MAP激酶反馈机制调控鸟苷三磷酸激酶Rhol和肌动蛋白在酵母中的分布
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:A MAP Kinase Dependent Feedback Mechanism Controls Rhol GTPase and Actin Distribution in Yeast
  • 作者:郭蜀光
  • 论文级别:博士
  • 学科专业名称:植物学
  • 学位年度:2009
  • 导师:李锁平 ; Yu Jiang
  • 学科代码:071001
  • 学位授予单位:河南大学
  • 论文提交日期:2009-10-01
摘要
在酿酒酵母中,鸟苷三磷酸激酶(GTPase)Rho1控制肌动蛋白的极化和细胞壁的扩增。当细胞暴露于各种干扰细胞壁的环境中时,Rho1激活Pkc1和Mpk1从而导致肌动蛋白去极化和细胞壁重塑。Pkc1是哺乳动物蛋白激酶C(PKC)的同源酶;Mpk1属于有丝分裂原激活蛋白激酶( MAPK )。在这项研究中,我们发现一种新的反馈调节机制调控Rho1-Pkc1–MAPK信号传导途径。这一调节机制包括Rom2鸟嘌呤核苷酸交换因子,Rho1和Mpk1。这个Mpk1依赖性的反馈调节机制对于调节Rho1激酶的功能是一个非常重要的步骤。这一反馈机制的激活负责Rom2的重新分配和在胁迫条件下酵母从芽到细胞边缘的细胞壁合成活动。这一反馈调节机制对于终止Rho1在Pkc1 - MAPK途径中的激酶活性、重新极化肌动蛋白细胞骨架和适应胁迫影响后细胞的恢复增长也非常重要。
In the yeast Saccharomyces cerevisiae the guanosine triphosphatase (GTPase) Rho1 controls actin polarization and cell wall expansion. When cells are exposed to various environmental stresses that perturb the cell wall, Rho1 activates Pkc1, a mammalian Protein Kinase C homologue, and Mpk1, a mitogen activated protein kinase (MAPK), resulting in actin depolarization and cell wall remodeling. In this study, we demonstrate a novel feedback loop in this Rho1-mediated Pkc1-MAPK pathway that involves regulation of Rom2, the guanine nucleotide exchange factor of Rho1, by Mpk1, the end kinase of the pathway. This previously unrecognized Mpk1-depedent feedback is a critical step in regulating Rho1 function. Activation of this feedback mechanism is responsible for redistribution of Rom2 and cell wall synthesis activity from the bud to cell periphery under stress conditions. It is also required for terminating Rho1 activity toward the Pkc1-MAPK pathway and for repolarizing actin cytoskeleton and restoring growth after the stressed cells become adapted.
引文
(1) Adamo, J. E., G. Rossi, and P. Brennwald. 1999. The Rho GTPase Rho3 has a direct role in exocytosis that is distinct from its role in actin polarity. Mol. Biol. Cell 10:4121–4133.
    (2) Alarcon, C. M., J. Heitman, and M. E. Cardenas. 1999. Protein kinase activity and identification of a toxic effector domain of the target of rapa- mycin TOR proteins in yeast. Mol. Biol. Cell 10:2531–2546.
    (3) Alberts,A.S.2001.Identification of a carboxyl-terminal diaphanous-related formin homology protein autoregulatory domain. J. Biol. Chem. 276:2824– 2830.
    (4) Alberts,A.S.,N.Bouquin,L.H.Johnston,and R.Treisman.1998.Analysis of RhoA-binding proteins reveals an interaction domain conserved in het- erotrimeric G protein beta subunits and the yeast response regulator pro- tein Skn7. J. Biol. Chem. 273:8616–8622.
    (5) Albertyn, J., S. Hohmann, J. M. Thevelein, and B. A. Prior. 1994. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is reg- ulated by the high-osmolarity glycerol response pathway. Mol. Cell. Biol. 14:4135–4144.
    (6) Alic, N., V. J. Higgins, A. Pichova, M. Breitenbach, and I. W. Dawes. 2003. Lipid hydroperoxides activate the mitogen-activated protein kinase Mpk1p in Saccharomyces cerevisiae. J. Biol. Chem. 278:41849–41855.
    (7) Andrews, B. J., and I. Herskowitz. 1989. Identification of a DNA binding factor involved in cell cycle-control of the yeast HO gene. Cell 57:21–29.
    (8) Andrews, P. D., and M. J. Stark. 2000. Dynamic, Rho1p-dependent local- ization of Pkc1p to sites of polarized growth. J. Cell Sci. 113:2685–2693.
