KLF4在TGF-β1诱导血管平滑肌细胞分化中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管平滑肌细胞(vascular smooth muscle cell, VSMC)异常增殖是许多血管增殖性疾病,如动脉粥样硬化、血管再狭窄、高血压等发生发展的共同病理学基础。既往研究已经证明,转化生长因子β1(transforming growth factor, TGF-β1)作为多肽生长因子家族中的一员,通过与受体TβRI/TβRII(TGF-βtype I receptor,TβRI;TGF-βtype II receptor,TβRII)相互作用而发挥对细胞生长、分化和凋亡的调节作用。阐明TGF-β在VSMC生物学行为调节中的作用及其机制,对防治血管重塑和逆转增殖性血管病变具有重要的意义。
     Krüppel样因子(krüppel-like factor,KLF)是一类含有锌指结构的转录因子,其典型结构特征是在羧基端具有3个C2H2锌指结构。KLF广泛参与细胞增殖、凋亡、分化以及胚胎发育等生命活动的调控。近年来的研究结果显示,KLF4(krüppel-like factor 4)作为转录因子既可直接结合DNA,又能通过与其它转录因子相互作用而调控基因的表达。以往研究证实,TGF-β1可诱导KLF4表达并促进体外培养的去分化型VSMC进行分化,但KLF4在TGF-β诱导VSMC分化中的作用及机制尚不清楚。
     为了阐明KLF4在TGF-β诱导VSMC分化中的作用及其分子机制,本文在系统研究TGF-β1对VSMC增殖、分化、迁移、细胞周期等生物学行为影响的基础上,进一步探讨KLF4在TGF-β1促进VSMC分化中的作用和分子机制。旨在为揭示动脉粥样硬化、高血压和血管再狭窄等心血管疾病的发病机制提供新的实验和理论依据,为心血管疾病的防治提供新的靶点。
     1. TGF-β1诱导VSMC分化与上调KLF4和TβRI表达有关
     本部分实验以VSMC分化和去分化标志基因表达水平作为判断VSMC表型的指标,检测TGF-β1对VSMC表型及相关生物学行为的影响。为了考察TβRI是否参与TGF-β1诱导VSMC分化的过程,一方面,观察敲减TβRI基因表达对VSMC分化和去分化标志基因表达的影响;另一方面,观察KLF4过表达和敲减对TβRI表达以及对VSMC分化和去分化标志基因表达的影响。实验结果如下:
     1.1 TGF-β1抑制VSMC增殖、迁移和细胞周期进程
     MTT分析、细胞计数、伤口愈合实验结果显示,TGF-β1能以浓度(0.5、1、2、4 ng/ml)和时间(24、48 h)依赖的方式抑制VSMC增殖和迁移,以TGF-β1浓度为2 ng/ml作用于VSMC 48 h对细胞增殖和迁移的抑制作用最强。
     流式细胞术检测结果显示,TGF-β1能以时间(6、12、24、48 h)依赖的方式抑制VSMC细胞周期的进程。TGF-β1(2 ng/ml)刺激VSMC 48 h后,停滞于G0/G1期的细胞数显著增加,同时处于S期和G2/M期的细胞数明显减少。
     1.2 TGF-β1诱导VSMC分化标志基因SM22α和SMα-actin表达
     SM22α和SMα-actin表达是VSMC处于分化状态的重要分子标志, PCNA表达是VSMC处于增殖状态的重要标志。采用Western blot方法,检查TGF-β1对各种标志基因表达的影响。结果显示,在TGF-β1处理的VSMC中,分化标志基因SM22α和SMα-actin表达明显升高,而增殖标志物PCNA表达显著降低,这些基因的表达变化依赖于TGF-β1作用的时间和浓度。其中,浓度为2 ng/ml和作用时间为48 h时变化最为显著。
     1.3敲减TβRI表达对VSMC分化和去分化标志基因表达的影响
     将靶向TβRI的小干扰RNA(small interfering RNA,siRNA)导入VSMC,阻断内源性TβRI表达后,研究TβRI在TGF-β1诱导VSMC分化中的作用。Western blot结果显示,转染TβRI-siRNA可使TβRI mRNA和蛋白表达水平降低约75~80%,表明该基因的表达被有效敲低。在TGF-β1刺激下,转染TβRI-siRNA的VSMC中SM22α和SMα-actin的表达明显降低,相反,增殖标志物PCNA的表达显著增加。
     1.4 KLF4在TGF-β1诱导TβRI表达及VSMC分化中的作用
     虽然已经发现KLF4是参与细胞生长、分化和凋亡的调控,但KLF4是否通过TβRI介导TGF-β1的作用目前尚不清楚。
     RT-PCR和Western blot结果表明,TGF-β1显著诱导KLF4和TβRI基因的转录和蛋白表达,并具有明显的时-效(6、12、24、48 h)关系。2 ng/ml TGF-β1作用于VSMC 6 h后,KLF4和TβRI的mRNA和蛋白表达水平均显著升高,两者的表达变化呈正相关关系。
     为了阐明KLF4与TβRI表达之间的关系,将KLF4-siRNA导入VSMC,阻断内源性KLF4表达后,明确KLF4在TGF-β1诱导TβRI及VSMC分化标志基因表达中的作用。RT-PCR和Western blot分析结果显示,转染KLF4-siRNA可敲减KLF4表达60%以上。在敲低KLF4表达的VSMC中,TGF-β1诱导TβRI表达的作用被取消,分化标志基因SM22α和SMα-actin的表达也明显下降,表明KLF4介导TGF-β1对TβRI表达的诱导作用。
     另外,将KLF4腺病毒表达载体Ad-KLF4感染VSMC,观察强制表达KLF4对TβRI和VSMC分化标志基因表达的影响。RT-PCR和Western blot分析证实,在KLF4过表达的VSMC中,TβRI表达明显高于空载体对照组,与此同时,分化标志基因SM22α和SMα-actin的表达也显著升高。
     2. TGF-β1通过激活Smad和p38 MAPK信号通路诱导KLF4磷酸化和KLF4与Smad2/3相互作用
     TGF-β1通过与VSMC上的相应受体相互作用而触发细胞信号的跨膜转导,进而活化Smad信号通路而激活相关基因表达。丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)级联反应是胞内信号进行交互作用的重要信号转导通路。在上述阐明KLF4通过TβRI介导TGF-β诱导VSMC分化的基础上,本部分实验探讨TGF-β1对Smad和MAPK信号途径的影响,以期阐明TGF-β1诱导KLF4活化和促进细胞分化的信号转导机制。
     2.1 TGF-β1通过激活Smad和p38 MAPK信号途径诱导KLF4磷酸化
     VSMC经TGF-β1(2 ng/ml)刺激5、10、20、40 min,用磷酸化丝氨酸抗体对细胞裂解液进行免疫沉淀后检测磷酸化KLF4的水平。结果显示,随着TGF-β1刺激时间的延长,磷酸化型KLF4水平逐渐升高,在TGF-β1刺激20~40 min内,其磷酸化水平增加2倍;同时,TGF-β1刺激后,磷酸化型Smad2(p-Smad2)、Smad3(p-Smad3)和p38 MAPK(p-p38)水平也显著升高。
     分别以TβRI特异性抑制剂SB431542、p38特异性抑制剂SB203580和ERK特异性抑制剂PD98059处理VSMC,特异性阻断Smad、p38或ERK信号通路的活化后,再以2 ng/ml的TGF-β1刺激细胞40 min。Western blot结果显示,SB431542或SB203580预处理细胞可显著抑制KLF4磷酸化,而PD98059对KLF4磷酸化无明显影响。用靶向Smad2、Smad3或p38 MAPK的siRNA敲低内源性Smad2、Smad3或p38 MAPK表达后,TGF-β1对KLF4磷酸化不再产生明显影响。证明TGF-β1诱导的KLF4磷酸化依赖于Smad和p38 MAPK信号途径的激活。
     2.2 TGF-β1通过诱导KLF4磷酸化而促进KLF4与Smad2/3相互作用
     免疫共沉淀分析结果显示,VSMC被TGF-β1处理后,KLF4与Smad2/3相互作用形成的复合物明显增加。VSMC在TGF-β1(2 ng/ml)刺激5、10、20、40 min后,随着刺激时间的延长,KLF4与Smad2/3的结合明显增加,交互免疫沉淀也得到相似的结果。表明,TGF-β1能显著促进KLF4与Smad2/3的相互作用,并具有明显的时效关系。
     为了检查KLF4磷酸化是否影响其与Smad2/3的相互作用,以SB431542、SB203580和PD98059处理VSMC,特异性阻断Smad、p38或ERK信号通路的活化后,再以2 ng/ml TGF-β1刺激细胞40 min。免疫共沉淀分析结果显示,在SB431542和SB203580预孵育的VSMC中,KLF4与Smad2/3的相互作用明显降低,交互免疫沉淀得到相似的结果。用靶向Smad2、Smad3或p38 MAPK的siRNA敲低内源性Smad2、Smad3或p38 MAPK表达后,TGF-β1对KLF4与Smad2/3的相互作用不再产生明显影响。上述结果表明,TGF-β1通过Smad和p38 MAPK信号途径诱导KLF4发生磷酸化修饰,而磷酸化型KLF4与Smad2/3的结合活性明显增加。
