicate that RCK2 plays divergent roles in C. albicans and budding yeast cells.
     We also found that deletion of HOG1 and PBS2 as well as genes encoding HOG1-regulated transcription factors does not affect the rapamycin sensitivity in S. cerevisiae, whereas disruption of CaHOG1 causes cells sensitive to rapamycin in C. albicans. These results suggest that the HOG pathway also plays divergent roles in C. albicans and budding yeast cells.
引文
1. Skoneczny M, Rytka J. Saccharomyces cerevisiae as a model organism for studying function and biogenesis of peroxisomes. Acta Microbiol Pol. 1995, 44: 209-218.
    2. Rytka J, Palamarczyk G. Yeast model of an eucaryotic organism in molecular biology. Postepy Biochem. 1993, 39: 152-155.
    3. Goffeau A, Barrell BG, Bussey H. Life with 6000 genes. Science. 1996, 274: 546, 563-7.
    4. Datta A, Ganesan K, Natarajan K. Current trends in Candida albicans research. Adv Microb Physiol. 1989, 30: 53-88.
    5. Fidel PL Jr, Sobel JD. Immunopathogenesis of recurrent vulvovaginal candidiasis. Clin Microbiol Rev. 1996, 9: 335-348.
    6. Whiteway M, Bachewich C. Morphogenesis in Candida albicans. Annu Rev Microbiol. 2007, 61: 529-553.
    7. Berman J. Morphogenesis and cell cycle progression in Candida albicans. Curr Opin Microbiol. 2006, 9: 595-601.
    8. Naglik J, Albrecht A, Bader O, Hube B. Candida albicans proteinases and host/pathogen interactions. Cell Microbiol. 2004, 6: 915-926.
    9. Willins DA, Kessler M, Walker SS, Reyes GR, Cottarel G. Genomics strategies for antifungal drug discovery--from gene discovery to compound screening. Curr Pharm Des. 2002, 8: 1137-1154.
    10. Saito H, Tatebayashi K. Regulation of the osmoregulatory HOG MAPK cascade in yeast. J Biochem. 2004, 136:267-272.
    11. Schwartz MA, Madhani HD. Principles of MAP kinase signaling specificity in Saccharomyces cerevisiae. Annu Rev Genet. 2004, 38:725-748.
    12. O'Rourke SM, Herskowitz I, O'Shea EK. Yeast go the whole HOG for the hyperosmotic response. Trends Genet. 2002, 18: 405-412.
    13. Zheng XF, Schreiber SL. Target of rapamycin proteins and their kinase activities are required for meiosis. Proc Natl Acad Sci U S A. 1997,94: 3070-3075
    14. Lorberg A, Hall MN. TOR: the first 10 years. Curr Top Microbiol Immunol. 2004, 279: 1-18
    15. Inoki K. Signaling by target of rapamycin proteins in cell growth control. Microbiol Mol Biol Rev 2005,69: 79-100
    16. Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev. 2002, 66:300-372.
    17.阮海华,李西川,兰蓓,蒋伶活.高渗透压甘油信号转导途径.细胞生物学杂志,2006, 28: 651-655.
    18. Akhtar N, Blomberg A, Adler L. Osmoregulation and protein expression in a pbs2delta mutant of Saccharomyces cerevisiae during adaptation to hypersaline stress. FEBS Lett. 1997, 403: 173-180.
    19. Tatebayashi K, Takekawa M, Saito H. A docking site determining specificity of Pbs2 MAPKK for Ssk2/Ssk22 MAPKKKs in the yeast HOG pathway. EMBO J. 2003, 22: 3624-3634.
    20. Posas F, Saito H. Activation of the yeast SSK2 MAP kinase kinase kinase by the SSK1 two-component response regulator. EMBO J. 1998, 17: 1385-1394.
    21. Posas F, Witten EA, Saito H. Requirement of STE50 for osmostress-induced activation of the STE11 mitogen-activated protein kinase kinase kinase in the high-osmolarity glycerol response pathway. Mol Cell Biol. 1998, 18: 5788-5796.
    22. Sato N, Kawahara H, Toh-e A, Maeda T. Phosphorelay-regulated degradation of the yeast Ssk1p response regulator by the ubiquitin-proteasome system. Mol Cell Biol. 2003, 23: 6662-6671.