    (9) Antonsson, B., S. Montessuit, L. Friedli, M. A. Payton, and G. Paravicini. 1994. Protein kinase C in yeast. Characteristics of the Saccharomyces cere- visiae PKC1 gene product. J. Biol. Chem. 269:16821–16828.
    (10) Aramburu, J., A. Rao, and C. B. Klee. 2000. Calcineurin: from structure to function. Curr. Top. Cell Regul. 36:237–295.
    (11) Audhya, A., and S. D. Emr. 2002. Stt4 PI 4-kinase localizes to the plasma membrane and functions in the Pkc1-mediated MAP kinase cascade. Dev. Cell 2:593–605.
    (12) Audhya, A., and S. D. Emr. 2003. Regulation of PI4,5P2 synthesis by nu- clear-cytoplasmic shuttling of the Mss4 lipid kinase. EMBO J. 22:4223–4236.
    (13) Audhya, A., M. Foti, and S. D. Emr. 2000. Distinct roles for the yeast phosphatidylinositol 4-kinases, Stt4p and Pik1p, in secretion, cell growth, and organelle membrane dynamics. Mol. Biol. Cell 11:2673–2689.
    (14) Audhya, A., R. Loewith, A. B. Parsons, L. Gao, M. Tabuchi, H. Zhou, C. Boone, M. N. Hall, and S. D. Emr. 2004. Genome-wide lethality screen identifies newPI4,5P2 effectors that regulate the actin cytoskeleton. EMBO J. 23:3747–3757.
    (15) Ayscough, K. R., and D. G. Drubin. 1998. A role for the yeast actin cy- toskeleton in pheromone receptor clustering and signalling. Curr. Biol. 8: 927–930.
    (16) Ayscough, K. R., J. J. Eby, T. Lila, H. Dewar, K. G. Kozminski, and D. G. Drubin. 1999. Sla1p is a functionally modular component of the yeast cortical actin cytoskeleton required for correct localization of both Rho1p- GTPase and Sla2p, a protein with talin homology. Mol. Biol. Cell 10:1061–1075.
    (17) Baetz, K., and B. Andrews. 1999. Regulation of the cell cycle transcription factor Swi4 through auto-inhibition of DNA binding. Mol. Cell. Biol. 19: 6729–6741.
    (18) Baetz, K., J. Moffat, J. Haynes, M. Chang, and B. Andrews. 2001. Tran- scriptional coregulation by the cell integrity mitogen-activated protein ki- nase Slt2 and the cell cycle regulator Swi4. Mol. Cell. Biol. 21:6515–6528.
    (19) Baetz,K.K.,N.J.Krogan,A.Emili,J.Greenblatt,and P.Hieter.2004.The ctf13-30/CTF13 genomic haploinsufficiency modifier screen identifies the yeast chromatin remodeling complex RSC, which is required for the estab- lishment of sister chromatid cohesion. Mol. Cell. Biol. 24:1232–1244.
    (20) Bagnat, M., S. Keranen, A. Shevchenko, K., and Simons. 2000. Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast. Proc. Natl. Acad. Sci. USA 97:3254–3259.
    (21) Bar, E. E., A. T. Ellicott, and D. E. Stone. 2003. G recruits Rho1 to the site of polarized growth during mating in budding yeast.J.Biol.Chem.278: 21798–21804.
    (22) Barbet, N. C., U. Schneider, S. B. Helliwell, I. Stansfield, M. F. Tuite, and M. N. Hall. 1996. TOR controls translation initiation and early G1 progression in yeast. Mol. Biol. Cell 7:25–42.
    (23) Batiza, A. F., T. Schulz, and P. H. Masson. 1996. Yeast respond to hypo- tonic shock with a calcium pulse. J. Biol. Chem. 271:23357–23362.
    (24) Bazzi, M. D., and G. L. Nelsestuen. 1990. Protein kinase C interaction with calcium: a phospholipid-dependent process. Biochemistry 29:7624–7630.
    (25) Bender, L., H. S. Lo, H. Lee, V. Kokojan, V. Peterson, and A. Bender. 1996. associations among PH and SH3 domain-containing proteins and Rho-type GTPases in Yeast. J. Cell Biol. 133:879–894.
    (26) Bickle, M., P. A. Delley, A. Schmidt, and M. N. Hall. 1998. Cell wall integrity modulates RHO1 activity via the exchange factor ROM2. EMBO J. 17:2235–2245.
    (27) Bloom, K. 2000. It’s a kar9ochore to capture microtubules. Nat. Cell Biol. 2:96–98.
    (28) Bonilla, M., and K. W. Cunningham. 2003. Mitogen-activated protein kinase stimulation of Ca2+signaling is required for survival of endoplasmic reticulum stress in yeast. Mol. Biol. Cell 14:4296–4305.