     KLF4磷酸化位点定点突变实验证明,转染KLF4磷酸化位点(S470A)突变体的细胞再用TGF-β1处理时,KLF4的磷酸化水平明显降低,KLF4与Smad2/3的相互作用较对照组(转染野生型KLF4表达载体)降低。这些结果进一步提示,TGF-β1通过诱导KLF4磷酸化而促进KLF4与Smad2/3之间的相互作用。
     2.3 KLF4与Smad2协同激活TβRI基因表达
     上述实验证实,TGF-β1促进KLF4与Smad2/3相互作用。为了检查KLF4与Smad2/3相互作用在调节TβRI表达中的意义,我们首先进行了报告基因分析。将TβRI启动子指导的报告基因分别与KLF4或Smad2表达质粒共转染293A细胞时,KLF4和Smad2均能促进TβRI启动子的转录活性。KLF4和Smad2共转染使TβRI启动子活性比转染其中一种表达质粒升高1倍左右。表明KLF4与Smad2协同激活TβRI基因表达。
     为了进一步检查TGF-β1对KLF4与Smad2相互作用的影响,用KLF4和Smad2表达质粒共转染293A细胞后,再以2 ng/ml TGF-β1刺激细胞40 min。报告基因分析结果显示,TGF-β1处理可增加KLF4与Smad2相互作用及其对TβRI启动子的激活作用。Smad和p38 MAPK抑制剂能有效阻断TGF-β1对TβRI启动子的激活。这些结果表明,TGF-β1通过激活Smad和p38 MAPK信号通路而促进KLF4与Smad2/3的相互作用及其对TβRI启动子的反式激活功能。
     3. KLF4与Smad2协同激活TβRI启动子的作用机制
     对TβRI基因启动子区域的核苷酸序列进行计算机分析的结果表明,TβRI启动子区存在KLF4(CACCC)和Smad(CAGAC)结合位点。本部分实验研究KLF4和Smad2与其结合位点的相互作用,进一步揭示KLF4和Smad2对TβRI基因表达的调控方式。
     3.1 KLF4直接结合于TβRI启动子区的CACCC元件上并激活TβRI基因转录
     TβRI启动子指导的报告基因分析结果显示,KLF4以剂量依赖的方式增强TβRI启动子的活性。染色质免疫沉淀实验(ChIP)结果显示,内源性和外源性的KLF4均可结合到TβRI启动子上。缺失TβRI启动子区的KLF4结合位点及突变KLF4结合位点后进行报告基因分析的结果表明,KLF4通过与TβRI启动子近端的两个KLF4结合位点:即KLF4结合位点2(-402~-398,CACCC)和位点3(-343~-339,CACCC)相互作用而发挥转录激活作用。Oligo pull-down分析结果进一步证实,KLF4直接结合于TβRI启动子区的KLF4结合位点2和3上。
     3.2 Smad2在TGF-β1诱导TβRI表达中的作用
     Smad是TGF-β1信号转导途径中的重要成员。上述研究结果表明,KLF4可直接激活TβRI基因的表达,但与KLF4相互作用的Smad2和Smad3是否影响TβRI基因的表达,目前尚不清楚。
     本部分实验将靶向Smad2或Smad3的siRNA导入VSMC,阻断内源性Smad2或Smad3的表达后,检查Smad2或Smad3在TGF-β1诱导TβRI表达中的作用。Western blot分析结果显示,转染Smad2或Smad3的siRNA在敲低Smad2或Smad3表达的同时,也显著降低TβRI基因的表达。以Smad2表达载体pcDNA3.0-Smad2转染VSMC,证实Smad2在VSMC中的过表达能显著上调TβRI的表达。这些结果提示,Smad2和Smad3与TβRI的表达呈正相关。
     3.3 Smad2通过与TβRI启动子区的Smad结合元件相互作用而激活基因表达
     TβRI启动子指导的报告基因分析结果表明,Smad2也能以剂量依赖性方式增强TβRI启动子的活性。ChIP分析结果显示,在用Smad2抗体沉淀的VSMC染色质片段中可以扩增得到TβRI基因启动子区的Smad(-806~-561)结合区域,TGF-β1处理使Smad2与DNA的结合显著增加。为了定位TβRI启动子区的Smad2结合元件,进一步对截短的TβRI启动子进行报告基因分析。结果表明,Smad2只能激活含TβRI转录起始点上游-993bp的TβRI启动子,不能激活截短的、缺失-806~-561核苷酸序列的TβRI启动子。结果提示,Smad结合元件位于TβRI启动子区的-806~-561区域。
     3.4 KLF4与预先结合在Smad结合位点上的Smad2协同激活TβRI基因转录
     交互ChIP实验结果显示,在用KLF4抗体沉淀的VSMC染色质片段中既能扩增得到TβRI基因启动子区的KLF4结合序列(-483~-241),又能扩增得到Smad结合序列(-806~-561),而在Smad2抗体沉淀的VSMC染色质片段中,只能扩增到TβRI基因启动子区的Smad结合序列,不能扩增得到KLF4的结合序列。这些结果表明,KLF4-Smad2复合物位于Smad结合区。连续ChIP分析进一步显示,在用Smad2抗体再次沉淀KLF4抗体沉淀得到的染色质片段时,二次沉淀物中仍能扩增得到Smad结合序列。以上结果再次表明,KLF4与Smad2在TβRI基因启动子的Smad结合区形成复合物。
     为了进一步证实在Smad结合区形成的KLF4-Smad2复合物能协同激活TβRI基因的转录,对缺失KLF4或Smad2结合位点的TβRI启动子进行报告基因分析。结果表明,缺失Smad结合区域(-806~-561)后,Smad2的转录激活作用以及Smad2和KLF4的协同激活作用消失。用Smad2-siRNA靶向敲低Smad2表达后进行报告基因分析的结果表明,敲低Smad2的表达也消弱了KLF4的转录激活作用,说明KLF4的激活作用部分依赖于与Smad结合区结合的Smad2。以上结果表明,KLF4与Smad2在Smad结合区形成复合物协同激活TβRI基因的转录。
     结论
     1. TGF-β1通过KLF4介导的TβRI表达抑制血管平滑肌细胞周期的进程并促进分化。
     2. TGF-β1通过激活Smad和p38 MAPK信号途径诱导KLF4的磷酸化,磷酸化型KLF4与Smad2/3的相互作用增强。
     3. KLF4直接结合于TβRI启动子区KLF4结合位点2(-402~-398,CACCC)和结合位点3(-343~-339,CACCC)并转录激活TβRI基因的表达,Smad2通过与Smad结合元件相互作用激活TβRI基因的表达。
     4. KLF4与预先结合在Smad结合元件上的Smad2形成复合物,协同激活TβRI基因的表达。
Proliferation of vascular smooth muscle cells (VSMCs) plays a key role in the pathogenesis of a variety of proliferative vascular diseases, such as atherosclerosis, restenosis and hypertension. Several lines of evidence have shown that the factors controlling VSMC proliferation and growth inhibition, including various growth factors, signal transduction molecules and transcription factors constitute a complex functional network. Krüppel-like factors (KLFs), retinoic acid receptor-alpha (RARα), platelet-derived growth factor receptor (PDGFR), and transforming growth factor-βtype I receptor (TβRI) and type II receptor (TβRII) are expressed in VSMCs and are components of such a network. Transforming growth factor-β1 (TGF-β1) signaling is involved in the regulation of cell growth, differentiation, apoptosis, cellular homeostasis and other cellular functions. Despite numerous signaling studies, however, the specific contribution of TGF-βsignaling to VSMC phenotypic modulation has not been fully elucidated.