    23. Cullen PJ, Schultz J, Horecka J, Stevenson BJ, Jigami Y, Sprague GF Jr. Defects in protein glycosylation cause SHO1-dependent activation of a STE12 signaling pathway in yeast. Genetics. 2000, 155: 1005-1018.
    24. Reiser V, Salah SM, Ammerer G. Polarized localization of yeast Pbs2 depends on osmostress, the membrane protein Sho1 and Cdc42. Nat Cell Biol. 2000, 2: 620-627.
    25. Tatebayashi K, Yamamoto K, Tanaka K, Tomida T, Maruoka T, Kasukawa E, Saito H. Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway. EMBO J. 2006, 25: 3033-3044.
    26. Rep M, Reiser V, Gartner U, Thevelein JM, Hohmann S, Ammerer G, Ruis H. Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn1p and the novel nuclear factor Hot1p. Mol Cell Biol. 1999, 19: 5474-5485.
    27. Rep M, Krantz M, Thevelein JM, Hohmann S. The transcriptional response of Saccharomyces cerevisiae to osmotic shock. Hot1p and Msn2p/Msn4p are required for the induction of subsets of high osmolarity glycerol pathway-dependent genes. J Biol Chem. 2000, 275: 8290-8300.
    28. de Nadal E, CasadoméL, Posas F. Targeting the MEF2-like transcription factor Smp1 by the stress-activated Hog1 mitogen-activated protein kinase. Mol Cell Biol. 2003, 23:229-237.
    29. Proft M, Serrano R. Repressors and upstream repressing sequences of thestress-regulated ENA1 gene in Saccharomyces cerevisiae: bZIP protein Sko1p confers HOG-dependent osmotic regulation. Mol Cell Biol. 1999, 19: 537-546.
    30. Shitamukai A, Hirata D, Sonobe S, Miyakawa T. Evidence for antagonistic regulation of cell growth by the calcineurin and high osmolarity glycerol pathways in Saccharomyces cerevisiae. J Biol Chem. 2004, 279:3651-3661.
    31. Mapes J, Ota IM. Nbp2 targets the Ptc1-type 2C Ser/Thr phosphatase to the HOG MAPK pathway. EMBO J. 2004, 23: 302-311.
    32. Ota IM, Mapes J. Targeting of PP2C in budding yeast. Methods Mol Biol. 2007, 365: 309-322.
    33. Warmka J, Hanneman J, Lee J, Amin D, Ota I. Ptc1, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogen-activated protein kinase Hog1. Mol Cell Biol. 2001, 21: 51-60.
    34. Monge RA, Román E, Nombela C, Pla J. The MAP kinase signal transduction network in Candida albicans. Microbiology. 2006, 152: 905-912.
    35. San JoséC, Monge RA, Pérez-Díaz R, Pla J, Nombela C. The mitogen-activated protein kinase homolog HOG1 gene controls glycerol accumulation in the pathogenic fungus Candida albicans. J Bacteriol. 1996, 178: 5850-5852.
    36. Enjalbert B, Smith DA, Cornell MJ, Alam I, Nicholls S, Brown AJ, Quinn J. Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Mol Biol Cell. 2006, 17: 1018-1032.
    37. Smith DA, Nicholls S, Morgan BA, Brown AJ, Quinn J. A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans. Mol Biol Cell. 2004, 15: 4179-4190.
    38. Cheetham J, Smith DA, da Silva Dantas A, Doris KS, Patterson MJ, Bruce CR, Quinn J. A single MAPKKK regulates the Hog1 MAPK pathway in the pathogenic fungus Candida albicans. Mol Biol Cell. 2007, 18: 4603-4614.
    39. Du C, Calderone R, Richert J, Li D. Deletion of the SSK1 response regulator gene in Candida albicans contributes to enhanced killing by human polymorphonuclear neutrophils. Infect Immun. 2005, 73: 865-871.
    40. Román E, Nombela C, Pla J. The Sho1 adaptor protein links oxidative stress to morphogenesis and cell wall biosynthesis in the fungal pathogen Candida albicans. Mol Cell Biol. 2005, 25: 10611-10627.
    41. Cullen PJ, Schultz J, Horecka J, Stevenson BJ, Jigami Y, Sprague GF Jr. Defects in protein glycosylation cause SHO1-dependent activation of a STE12 signaling pathway in yeast. Genetics. 2000, 155: 1005-1018.