    (29) Bonilla, M., K. K. Nastase, and K. W. Cunningham. 2002. Essential role of calcineurin in response to endoplasmic reticulum stress. EMBO J. 21: 2343–2353.
    (30) Boorsma, A., H. de Nobel, B. ter Riet, B. Bargmann, S. Brul, K. J. Hell- ingwerf, and F. M. Klis. 2004. Characterization of the transcriptional re- sponse to cell wall stress in Saccharomyces cerevisiae. Yeast 21:413–427.
    (31) Bouquin, N., A. L. Johnson, B. A. Morgan, and L. H. Johnston. 1999. Association of the cell cycle transcription factor Mbp1 with the Skn7 re- sponse regulator in budding yeast. Mol. Biol. Cell 10:3389–3400.
    (32) Breeden, L. L. 2003. Periodic transcription: a cycle within a cycle. Curr. Biol. 13:R31–38.
    (33) Brown, J. L., H. Bussey, and R. C. Stewart. 1994. Yeast Skn7p functions in a eukaryotic two-component regulatory pathway. EMBO J. 13:5186–5194.
    (34) Brown, J. L., S. North, and H. Bussey. 1993. SKN7, a yeast multicopy suppressor of a mutation affecting cell wall beta-glucan assembly, encodes a product with domains homologous to prokaryotic two-component regu- lators and to heat shock transcription factors. J. Bacteriol. 175:6908–6915.
    (35) Buehrer, B. M., and B. Errede. 1997. Coordination of the mating and cell integrity mitogen-activated protein kinase pathways in Saccharomyces cere- visiae. Mol. Cell. Biol. 17:6517–6525.
    (36) Bulik, D. A., M. Olczak, H. A. Lucero, B. C. Osmond, P. W. Robbins, and C. A. Specht. 2003. Chitin synthesis in Saccharomyces cerevisiae in response to supplementation of growth medium with glucosamine and cell wall stress. Eukaryot. Cell 2:886–900.
    (37) Cabib, E., J. Drgonova, and T. Drgon. 1998. Role of small G proteins in yeast cell polarization and wall biosynthesis. Annu. Rev. Biochem. 67: 307–333.
    (38) Cabib, E., D-H. Roh, M. Schmidt, L. B. Crotti, and A. Varma. 2001. The yeast cell wall and septum as paradigms of cell growth and morphogenesis. J. Biol. Chem. 276:19678–19682.
    (39) Cafferkey, R., P. R. Young, M. M. McLaughlin, D. J. Bergsma, Y. Koltin, G. M. Sathe, L. Faucette, W. K. Eng, R. K. Johnson, and G. P. Livi. 1993. Dominant missense mutations in a novel yeast protein related to mamma- lian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotox- icity. Mol. Cell. Biol. 13:6012–6023.
    (40) Cappellaro, C., C. Baldermann, R. Rachel, and W. Tanner. 1994. Mating type-specific cell-cell recognition of Saccharomyces cerevisiae: cell wall attachment and active sites of a- and alpha-agglutinin. EMBO J. 13:4737–4744.
    (41) Caro, H. P., H. Tettelin, J. H. Vossen, A. F. J. Ram, H. Van den Ende, and F.Klis.1997.In silicio identification glycosyl-phosphatidylinositol-anchored plasma membrane and cell wall proteins of Saccharomyces cerevisiae. Yeast 13:1477–1489.
    (42) Cassamayor,A.,P.D.Torrance,T.Kobayashi,J.Thorner,andD.R.Alessi. 1999. Functional counterparts of mammalian protein kinases PDK1 and SGK in budding yeast. Curr. Biol. 9:186–197.
    (43) Chai, B., J. M. Hsu, J. Du, and B. C. Laurent. 2002. Yeast RSC function isrequired for organization of the cellular cytoskeleton via an alternative PKC1 pathway. Genetics 161:575–584. 44. Chang,F.,and M.Peter.2002.Formins set the record straight.Science297: 531–532.
    (45) Chavan, M., M. Rekowicz, and W. Lennarz. 2003. Insight into functional aspects of Stt3p, a subunit of the oligosaccharyl transferase. J. Biol. Chem. 278:51441–51447.
    (46) Chen,P.,K.S.Lee,andD.E.Levin.1993.A pair of putative protein kinase genes (YPK1 and YPK2) is required for cell growth in Saccharomyces cere- visiae. Mol. Gen. Genet. 236:443–447.