     Krüppel-like factor 4 (KLF4, GKLF) is a member of Sp1 transcription factor family characterized by three C2H2 zinc finger motifs, mainly involved in regulating cell growth, differentiation, proliferation and apoptosis, by controlling the expression of a large number of genes with GC/GT-rich promoters. It has been demonstrated that KLF4 might function as a pleiotropic factor depending on the interaction partner(s) and the cellular context in VSMCs. However, the actual relationship between KLF4 and TβR in the regulation of VSMC proliferation and growth inhibition is not fully understood
     To elucidate whether and how TGF-β-mediated KLF4 expression regulates TGF-βsignaling in VSMCs, we detected the effects of TGF-β1 on VSMC proliferation, growth inhibition and expression of marker genes. We further detected the actual relationship between KLF4 and TβR in the regulation of VSMC proliferation and growth inhibition.
     1. KLF4 mediates TGF-β1-induced VSMC differentiation via TβRI
     TGF-β1 treatment of VSMCs either stimulates proliferation or induces differentiation, depending on the experimental conditions. Thus, using cultured rat VSMCs, we examined the effect of TGF-β1 on the proliferation, cell cycle and differentiated marker genes of VSMCs and the role of KLF4 in TGF-β-induced VSMC differentiation.
     1.1 TGF-β1 inhibits proliferation, migration and cell cycle of VSMCs
     The results of MTT and migration assays showed that treatment of VSMCs with TGF-β1 resulted in a significant reduction of cell proliferation and migration in a dose-dependent (0.5, 1, 2, 4 ng/ml) and time-dependent (24, 48 h) manner. A significant inhibiting effect was observed by treating VSMCs with 2 ng/ml of TGF-β1 for 48 h.
     G1-S switch is a key point in cell proliferation, so we examined the alteration of VSMC cell cycle by flow cytometry. Cell cycle analysis showed that the G0/G1 cell population was increased to 42% after TGF-β1 treatment for 48 h, with only 15% of untreated cells being arrested in the G0/G1 phase of the cell cycle. In addition, there was a reduction in cell proportion in S phase and G2/M phase after TGF-β1 treatment.
     1.2 TGF-β1 enhances the expression of differentiation marker genes, and simultaneously suppresses the expression of dedifferentiation marker gene
     SM22αand SMα-actin highly expressed in differentiated VSMCs are the differentiated marker genes, while PCNA (proliferating cell nuclear antigen) is the VSMC-dedifferentiated marker. Western blot showed that treated with 2 ng/ml of TGF-β1 from 0 to 48 h increased expression of SM22αand SMα-actin, while decreasing the PCNA levels in a time-dependent manner. In addition, when treatment with a range of TGF-β1 concentrations from 0 to 4 ng/ml for 48 h resulted in increased the level of SM22αand SMα-actin in a dose-dependent manner, and decreased the level of PCNA in VSMCs.
     1.3 TβRI expression is closely linked to VSMC differentiation by TGF-β1
     RNA interference was used to silence the expression of TβRI and to assess its effects on TGF-β1-induced VSMC differentiation. Measurements of protein expression showed that the targeted TβRI siRNA knocked down between 75% and 80% of cellular TβRI that was induced by TGF-β1. Transfection with TβRI siRNA reduced SM22αand SMα-actin protein levels while upregulating PCNA expression in TGF-β1-treated cells.
     1.4 KLF4 mediates TGF-β1-induced TβRI expression and VSMC differentiation
     To confirm that KLF4 is involved in the regulation of VSMC differentiation we examined the effect of TGF-β1 on KLF4 protein expression. The results of Western blot analysis showed that TGF-β1 (2 ng/ml) time-dependently induced KLF4 levels, reaching a maximum after 6 h before returning to basal levels by 48 h of treatment with TGF-β1. A similar pattern of TβRI expression following TGF-β1 stimulation was observed. Measurements of mRNA levels by semi-quantitative RT-PCR showed comparable changes in KLF4 and TβRI expression in response to TGF-β1.
     To assess that KLF4 mediates TGF-β1-induced TβRI expression in VSMCs, KLF4 siRNA or Ad-KLF4 was transfected into VSMCs. Transfection of VSMCs with KLF4 siRNA resulted in the suppression of TβRI mRNA and protein levels. Correspondingly, a reduction was observed in TGF-β1-induced expression of SM22αand SMα-actin proteins in response to KLF4 silencing. Conversely, overexpression of KLF4 markedly induced expression of TβRI, SM22αand SMα-actin.
     2. TGF-β1 induces KLF4 phosphorylation and its interaction with Smad2/3 via Smad and p38 MAPK signaling in VSMCs
     The role of KLF family in the regulation of TGF-βsignaling has been the subject of considerable investigation. However, the precise mechanism whereby KLF4 regulates TGF-βsignaling in VSMCs is still poorly understood. Having identifed TGF-βregulates KLF4, we investigated whether there exists an interesting possibility that one of the TGF-β-activated pathways regulates KLF4.
     2.1 TGF-β1 induces KLF4 phosphorylation via Smad and p38 MAPK signaling in VSMCs
     The potential role of KLF4 in TGF-β1 signaling and function was investigated by determining KLF4 phosphorylation in VSMCs in response to TGF-β1. This experiment showed that TGF-β1 increased phosphorylation of KLF4 within 5 min, reaching a maximum between 20 and 40 min. Under these experimental conditions, the phosphorylation of TβRI, Smad2, Smad3 and p38 MAPK increased concurrently in a time-dependent manner, whereas ERK phosphorylation was negatively affected by TGF-β1.
     To assess the importance of Smad and p38 MAPK signaling in promoting KLF4 phosphorylation by TGF-β1, the effects of SB431542 and SB203580 on KLF4 phosphorylation induced by TGF-β1 were detected. Pharmacological inhibition of TβRI or p38 MAPK blocked TGF-β1-induced KLF4 phosphorylation. Moreover, silencing Smad2, Smad3 or p38αMAPK blocked TGF-β1-induced KLF4 phosphorylation.
     2.2 KLF4 phosphorylation by TGF-β1 increases the interaction between KLF4 and Smad2/3
     Because TGF-β1 induced KLF4 phosphorylation, experiments were conducted to determine whether KLF4 phosphorylation affected its ability to interact with Smad2 or Smad3 in VSMCs. Co-immunoprecipitation experiments confirmed that TGF-β1 time-dependently increased the interaction of Smad2 and Smad3 with KLF4. SB431542 or SB203580 suppressed TGF-β1-dependent recruitment of KLF4 with Smad2 and Smad3. Correspondingly, siRNA-mediated knockdown of p38αMAPK, Smad2 or Smad3 also decreased the interaction of KLF4 with Smad2/3 in TGF-β1-treated cells.