    42. O'Rourke SM, Herskowitz I. A third osmosensing branch in Saccharomyces cerevisiae requires the Msb2 protein and functions in parallel with the Sho1branch. Mol Cell Biol. 2002, 22: 4739-4749.
    43. Nicholls S, Straffon M, Enjalbert B, Nantel A, Macaskill S, Whiteway M, Brown AJ. Msn2- and Msn4-like transcription factors play no obvious roles in the stress responses of the fungal pathogen Candida albicans. Eukaryot Cell. 2004, 3: 1111-1123.
    44. Roetzer A, Gregori C, Jennings AM, Quintin J, Ferrandon D, Butler G, Kuchler K, Ammerer G, Schüller C. Candida glabrata environmental stress response involves Saccharomyces cerevisiae Msn2/4 orthologous transcription factors. Mol Microbiol. 2008, 69: 603-620.
    45. Lorenz MC, Heitman J. TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin. J Biol Chem. 1995, 270: 27531-27537.
    46. Sehgal SN, Baker H, Vézina C. Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiot. 1975, 28: 727-732.
    47. Vézina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot. 1975, 28: 721-726.
    48. Zaragoza D, Ghavidel A, Heitman J, Schultz MC. Rapamycin induces the G0 program of transcriptional repression in yeast by interfering with the TOR signaling pathway. Mol Cell Biol. 1998, 18: 4463-4470.
    49. Loewith R. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell. 2002, 10: 457-468
    50. Schmidt A. TOR2 is required for organization of the actin cytoskeleton in yeast. Proc Natl Acad Sci U S A. 1996, 93: 13780-13785
    51. Zheng XF. TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin. Cell. 1995, 82: 121-130
    52. Heitman J. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science. 1991, 253: 905-909
    53. Martin DE, Powers T, Hall MN. Regulation of ribosome biogenesis: where is TOR? Cell Metab. 2006, 4: 259-260.
    54. Reinke A. TOR complex 1 includes a novel component, Tco89p (YPL180w), and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces cerevisiae. J Biol Chem. 2004, 279: 14752-14762
    55. Fadri M. The pleckstrin homology domain proteins Slm1 and Slm2 are required for actin cytoskeleton organization in yeast and bind phosphatidylinositol -4,5-bisphosphate and TORC2. Mol Biol Cell. 2005, 16: 1883-1900
    56. Monteiro G and Netto LE. Glucose repression of PRX1 expression is mediated byTor1p and Ras2p through inhibition of Msn2/4p in Saccharomyces cerevisiae. FEMS Microbiol Lett. 2004, 241: 221-228
    57. Berset C. The TOR (target of rapamycin) signal transduction pathway regulates the stability of translation initiation factor eIF4G in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1998, 95:4264-4269
    58. Keith CT, Schreiber SL. PIK-related kinases: DNA repair, recombination, and cell cycle checkpoints. Science. 1995, 270: 50-51
    59. Dames SA. The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability. J Biol Chem. 2005, 280: 20558-20564
    60. Kamada Y. Tor2 directly phosphorylates the AGC kinase Ypk2 to regulate actin polarization. Mol Cell Biol. 2005, 25: 7239-7248
    61. Beretta L, Gingras AC, Svitkin YV, Hall MN, Sonenberg N. Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J. 1996, 15: 658-664.
    62. Berset C, Trachsel H, Altmann M. The TOR (target of rapamycin) signal transduction pathway regulates the stability of translation initiation factor eIF4G in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1998, 95: 4264-4269.
    63. Crespo JL, Daicho K, Ushimaru T, Hall MN. The GATA transcription factors GLN3 and GAT1 link TOR to salt stress in Saccharomyces cerevisiae. J Biol Chem. 2001, 276: 34441-34444.
    64. Crespo JL, Powers T, Fowler B, Hall MN. The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. Proc Natl Acad Sci U S A. 2002, 99: 6784-6789.
    65. Carvalho J, Zheng XF. Domains of Gln3p interacting with karyopherins, Ure2p, and the target of rapamycin protein. J Biol Chem. 2003, 278: 16878-16886.
    66. Beck T, Schmidt A, Hall MN. Starvation induces vacuolar targeting and degradation of the tryptophan permease in yeast. J Cell Biol. 1999, 146: 1227-1238.
    67. Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol. 2000, 150: 1507-1513.