    (47) Choi, M-G., T-S. Park, and G. M. Carman. 2003. Phosphorylation of Saccharomyces cerevisiae CTP synthetase at Ser424 by protein kinases A and C regulates phosphatidylcholine synthesis by the CDP-choline pathway. J. Biol. Chem. 278:23610–23616.
    (48) Choi, W. J., B. Santos, A. Duran, and E. Cabib. 1994. Are yeast chitin synthases regulated at the transcriptional or the posttranslational level? Mol. Cell. Biol. 14:7685–7694.
    (49) Cid, V. J., R. Cenamor, M. Sanchez, and C. Nombela. 1998. A mutation in the Rho1-GAP-encoding gene BEM2 of Saccharomyces cerevisiae affect morphogenesis and cell wall functionality. Microbiology 1:25–36.
    (50) Cid, V. J., A. Duran, F. Rey, M. P. Snyder, C. Nombela, and M. Sanchez 1995. Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiol. Rev. 59:345–386.
    (51) Cohen,T.J.,K.Lee,L.H.Rutkowski,and R.Strich.2003.Ask10p mediate the oxidative stress-induced destruction of the Saccharomyces cerevisiae C-type cyclin Une3p/Srb11p. Eukaryot. Cell 2:962–970.
    (52) Cohen-Kupiec, R., K. E. Broglie, D. Friesem, R. M. Broglie, and I. Chet. 1999. Molecular characterization of a novel-1,3-exoglucanase related to mycoparasitism of Trichoderma harzianum. Gene 226:147–154.
    (53) Collister, M., M. P. Didmon, F. MacIsaac, M. J. Stark, N. Q. MacDonald and S. M. Keyes. 2002. YIL113w encodes a functional dual-specificity protein phosphatase which specifically interacts with and inactivates the Slt2/Mpk1p MAP kinase in S. cerevisiae. FEBS Lett. 527:186–192.
    (54) Costanzo, M. J. L. Nishikawa, X. Tang, J. S. Millman, O. Schub, K. Breit- kreuz, D. Dewar, I. Rupes, B. Andrews, and M. Tyers. 2004. CDK activitantagonizes Whi5, an inhibitor of G1/S transcription in yeast. Cell 117:899–913.
    (55) Costigan, C., S. Gehrung, and M. Snyder. 1992. A synthetic lethal screen identifies SLK1, a novel protein kinase homolog implicated in yeast cell morphogenesis and cell growth. Mol. Cell. Biol. 12:1162–1178.
    (56) Cutler, N. S., J. Heitman, and M. E. Cardenas. 1997. STT4 is an essential phosphatidylinositol 4-kinase that is a target of wartmannin in Saccharo- myces cerevisiae. J. Biol. Chem. 272:27671–27677.
    (57) Cyert, M. S., and J. Thorner. 1992. Regulatory subunit (CNB1 gene prod uct) of yeast Ca2+/calmodulin-dependent phosphoprotein phosphatases is required for adaptation to pheromone. Mol. Cell. Biol. 12:3460–3469.
    (58) Dallies, N., J. Francois, and V. Paquet. 1998. A new method for quantita- tive determination of polysaccharides in the yeast cell wall. Application to the cell wall defective mutants of Saccharomyces cerevisiae. Yeast 14:12971306.
    (59) Daniel, J. 1993. Potentially rapid walking in cellular regulatory network using the gene-gene interference method in yeast. Mol. Gen. Genet. 240:245–257.
    (60) Davenport,K.R.,M.Sohaskey,Y.Kamada,D.E.Levin,and M.C.Gustin 1995. A second osmosensing signal transduction pathway in yeast. Hypo- tonic shock activates the PKC1 protein kinase-regulated cell integrity path- way. J. Biol. Chem. 270:30157–30161.
    (61) de Bruin, R. A., W. H. McDonald, T. I. Kalashnikova, J. Yates 3rd, and C Wittenberg. 2004. Cln3 activates G1-specific transcription via phosphoryla- tion of the SBF bound repressor Whi5. Cell 117:887–898.
    (62) deHart,A.K.,J.D.Schnell,D.A.Allen,andL.Hicke.2002.The conserved Pkh-Ypk kinase cascade is required for endocytosis in yeast. J. Cell Bio.l156:241–248.
    (63) Delley, P. A., and M. N. Hall. 1999. Cell wall stress depolarizes cell growth via hyperactivation of RHO1. J. Cell Biol. 147:163–174.
    (64) Denis, V., and M. S. Cyert. 2005. Molecular analysis reveals localization of Saccharomyces cerevisiae protein kinase C to sites of polarized growth and Pkc1p targeting to the nucleus and mitotic spindle. Eukaryot. Cell 4:36–45
    (65) de Nadal, E., L. Casadome′, and F. Posas. 2003. Targeting the MEF2-like transcription factor Smp1 by the stress-activated Hog1 mitogen-activated protein kinase. Mol. Cell. Biol. 23:229–237.