     To verify that the KLF4-Smad interaction is elicited by KLF4 phosphorylation, point-mutation experiments were conducted. Mutation within the DNA-binding domain at 470 showed that the Ser470Ala substitution markedly reduced TGF-β1-dependent KLF4 phosphorylation; this was accompanied by impaired co-sedimentation with Smad2/3.
     2.3 KLF4 and Smad2 cooperatively activate the TβRI promoter
     After having demonstrated that KLF4 mediates TGF-β1-induced TβRI expression through interaction with Smad2/3, we then examined whether KLF4-Smad2 association plays a role in the activation of the TβRI promoter. Gene reporter assay showed that co-expression KLF4 and Smad2 induced an ~19-fold increase in luciferase activity.
     A further induction in TβRI promoter activity was observed when the cells cotransfected with KLF4 and Smad2 expression plasmids were stimulated with TGF-β1. While, SB431542, SB203580 or a combination of both, significantly reduced the reporter gene activity in the TGF-β1-treated 293A cotransfected cells.
     3. Synergistic cooperation of KLF4 with Smad2 in TGF-β1-induced TβRI gene activation in VSMCs
     Since KLF4 mediates TβRI expression, we hypothesized that KLF4 enhances TGF-βsignaling via TβRI. Since it has been demonstrated that KLF4 interaction with Smad2 cooperatively activates TβRI promoter, we hypothesized that KLF4 could form a stable complex with Smad2 either at the KLF4-binding region, Smad-responsive element or both of these two regions. Using the TESS computational program, we established that the -472/-339 bp region of the rat TβRI promoter contains KLF4-binding sites (CACCC) and the -806/-561 bp region contains Smad-responsive region (CAGAC).
     3.1 KLF4 binds directly to the KLF4-binding sites 2 and 3 of the TβRI promoter
     HEK293A cells were transfected with a TβRI promoter-reporter plasmid and increasing amounts of KLF4 expression plasmids. Measurements of luciferase activity showed that overexpression of KLF4 dose-dependently increased by several fold the transcriptional activity of TβRI when compared with control plasmids.
     Using the TESS computational program, we established that the -472/-339 bp region of the rat TβRI promoter contains two typical KLF4-binding sites (CACCC) and one with a reverse orientation sequence (GGGTG). Chromatin immunoprecipitation studies showed that KLF4 specifically interacts with TGF-β1-responsive sites of TβRI promoter. To determine which DNA elements are involved in the KLF4 induction of TβRI, a series of 5'-deletion mutants and KLF4-binding site mutants were tested in 293A cells co-transfected with pEGFP-KLF4. Measurements of luciferase activity suggested that the KLF4-responsive elements are located in the -453/+21 region in the TβRI promoter.
     To test the role of these putative KLF4-binding sites in TβRI induction by KLF4, reporter plasmids containing TβRI promoter with site-specific mutations were analyzed. Disruption of KLF4-binding site 1 (-472/-468 bp region) did not affect the transcriptional induction by KLF4, whereas disruption of site 2 (-402/-398 bp region) or 3 (-343/-339 bp region) reduced significantly the KLF4’s transcriptional response. To verify the binding activities of the KLF4-binding sites 2 and 3, Oligonucleotide pull-down assays were performed. The same pattern of KLF4 protein bands was observed with both oligonucleotide probes. Extracts from cells treated with TGF-β1 showed stronger KLF4 binding to the two probes by ~2-fold.
     3.2 Effect of Smad2 on TGF-β1-induced TβRI expression
     Smads are central mediators of TβR signals, so we determined whether TGF-β1-dependent induction of TβRI levels is influenced by inhibition of Smad2 and/or Smad3. Silencing of either Smad2 or Smad3 markedly suppressed TβRI up-regulation by TGF-β1. Conversely, overexpression of Smad2 markedly induced expression of TβRI.
     3.3 The Smad-responsive element is responsible for Smad2 transactivation on the TβRI promoter
     We examined whether Smad2 plays a role in the activation of the TβRI promoter by luciferase reporter gene assay. Measurements of luciferase activity showed that overexpression of Smad2 dose-dependently increased by several fold the transcriptional activity of TβRI when compared with control plasmids.
     Because Smad2 could activate the TβRI promoter, we want to determine whether Smad2 binds directly to this promoter. ChIP assays showed that constitutive Smad2 binds to the TβRI promoter. The TGF-β1 treatment increased Smad2 binding by ~2.2-fold to the putative Smad-binding region as compared to untreated cells.
     To define which DNA elements are involved in the Smad2 induction of TβRI, a series of 5'-deletion mutants were tested in 293 cells co-transfected with pcDNA-Smad2. pTβRI/-993 elicited a strong transcriptional response by Smad2, whereas pTβRI/-453 and pTβRI/-386 were unresponsive to Smad2.
     3.4 Interaction of KLF4 with Smad2 bound to the Smad-binding element provides cooperative activation of the TβRI promoter
     Since KLF4 interaction with Smad2 cooperatively activates TβRI promoter, we hypothesized that KLF4 could form a stable complex with Smad2 either at the KLF4-binding region, Smad-responsive element or both of these two regions. ChIP and two-step ChIP assay showed that KLF4 forms a stable complex with Smad2 that is bound to the Smad-binding region of the TβRI promoter.
     To further determine the role of the Smad-binding region in the cooperative transcriptional induction of TβRI by KLF4 and Smad2, 293A cells were cotransfected with pTβRI/-993, pTβRI/-993(?-483/-241) or pTβRI/-993(?-806/-561) together with empty vector or the expression vectors encoding KLF4 and Smad2. Measurements of luciferase showed that deletion of the -483/-241 KLF4-binding region abolished KLF4’s transcriptional response while maintaining Smad2 responsiveness and the cooperative activation by Smad2 and KLF4. In contrast, deletion of the -806/-561 Smad2-binding motif had no inhibitory effect on the transcriptional induction of TβRI promoter by KLF4; however, both the Smad2 responsiveness and cooperative activation by Smad2 and KLF4 were lost. Moreover, Knockdown of Smad2 with siRNA abolished the additive effect in cells cotransfected with Smad2 and KLF4 expression plasmids.
     CONCLUSIONS
     1 TGF-β1 inhibits cell cycle progression and induces differentiation in cultured rat VSMCs. This activity of TGF-β1 is accompanied by upregulation of KLF4, with concomitant increase in TβRI expression.
     2 KLF4 is found to transduce TGF-β1 signals via phosphorylation-mediated activation of Smad2, Smad3 and p38 MAP kinase. The activation of both pathways, in turn, increases the phosphorylation of KLF4, which enable the formation of KLF4-Smad2 complex in response to TGF-β1.
     3 KLF4 binds directly to the KLF4-binding sites 2 and 3 of the TβRI promoter and Smad2 recruits to the Smad-responsive region to activate TβRI promoter.
     4 Formation of a stable KLF4-Smad2 complex to the promoter’s Smad-responsive region mediates cooperative TβRI promoter transcription in response to TGF-β1.