    68. Kamada Y, Sekito T, Ohsumi Y. Autophagy in yeast: a TOR-mediated response to nutrient starvation. Curr Top Microbiol Immunol. 2004, 279: 73-84.
    69. Georis I, Tate JJ, Cooper TG, Dubois E. Tor pathway control of the nitrogen-responsive DAL5 gene bifurcates at the level of Gln3 and Gat1 regulation in Saccharomyces cerevisiae. J Biol Chem. 2008, 283: 8919-8929.
    70. Martin DE, Powers T, Hall MN. Regulation of ribosome biogenesis: where is TOR? Cell Metab. 2006, 4: 259-260
    71. Zheng Y, Jiang Y. The yeast phosphotyrosyl phosphatase activator is part of the Tap42-phosphatase complexes. Mol Biol Cell. 2005, 16: 2119-2127.
    72. Düvel K, Santhanam A, Garrett S, Schneper L, Broach JR. Multiple roles of Tap42 in mediating rapamycin-induced transcriptional changes in yeast. Mol Cell. 2003, 11: 1467-1478.
    73. Beck T, Hall MN. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature. 1999, 402: 689-692.
    74. Liu Z, Sekito T, Spírek M, Thornton J, Butow RA. Retrograde signaling is regulated by the dynamic interaction between Rtg2p and Mks1p. Mol Cell. 2003, 12: 401-411.
    75. Dilova I, Chen CY, Powers T. Mks1 in concert with TOR signaling negatively regulates RTG target gene expression in S. cerevisiae. Curr Biol. 2002, 12: 389-395.
    76. Zabrocki P, Van Hoof C, Goris J, Thevelein JM, Winderickx J, Wera S. Protein phosphatase 2A on track for nutrient-induced signalling in yeast. Mol Microbiol. 2002, 43: 835-842.
    77. Cooper TG. Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots. FEMS Microbiol Rev. 2002, 26: 223-238.
    78. Dahlkvist A, Sunnerhagen P. Two novel deduced serine/threonine protein kinases from Saccharomyces cerevisiae. Gene. 1994 , 139: 27-33
    79. Dahlkvist A, Kanter-Smoler G, Sunnerhagen P. The RCK1 and RCK2 protein kinase genes from Saccharomyces cerevisiae suppress cell cycle checkpoint mutations in Schizosaccharomyces pombe. Mol Gen Genet. 1995, 246: 316-326
    80. Ramne A, Bilsland-Marchesan E, Erickson S, Sunnerhagen P. The protein kinases Rck1 and Rck2 inhibit meiosis in budding yeast. Mol Gen Genet. 2000, 263: 253-261
    81. Bilsland-Marchesan E, Arino J, Saito H, Sunnerhagen P, Posas F. Rck2 kinase is a substrate for the osmotic stress-activated mitogen-activated protein kinase Hog1. Mol Cell Biol. 2000, 20: 3887-3895
    82. Teige M, Scheikl E, Reiser V, Ruis H, Ammerer G. Rck2, a member of the calmodulin-protein kinase family, links protein synthesis to high osmolarity MAP kinase signaling in budding yeast. Proc Natl Acad Sci U S A. 2001, 98:5625-5630
    83. Jiang L, Niu S, Clines KL, Burke DJ, Sturgill TW. Analyses of the effects of Rck2p mutants on Pbs2pDD-induced toxicity in Saccharomyces cerevisiae identify a MAP kinase docking motif, and unexpected functional inactivation dueto acidic substitution of T379. Mol Genet Genomics. 2004, 271: 208-219
    84. Bilsland E, Molin C, Swaminathan S, Ramne A, Sunnerhagen P. Rck1 and Rck2 MAPKAP kinases and the HOG pathway are required for oxidative stress resistance. Mol Microbiol. 2004, 53: 1743-1756
    85. Swaminathan S, Sunnerhagen P. Degradation of Saccharomyces cervisiae Rck2 upon exposure of cells to high levels of zinc is dependent on Pep4. Mol Genet Genomics. 2005, 273: 433-439
    86. Swaminathan S, Masek T, Molin C, Pospisek M, Sunnerhagen P. Rck2 is required for reprogramming of ribosomes during oxidative stress. Mol Biol Cell. 2006, 17: 1472-1482.
    87. Smith DA, Nicholls S, Morgan BA, Brown AJ, Quinn J. A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans. Mol Biol Cell. 2004, 15: 4179-4190.