引文
1 Owens GK. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev, 1995, 75(3): 487-517
    2 Owens GK, Kumar MS, and Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev, 2004, 84(3): 767-801
    3 Wassmann S, Wassmann K, Jung A, et al. Induction of p53 by GKLF is essential for inhibition of proliferation of vascular smooth muscle cells. J Mol Cell Cardiol, 2007, 43(3): 301-307
    4 Zheng B, Han M, Bernier M, et al. Krüppel-like factor 4 inhibits proliferation by platelet-derived growth factor receptor beta-mediated, not by retinoic acid receptor alpha-mediated, phosphatidylinositol 3-kinase and ERK signaling in vascular smooth muscle cells. J Biol Chem, 2009, 284(34): 22773-22785
    5 Weber DS. A novel mechanism of vascular smooth muscle cell regulation by Notch: platelet-derived growth factor receptor-beta expression? Circ Res, 2008, 102(12): 1448-1450
    6 Fujiu K, Manabe I, Ishihara A, et al. Synthetic retinoid Am80 suppresses smooth muscle phenotypic modulation and in-stent neointima formation by inhibiting KLF5. Circ Res, 2005, 97(11): 1132-1141
    7 Autieri MV. Krüppel-like factor 4: transcriptional regulator of proliferation, or inflammation, or differentiation, or all three? Circ Res, 2008, 102(12): 1455-1457
    8 Yi JY, Shin I, and Arteaga CL. Type I transforming growth factor beta receptor binds to and activates phosphatidylinositol 3-kinase. J Biol Chem, 2005, 280(11): 10870-10876
    9 Halloran BG, Prorok GD, So BJ, et al. Transforming growth factor-beta 1 inhibits human arterial smooth-muscle cell proliferation in a growth-rate-dependent manner. Am J Surg, 1995, 170(2): 193-197
    10 Rocic P and Lucchesi PA. NAD(P)H oxidases and TGF-beta-induced cardiac fibroblast differentiation: Nox-4 gets Smad. Circ Res, 2005, 97(9): 850-852
    11 Abdel-Latif A, Zuba-Surma EK, Case J, et al. TGF-beta1 enhances cardiomyogenic differentiation of skeletal muscle-derived adult primitive cells. Basic Res Cardiol, 2008,103(6): 514-524
    12 Mallat Z and Tedgui A. The role of transforming growth factor beta in atherosclerosis: novel insights and future perspectives. Curr Opin Lipidol, 2002, 13(5): 523-529
    13 Grainger DJ. Transforming growth factor beta and atherosclerosis: so far, so good for the protective cytokine hypothesis. Arterioscler Thromb Vasc Biol, 2004, 24(3): 399-404
    14 Giordano A, Romano S, Mallardo M, et al. FK506 can activate transforming growth factor-beta signaling in vascular smooth muscle cells and promote proliferation. Cardiovasc Res, 2008, 79(3): 519-526
    15 Tsai S, Hollenbeck ST, Ryer EJ, et al. TGF-beta through Smad3 signaling stimulates vascular smooth muscle cell proliferation and neointimal formation. Am J Physiol Heart Circ Physiol, 2009, 297(2): H540-H549
    16 Chen S, Crawford M, Day RM, et al. RhoA modulates Smad signaling during transforming growth factor-beta-induced smooth muscle differentiation. J Biol Chem, 2006, 281(3): 1765-1770
    17 Kawai-Kowase K, Ohshima T, Matsui H, et al. PIAS1 mediates TGFbeta-induced SM alpha-actin gene expression through inhibition of KLF4 function-expression by protein sumoylation. Arterioscler Thromb Vasc Biol, 2009, 29(1): 99-106
    18 Deaton RA, Su C, Valencia TG, et al. Transforming growth factor-beta1-induced expression of smooth muscle marker genes involves activation of PKN and p38 MAPK. J Biol Chem, 2005, 280(35): 31172-31181
    19 Yoshida T, Kaestner KH, and Owens GK. Conditional deletion of krüppel-like factor 4 delays downregulation of smooth muscle cell differentiation markers but accelerates neointimal formation following vascular injury. Circ Res, 2008, 102(12): 1548-1557
    20 Hamik A, Lin Z, Kumar A, et al. Krüppel-like factor 4 regulates endothelial inflammation. J Biol Chem, 2007, 282(18): 13769-13779
    21 Feinberg MW, Lin Z, Fisch S, et al. An emerging role for krüppel-like factors in vascular biology. Trends Cardiovasc Med, 2004, 14(6): 241-246
    22 King KE, Iyemere VP, Weissberg PL, et al. Krüppel-like factor 4 (KLF4/GKLF) is a target of bone morphogenetic proteins and transforming growth factor beta 1 in the regulation of vascular smooth muscle cell phenotype. J Biol Chem, 2003, 278(13):11661-11669
    23 Liu Y, Sinha S, McDonald OG, et al. Krüppel-like factor 4 abrogates myocardin-induced activation of smooth muscle gene expression. J Biol Chem, 2005, 280(10): 9719-9727
    24 Wang C, Han M, Zhao XM, et al. Krüppel-like factor 4 is required for the expression of vascular smooth muscle cell differentiation marker genes induced by all-trans retinoic acid. J Biochem, 2008, 144(3): 313-321
    25 Guo P, Zhao KW, Dong XY, et al. Acetylation of KLF5 alters the assembly of p15 transcription factors in transforming growth factor-{beta}-mediated induction in epithelial cells. J Biol Chem, 2009, 284(27): 18184-18193
    26 Truty MJ, Lomberk G, Fernandez-Zapico ME, et al. Silencing of the transforming growth factor-beta (TGFbeta) receptor II by krüppel-like factor 14 underscores the importance of a negative feedback mechanism in TGFbeta signaling. J Biol Chem, 2009, 284(10): 6291-6300
    27 Kawai-Kowase K, Kumar MS, Hoofnagle MH, et al. PIAS1 activates the expression of smooth muscle cell differentiation marker genes by interacting with serum response factor and class I basic helix-loop-helix proteins. Mol Cell Biol, 2005, 25(18): 8009-8023
    28 Han M, Wen JK, Zheng B, et al. Serum deprivation results in redifferentiation of human umbilical vascular smooth muscle cells. Am J Physiol Cell Physiol, 2006, 291(1): C50-C58
    29 Bernard DJ. Both SMAD2 and SMAD3 mediate activin-stimulated expression of the follicle-stimulating hormone beta subunit in mouse gonadotrope cells. Mol Endocrinol, 2004, 18(3): 606-623
    30 He M, Han M, Zheng B, et al. Angiotensin II stimulates KLF5 phosphorylation and its interaction with c-Jun leading to suppression of p21 expression in vascular smooth muscle cells. J Biochem, 2009, 146(5): 683-691
    31 Ballock RT, Heydemann A, Wakefield LM, et al. TGF-beta 1 prevents hypertrophy of epiphyseal chondrocytes: regulation of gene expression for cartilage matrix proteins and metalloproteases. Dev Biol, 1993, 158(2): 414-429
    32 Nakao A, Imamura T, Souchelnytskyi S, et al. TGF-beta receptor-mediated signallingthrough Smad2, Smad3 and Smad4. Embo J, 1997, 16(17): 5353-5362
    33 Moustakas A, Pardali K, Gaal A, et al. Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation. Immunol Lett, 2002, 82(1-2): 85-91
    34 Derynck R and Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signaling. Nature, 2003, 425(6958): 577-584
    35 Yang EY and Moses HL. Transforming growth factor beta 1-induced changes in cell migration, proliferation, and angiogenesis in the chicken chorioallantoic membrane. J Cell Biol, 1990, 111(2): 731-741
    36 Shields JM and Yang VW. Identification of the DNA sequence that interacts with the gut-enriched krüppel-like factor. Nucleic Acids Res, 1998, 26(3): 796-802
    37 Chen X, Johns DC, Geiman DE, et al. Krüppel-like factor 4 (gut-enriched krüppel-like factor) inhibits cell proliferation by blocking G1/S progression of the cell cycle. J Biol Chem, 2001, 276(32): 30423-30428
    38 Jaubert J, Cheng J, and Segre JA. Ectopic expression of krüppel like factor 4 (Klf4) accelerates formation of the epidermal permeability barrier. Development, 2003, 130(12): 2767-2777
    39 Foster KW, Liu Z, Nail CD, et al. Induction of KLF4 in basal keratinocytes blocks the proliferation-differentiation switch and initiates squamous epithelial dysplasia. Oncogene, 2005, 24(9): 1491-1500
    40 Kowanetz M, Lonn P, Vanlandewijck M, et al. TGFbeta induces SIK to negatively regulate type I receptor kinase signaling. J Cell Biol, 2008, 182(4): 655-662
    1 Chen S and Lechleider RJ. Transforming growth factor-beta-induced differentiation of smooth muscle from a neural crest stem cell line. Circ Res, 2004, 94(9): 1195-1202
    2 Massague J. TGF-beta signal transduction. Annu Rev Biochem, 1998, 67:753-791
    3 Wrana JL, Attisano L, Wieser R, et al. Mechanism of activation of the TGF-beta receptor. Nature, 1994, 370(6488): 341-347
    4 Eickelberg O. Endless healing: TGF-beta, SMADs, and fibrosis. FEBS Lett, 2001, 506(1): 11-14
    5 Shi Y and Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell, 2003, 113(6): 685-700
    6 Chai J, Wu JW, Yan N, et al. Features of a Smad3 MH1-DNA complex. Roles of water and zinc in DNA binding. J Biol Chem, 2003, 278(22): 20327-20331
    7 Dijke P and Hill CS. New insights into TGF-beta-Smad signalling. Trends Biochem Sci, 2004, 29(5): 265-273
    8 Deaton RA, Su C, Valencia TG, et al. Transforming growth factor-beta1-induced expression of smooth muscle marker genes involves activation of PKN and p38 MAPK. J Biol Chem, 2005, 280(35): 31172-31181
    9 Edlund S, Landstrom M, Heldin CH, et al. Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol Biol Cell, 2002, 13(3): 902-914
    10 Yi JY, Shin I, and Arteaga CL. Type I transforming growth factor beta receptor binds to and activates phosphatidylinositol 3-kinase. J Biol Chem, 2005, 280(11): 10870-10876
    11 Pal R and Khanna A. Role of smad- and wnt-dependent pathways in embryonic cardiac development. Stem Cells Dev, 2006, 15(1): 29-39
    12 Hu B, Wu Z, Liu T, et al. Gut-enriched Kruppel-like factor interaction with Smad3 inhibits myofibroblast differentiation. Am J Respir Cell Mol Biol, 2007, 36(1): 78-84
    13 Boon RA, Fledderus JO, Volger OL, et al. KLF2 suppresses TGF-beta signaling in endothelium through induction of Smad7 and inhibition of AP-1. Arterioscler Thromb Vasc Biol, 2007, 27(3): 532-539
    14 Guo P, Zhao KW, Dong XY, et al. Acetylation of KLF5 alters the assembly of p15transcription factors in transforming growth factor-{beta}-mediated induction in epithelial cells. J Biol Chem, 2009, 284(27): 18184-18193
    15 Han M, Wen JK, Zheng B, et al. Serum deprivation results in redifferentiation of human umbilical vascular smooth muscle cells. Am J Physiol Cell Physiol, 2006, 291(1): C50-C58
    16 Han M, Li AY, Meng F, et al. Synergistic co-operation of signal transducer and activator of transcription 5B with activator protein 1 in angiotensin II-induced angiotensinogen gene activation in vascular smooth muscle cells. Febs J, 2009, 276(6): 1720-1728
    17 Meng F, Han M, Zheng B, et al. All-trans retinoic acid increases KLF4 acetylation by inducing HDAC2 phosphorylation and its dissociation from KLF4 in vascular smooth muscle cells. Biochem Biophys Res Commun, 2009, 387(1): 13-18
    18 Zheng B, Han M, Bernier M, et al. Krüppel-like factor 4 inhibits proliferation by platelet-derived growth factor receptor beta-mediated, not by retinoic acid receptor alpha-mediated, phosphatidylinositol 3-kinase and ERK signaling in vascular smooth muscle cells. J Biol Chem, 2009, 284(34): 22773-22785
    19 Botella LM, Sanz-Rodriguez F, Komi Y, et al. TGF-beta regulates the expression of transcription factor KLF6 and its splice variants and promotes co-operative transactivation of common target genes through a Smad3-Sp1-KLF6 interaction. Biochem J, 2009, 419(2): 485-495
    20 Foster KW, Liu Z, Nail CD, et al. Induction of KLF4 in basal keratinocytes blocks the proliferation-differentiation switch and initiates squamous epithelial dysplasia. Oncogene, 2005, 24(9): 1491-1500
    21 Wang C, Han M, Zhao XM, et al. Kruppel-like factor 4 is required for the expression of vascular smooth muscle cell differentiation marker genes induced by all-trans retinoic acid. J Biochem, 2008, 144(3): 313-321
    22 Kawai-Kowase K, Kumar MS, Hoofnagle MH, et al. PIAS1 activates the expression of smooth muscle cell differentiation marker genes by interacting with serum response factor and class I basic helix-loop-helix proteins. Mol Cell Biol, 2005, 25(18): 8009-8023
    23 Evans PM, Zhang W, Chen X, et al. Krüppel-like factor 4 is acetylated by p300 and regulates gene transcription via modulation of histone acetylation. J Biol Chem, 2007,282(47): 33994-34002
    24 King KE, Iyemere VP, Weissberg PL, et al. Krüppel-like factor 4 (KLF4/GKLF) is a target of bone morphogenetic proteins and transforming growth factor beta 1 in the regulation of vascular smooth muscle cell phenotype. J Biol Chem, 2003, 278(13): 11661-11669
    25 Rowland BD and Peeper DS. KLF4, p21 and context-dependent opposing forces in cancer. Nat Rev Cancer, 2006, 6(1): 11-23
    26 Yang H, Lee CJ, Zhang L, et al. Regulation of transforming growth factor beta-induced responses by protein kinase A in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol, 2008, 295(1): G170-G178
    27 Chen S, Crawford M, Day RM, et al. RhoA modulates Smad signaling during transforming growth factor-beta-induced smooth muscle differentiation. J Biol Chem, 2006, 281(3): 1765-1770
    28 Bhowmick NA, Ghiassi M, Aakre M, et al. TGF-beta-induced RhoA and p160ROCK activation is involved in the inhibition of Cdc25A with resultant cell-cycle arrest. Proc Natl Acad Sci U S A, 2003, 100(26): 15548-15553
    29 Seay U, Sedding D, Krick S, et al. Transforming growth factor-beta-dependent growth inhibition in primary vascular smooth muscle cells is p38-dependent. J Pharmacol Exp Ther, 2005, 315(3): 1005-1012
    30 Feinberg MW, Watanabe M, Lebedeva MA, et al. Transforming growth factor-beta1 inhibition of vascular smooth muscle cell activation is mediated via Smad3. J Biol Chem, 2004, 279(16): 16388-16393
    31 Wassmer SC, de Souza JB, Frere C, et al. TGF-beta1 released from activated platelets can induce TNF-stimulated human brain endothelium apoptosis: a new mechanism for microvascular lesion during cerebral malaria. J Immunol, 2006, 176(2): 1180-1184
    32 Sturrock A, Cahill B, Norman K, et al. Transforming growth factor-beta1 induces Nox4 NAD(P)H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol, 2006, 290(4): L661-L673
    1 Derynck R and Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature, 2003, 425(6958): 577-584
    2 Pouponnot C, Jayaraman L, and Massague J. Physical and functional interaction of SMADs and p300/CBP. J Biol Chem, 1998, 273(36): 22865-22868
    3 Carcamo J, Zentella A, and Massague J. Disruption of transforming growth factor beta signaling by a mutation that prevents transphosphorylation within the receptor complex. Mol Cell Biol, 1995, 15(3): 1573-1581