    88. Arana DM, Alonso-Monge R, Du C, Calderone R, Pla J. Differential susceptibility of mitogen-activated protein kinase pathway mutants to oxidative-mediated killing by phagocytes in the fungal pathogen Candida albicans. Cell Microbiol. 2007, 9: 1647-1659.
    89. Whiteway M, Oberholzer U. Candida morphogenesis and host-pathogen interactions. Curr Opin Microbiol. 2004, 7: 350-357.
    90. Ruan H, et al. The YCR079w gene confers a rapamycin-resistant function and encodes the sixth type 2C protein phosphatase in Saccharomyces cerevisiae. FEMS Yeast Res. 2007, 7: 209-215
    91. Wurgler-Murphy SM, Maeda T, Witten EA, Saito H. Regulation of the Saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases. Mol Cell Biol. 1997, 17: 1289-1297.
    92. Heitman J, Movva NR, Hiestand PC, Hall MN. FK 506-binding protein proline rotamase is a target for the immunosuppressive agent FK 506 in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1991, 88: 1948-1952.
    93. Schmelzle T, Hall MN. TOR, a central controller of cell growth. Cell. 2000, 103: 253-262.
    94. Arsham AM, Neufeld TP. Thinking globally and acting locally with TOR. Curr Opin Cell Biol. 2006, 18: 589-597.
    95. De Virgilio C, Loewith R. The TOR signalling network from yeast to man. Int J Biochem Cell Biol. 2006, 38: 1476-1481.
    96. Knebel A, Haydon CE, Morrice N, Cohen P. Stress-induced regulation of eukaryotic elongation factor 2 kinase by SB 203580-sensitive and -insensitive pathways. Biochem J. 2002, 367: 525-532.
    97. Arana DM, Alonso-Monge R, Du C, Calderone R, Pla J. Differentialsusceptibility of mitogen-activated protein kinase pathway mutants to oxidative-mediated killing by phagocytes in the fungal pathogen Candida albicans. Cell Microbiol. 2007, 9: 1647-1659.
    98. Román E, Nombela C, Pla J. The Sho1 adaptor protein links oxidative stress to morphogenesis and cell wall biosynthesis in the fungal pathogen Candida albicans. Mol Cell Biol. 2005, 25: 10611-10627.
    99. Calera JA, Zhao XJ, Calderone R. Defective hyphal development and avirulence caused by a deletion of the SSK1 response regulator gene in Candida albicans. Infect Immun. 2000, 68: 518-525.
    100. San JoséC, Monge RA, Pérez-Díaz R, Pla J, Nombela C. The mitogen-activated protein kinase homolog HOG1 gene controls glycerol accumulation in the pathogenic fungus Candida albicans. J Bacteriol. 1996, 178: 5850-5852.
    101. Nagahashi S, Mio T, Ono N, Yamada-Okabe T, Arisawa M, Bussey H, Yamada-Okabe H. Isolation of CaSLN1 and CaNIK1, the genes for osmosensing histidine kinase homologues, from the pathogenic fungus Candida albicans. Microbiology. 1998, 144: 425-432.
    102. Gow NA, Robbins PW, Lester JW, Brown AJ, Fonzi WA, Chapman T, Kinsman OS. A hyphal-specific chitin synthase gene (CHS2) is not essential for growth, dimorphism, or virulence of Candida albicans. Proc Natl Acad Sci U S A. 1994, 91: 6216-6220.
    103. Lay J, Henry LK, Clifford J, Koltin Y, Bulawa CE, Becker JM. Altered expression of selectable marker URA3 in gene-disrupted Candida albicans strains complicates interpretation of virulence studies. Infect Immun. 1998, 66: 5301-5306.
    104. Alepuz PM, Cunningham KW, Estruch F. Glucose repression affects ion homeostasis in yeast through the regulation of the stress-activated ENA1 gene. Mol Microbiol. 1997, 26: 91-98.
    105. Bermejo C, Rodríguez E, García R, Rodríguez-Pe?a JM, Rodríguez de la Concepción ML, Rivas C, Arias P, Nombela C, Posas F, Arroyo J. The sequential activation of the yeast HOG and SLT2 pathways is required for cell survival to cell wall stress. Mol Biol Cell. 2008, 19: 1113-1124..
    106.蒋伶活李西川智慧.白念珠菌菌丝发育的遗传调控.细胞生物学杂志. 2006, 28: 387-392

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700