    4 Centrella M, Casinghino S, Kim J, et al. Independent changes in type I and type II receptors for transforming growth factor beta induced by bone morphogenetic protein 2 parallel expression of the osteoblast phenotype. Mol Cell Biol, 1995, 15(6): 3273-3281
    5 Ji C, Casinghino S, McCarthy TL, et al. Multiple and essential Sp1 binding sites in the promoter for transforming growth factor-beta type I receptor. J Biol Chem, 1997, 272(34): 21260-21267
    6 Liang YY, Brunicardi FC, and Lin X. Smad3 mediates immediate early induction of Id1 by TGF-beta. Cell Res, 2009, 19(1): 140-148
    7 Guo P, Zhao KW, Dong XY, et al. Acetylation of KLF5 alters the assembly of p15 transcription factors in transforming growth factor-{beta}-mediated induction in epithelial cells. J Biol Chem, 2009, 284(27): 18184-18193
    8 Han M, Wen JK, Zheng B, et al. Serum deprivation results in redifferentiation of human umbilical vascular smooth muscle cells. Am J Physiol Cell Physiol, 2006, 291(1): C50-58
    9 Zheng B, Han M, Bernier M, et al. Krüppel-like factor 4 inhibits proliferation by platelet-derived growth factor receptor beta-mediated, not by retinoic acid receptor alpha-mediated, phosphatidylinositol 3-kinase and ERK signaling in vascular smooth muscle cells. J Biol Chem, 2009, 284(34): 22773-22785
    10 Bernard DJ. Both SMAD2 and SMAD3 mediate activin-stimulated expression of the follicle-stimulating hormone beta subunit in mouse gonadotrope cells. Mol Endocrinol, 2004, 18(3): 606-623
    11 Meng F, Han M, Zheng B, et al. All-trans retinoic acid increases KLF4 acetylation byinducing HDAC2 phosphorylation and its dissociation from KLF4 in vascular smooth muscle cells. Biochem Biophys Res Commun, 2009, 387(1): 13-18
    12 Bernstein BE, Mikkelsen TS, Xie X, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 2006, 125(2): 315-326
    13 Jonk LJ, Itoh S, Heldin CH, et al. Identification and functional characterization of a Smad binding element (SBE) in the JunB promoter that acts as a transforming growth factor-beta, activin, and bone morphogenetic protein-inducible enhancer. J Biol Chem, 1998, 273(33): 21145-21152
    14 Truty MJ, Lomberk G, Fernandez-Zapico ME, et al. Silencing of the transforming growth factor-beta (TGFbeta) receptor II by krüppel-like factor 14 underscores the importance of a negative feedback mechanism in TGFbeta signaling. J Biol Chem, 2009, 284(10): 6291-6300
    15 Kowanetz M, Lonn P, Vanlandewijck M, et al. TGFbeta induces SIK to negatively regulate type I receptor kinase signaling. J Cell Biol, 2008, 182(4): 655-662
    16 Shields JM and Yang VW. Identification of the DNA sequence that interacts with the gut-enriched krüppel-like factor. Nucleic Acids Res, 1998, 26(3): 796-802
    17 Venkatasubbarao K, Ammanamanchi S, Brattain MG, et al. Reversion of transcriptional repression of Sp1 by 5 aza-2' deoxycytidine restores TGF-beta type II receptor expression in the pancreatic cancer cell line MIA PaCa-2. Cancer Res, 2001, 61(16): 6239-6247
    18 Miyazono K, ten Dijke P, and Heldin CH. TGF-beta signaling by Smad proteins. Adv Immunol, 2000, 75:115-157
    19 Yu L, Hebert MC, and Zhang YE. TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses. Embo J, 2002, 21(14): 3749-3759
    20 Barendrecht MM, Mulders AC, van der Poel H, et al. Role of transforming growth factor beta in rat bladder smooth muscle cell proliferation. J Pharmacol Exp Ther, 2007, 322(1): 117-122
    21 Han M, Li AY, Meng F, et al. Synergistic co-operation of signal transducer and activator of transcription 5B with activator protein 1 in angiotensin II-induced angiotensinogen gene activation in vascular smooth muscle cells. Febs J, 2009, 276(6): 1720-1728
    22 Blokzijl A, ten Dijke P, and Ibanez CF. Physical and functional interaction betweenGATA-3 and Smad3 allows TGF-beta regulation of GATA target genes. Curr Biol, 2002, 12(1): 35-45
    23 Leboy P, Grasso-Knight G, D'Angelo M, et al. Smad-Runx interactions during chondrocyte maturation. J Bone Joint Surg Am, 2001, 83-A Suppl 1(Pt 1): S15-22
    1 Owens GK. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev, 1995, 75(3): 487-517
    2 Owens GK, Kumar MS, and Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev, 2004, 84(3): 767-801
    3 Libby P, Sukhova G, Lee RT, et al. Molecular biology of atherosclerosis. Int J Cardiol, 1997, 62(Suppl 2): S23-S29
    4 King KE, Iyemere VP, Weissberg PL, et al. Krüppel-like factor 4 (KLF4/GKLF) is a target of bone morphogenetic proteins and transforming growth factor beta 1 in the regulation of vascular smooth muscle cell phenotype. J Biol Chem, 2003, 278(13): 11661-11669
    5 Wang C, Han M, Zhao XM, et al. Krüppel-like factor 4 is required for the expression of vascular smooth muscle cell differentiation marker genes induced by all-trans retinoic acid. J Biochem, 2008, 144(3): 313-321
    6 Zheng B, Han M, Bernier M, et al. Krüppel-like factor 4 inhibits proliferation by platelet-derived growth factor receptor beta-mediated, not by retinoic acid receptor alpha-mediated, phosphatidylinositol 3-kinase and ERK signaling in vascular smoothmuscle cells. J Biol Chem, 2009, 284(34): 22773-22785
    7 White JA, McAlpine PJ, Antonarakis S, et al. Guidelines for human gene nomenclature (1997). HUGO Nomenclature Committee. Genomics, 1997, 45(2): 468-471
    8 Adam PJ, Regan CP, Hautmann MB, et al. Positive- and negative-acting krüppel-like transcription factors bind a transforming growth factor beta control element required for expression of the smooth muscle cell differentiation marker SM22alpha in vivo. J Biol Chem, 2000, 275(48): 37798-37806
    9 Shields JM, Christy RJ, and Yang VW. Identification and characterization of a gene encoding a gut-enriched krüppel-like factor expressed during growth arrest. J Biol Chem, 1996, 271(33): 20009-20017
    10 Black AR, Black JD, and Azizkhan-Clifford J. Sp1 and krüppel-like factor family of transcription factors in cell growth regulation and cancer. J Cell Physiol, 2001, 188(2): 143-160
    11 Garrett-Sinha LA, Eberspaecher H, Seldin MF, et al. A gene for a novel zinc-finger protein expressed in differentiated epithelial cells and transiently in certain mesenchymal cells. J Biol Chem, 1996, 271(49): 31384-31390
    12 Yet SF, McA'Nulty MM, Folta SC, et al. Human EZF, a krüppel-like zinc finger protein, is expressed in vascular endothelial cells and contains transcriptional activation and repression domains. J Biol Chem, 1998, 273(2): 1026-1031
    13 Geiman DE, Ton-That H, Johnson JM, et al. Transactivation and growth suppression by the gut-enriched krüppel-like factor (krüppel-like factor 4) are dependent on acidic amino acid residues and protein-protein interaction. Nucleic Acids Res, 2000, 28(5): 1106-1113
    14 Kaczynski J, Cook T, and Urrutia R. Sp1- and krüppel-like transcription factors. Genome Biol, 2003, 4(2): 206
    15 Suske G, Bruford E, and Philipsen S. Mammalian SP/KLF transcription factors: bring in the family. Genomics, 2005, 85(5): 551-556
    16 Dang DT, Pevsner J, and Yang VW. The biology of the mammalian krüppel-like family of transcription factors. Int J Biochem Cell Biol, 2000, 32(11-12): 1103-1121
    17 Dang DT, Chen X, Feng J, et al. Overexpression of krüppel-like factor 4 in the human colon cancer cell line RKO leads to reduced tumorigenecity. Oncogene, 2003, 22(22):3424-3430
    18 McCormick SM, Eskin SG, McIntire LV, et al. DNA microarray reveals changes in gene expression of shear stressed human umbilical vein endothelial cells. Proc Natl Acad Sci U S A, 2001, 98(16): 8955-8960
    19 Oates AC, Pratt SJ, Vail B, et al. The zebrafish klf gene family. Blood, 2001, 98(6): 1792-1801
    20 Suzuki T, Sawaki D, Aizawa K, et al. Krüppel-like factor 5 shows proliferation-specific roles in vascular remodeling, direct stimulation of cell growth, and inhibition of apoptosis. J Biol Chem, 2009, 284(14): 9549-9557
    21 Kuhn AR, Schlauch K, Lao R, et al. MicroRNA expression in human airway smooth muscle cells: role of miR-25 in regulation of airway smooth muscle phenotype. Am J Respir Cell Mol Biol, 42(4): 506-513
    22 Jonk LJ, Itoh S, Heldin CH, et al. Identification and functional characterization of a Smad binding element (SBE) in the JunB promoter that acts as a transforming growth factor-beta, activin, and bone morphogenetic protein-inducible enhancer. J Biol Chem, 1998, 273(33): 21145-21152
    23 Whitney EM, Ghaleb AM, Chen X, et al. Transcriptional profiling of the cell cycle checkpoint gene krüppel-like factor 4 reveals a global inhibitory function in macromolecular biosynthesis. Gene Expr, 2006, 13(2): 85-96
    24 Yoon HS, Chen X, and Yang VW. Krüppel-like factor 4 mediates p53-dependent G1/S cell cycle arrest in response to DNA damage. J Biol Chem, 2003, 278(4): 2101-2105
    25 Yoshida T, Kaestner KH, and Owens GK. Conditional deletion of krüppel-like factor 4 delays downregulation of smooth muscle cell differentiation markers but accelerates neointimal formation following vascular injury. Circ Res, 2008, 102(12): 1548-1557
    26 Garvey SM, Sinden DS, Schoppee Bortz PD, et al. Cyclosporine up-regulates krüppel-like factor-4 (KLF4) in vascular smooth muscle cells and drives phenotypic modulation in vivo. J Pharmacol Exp Ther, 2010, 333(1): 34-42
    27 Nickenig G, Baudler S, Muller C, et al. Redox-sensitive vascular smooth muscle cell proliferation is mediated by GKLF and Id3 in vitro and in vivo. Faseb J, 2002, 16(9): 1077-1086
    28 Zhang W, Geiman DE, Shields JM, et al. The gut-enriched krüppel-like factor(krüppel-like factor 4) mediates the transactivating effect of p53 on the p21WAF1/Cip1 promoter. J Biol Chem, 2000, 275(24): 18391-18398
    29 Shie JL, Chen ZY, Fu M, et al. Gut-enriched krüppel-like factor represses cyclin D1 promoter activity through Sp1 motif. Nucleic Acids Res, 2000, 28(15): 2969-2976
    30 Yoon HS and Yang VW. Requirement of krüppel-like factor 4 in preventing entry into mitosis following DNA damage. J Biol Chem, 2004, 279(6): 5035-5041
    31 Kaczynski J, Zhang JS, Ellenrieder V, et al. The Sp1-like protein BTEB3 inhibits transcription via the basic transcription element box by interacting with mSin3A and HDAC-1 co-repressors and competing with Sp1. J Biol Chem, 2001, 276(39): 36749-36756
    32 Evans PM, Zhang W, Chen X, et al. Krüppel-like factor 4 is acetylated by p300 and regulates gene transcription via modulation of histone acetylation. J Biol Chem, 2007, 282(47): 33994-34002
    33 Rowland BD and Peeper DS. KLF4, p21 and context-dependent opposing forces in cancer. Nat Rev Cancer, 2006, 6(1): 11-23
    34 Stone CD, Chen ZY, and Tseng CC. Gut-enriched krüppel-like factor regulates colonic cell growth through APC/beta-catenin pathway. FEBS Lett, 2002, 530(1-3): 147-152
    35 Liu Y, Sinha S, McDonald OG, et al. Krüppel-like factor 4 abrogates myocardin-induced activation of smooth muscle gene expression. J Biol Chem, 2005, 280(10): 9719-9727
    36 Meng F, Han M, Zheng B, et al. All-trans retinoic acid increases KLF4 acetylation by inducing HDAC2 phosphorylation and its dissociation from KLF4 in vascular smooth muscle cells. Biochem Biophys Res Commun, 2009, 387(1): 13-18
    37 Deaton RA, Gan Q, and Owens GK. Sp1-dependent activation of KLF4 is required for PDGF-BB-induced phenotypic modulation of smooth muscle. Am J Physiol Heart Circ Physiol, 2009, 296(4): H1027-1037
    38 Hu B, Wu Z, Liu T, et al. Gut-enriched krüppel-like factor interaction with Smad3 inhibits myofibroblast differentiation. Am J Respir Cell Mol Biol, 2007, 36(1): 78-84
    39 Feinberg MW, Cao Z, Wara AK, et al. Krüppel-like factor 4 is a mediator of proinflammatory signaling in macrophages. J Biol Chem, 2005, 280(46): 38247-38258
    40 Zheng H, Pritchard DM, Yang X, et al. KLF4 gene expression is inhibited by the notchsignaling pathway that controls goblet cell differentiation in mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol, 2009, 296(3): G490-498
    41 Liu J, Zhang H, Liu Y, et al. KLF4 regulates the expression of interleukin-10 in RAW264.7 macrophages. Biochem Biophys Res Commun, 2007, 362(3): 575-581
    42 Hamik A, Lin Z, Kumar A, et al. Krüppel-like factor 4 regulates endothelial inflammation. J Biol Chem, 2007, 282(18): 13769-13779
    43 Zhu S, Tai C, MacVicar BA, et al. Glutamatergic stimulation triggers rapid Krüpple-like factor 4 expression in neurons and the overexpression of KLF4 sensitizes neurons to NMDA-induced caspase-3 activity. Brain Res, 2009, 1250: 49-62
    44 Yamada T, Park CS, Mamonkin M, et al. Transcription factor ELF4 controls the proliferation and homing of CD8+ T cells via the krüppel-like factors KLF4 and KLF2. Nat Immunol, 2009, 10(6): 618-626
    45 Ghaleb AM, Katz JP, Kaestner KH, et al. Krüppel-like factor 4 exhibits antiapoptotic activity following gamma-radiation-induced DNA damage. Oncogene, 2007, 26(16): 2365-2373
    46 Wei D, Gong W, Kanai M, et al. Drastic down-regulation of Krüppel-like factor 4 expression is critical in human gastric cancer development and progression. Cancer Res, 2005, 65(7): 2746-2754
    47 Chen ZY, Shie JL, and Tseng CC. Gut-enriched krüppel-like factor represses ornithine decarboxylase gene expression and functions as checkpoint regulator in colonic cancer cells. J Biol Chem, 2002, 277(48): 46831-46839
    48 Creaven M, Hans F, Mutskov V, et al. Control of the histone-acetyltransferase activity of Tip60 by the HIV-1 transactivator protein, Tat. Biochemistry, 1999, 38(27): 8826-8830
    49 Xiao H, Chung J, Kao HY, et al. Tip60 is a co-repressor for STAT3. J Biol Chem, 2003, 278(13): 11197-11204
    50 Yoshida T, Gan Q, and Owens GK. Krüppel-like factor 4, Elk-1, and histone deacetylases cooperatively suppress smooth muscle cell differentiation markers in response to oxidized phospholipids. Am J Physiol Cell Physiol, 2008, 295(5): C1175-1182
    51 Autieri MV. Krüppel-like factor 4: transcriptional regulator of proliferation, orinflammation, or differentiation, or all three? Circ Res, 2008, 102(12): 1455-1457
    52 McDonald OG, Wamhoff BR, Hoofnagle MH, et al. Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo. J Clin Invest, 2006, 116(1): 36-48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700