    (66) de Nobel,H.,C.Ruiz,H.Martin,W.Morris,S.Brul,M.Molina,and F.M Klis.2000.Cell wall perturbation in yeast results in dual phosphorylation ofthe Slt2/Mpk1 MAP kinase and in an Slt2-mediated increase in FKS2-lacZ expression, glucanase resistance and thermotolerance. Microbiology 146:2121–2132.
    (67) de Nobel,H.,H.van Den Ende,and F.M.Klis.2000.Cell wall maintenance in fungi. Trends Microbiol. 8:344–345.
    (68) deNobel,J.G.,andJ.A.Barnett.1991.Passage of molecules through yeast cell walls: a brief essay-review. Yeast 7:313–323.
    (69) deNobel,J.G.,F.M.Klis,J.Priem,T.Munnik,andH.vandenEnde.1990 The glucanase-soluble mannoproteins limit cell wall porosity in Saccharo- myces cerevisiae. Yeast 6:491–499.
    (70) Desrivieres, S., F. T. Cooke, P. J. Parker, and M. N. Hall. 1998. MSS4, a phosphatidylinositol-4-phosphate 5-kinase required for organization of the actin cytoskeleton in Saccharomyces cerevisiae. J. Biol. Chem. 273:15787–15793.
    (71) Di Como, J., J., H. Chang, and K. T. Arndt. 1995. Activation of CLN1 and CLN2 G1 cyclin gene expression by BCK2. Mol. Cell. Biol. 15:1835–1846
    (72) Dodou, E., and R. Treisman. 1997. The Saccharomyces cerevisiae MADS box transcription factor Rlm1 is a target for the Mpk1 mitogen-activated protein kinase pathway. Mol. Cell. Biol. 17:1848–1859.
    (73) Doi, K., A. Gartner, G. Ammerer, B. Errede, H. Shinkawa, K. Sugimoto and K. Matsumoto. 1994. MSG5, a novel protein phosphatase promote adaptation to pheromone response in S. cerevisiae. EMBO J. 13:61–70.
    (74) Dong, Y., D. Pruyne, and A. Bretscher. 2003. Formin-dependent actin assembly is regulated by distinct modes of Rho signaling in yeast. J. Cel Biol. 161:1081–1092.
    (75) Douglas, C. M., F. Foor, J. A. Marrinan, N. Morin, J. B. Nielsen, A. M Dahl, P. Mazur, W. Baginsky, W. Li, M. El-Sherbeini, J. A. Clemas, S. M Mandala, B. R. Frommer, and M. B. Kurtz. 1994. The Saccaharomyces cerevisiae FKS1 (ETG1) gene encodes an integral membrane protein which is a subunit of 1,3--D-glucan synthase. Proc. Natl. Acad. Sci. USA 91: 12907–12911.
    (76) Drgonova, J., T. Drgon, K. Tanaka, R. Kollar, G. C. Chen, R. A. Ford, C. S. Chan, Y. Takai, and E. Cabib. 1996. Rho1p, a yeast protein at the interface between cell polarization and morphogenesis. Science 272:277–279.
    (77) Drubin, D. G., and W. J. Nelson. 1996. Origins of cell polarity. Cell 84: 335–344.
    (78) Dykes, A. C., M. E. Fultz, M. L. Norton, and G. L. Wright. 2003. Micro- tubule-dependent PKC-alpha localization in A7r5 smooth muscle cells.Am. J. Physiol. Cell Physiol. 285:C76–C87.
    (79) Elion, E. A. 2000. Pheromone response, mating and cell biology. Curr. Opin. Microbiol. 3:573–581.
    (80) Epstein, C. B., and F. R. Cross. 1994. Genes that can bypass the CLN Requirement for Saccharomyces cerevisiae cell cycle START. Mol.Cell.Biol. 14:2041–2047.
    (81) Errede, B., R. M. Cade, B. M. Yashar, Y. Kamada, D. E. Levin, K. Irie, and K. Matsumoto. 1995. Dynamics and organization of MAP kinase signal pathways. Mol. Reprod. Dev. 42:477–485.
    (82) Evangelista, M., K. Blundell, M. S. Longtine, C. J. Chow, N. Adames, J. R. Pringle,M.Peter,and C.Boone.1997.Bni1p,a yeast formin linking Cdc42p and the actin cytoskeleton during polarized morphogenesis. Science 276: 118–122.
    (83) Evangelista, M., S. Zigmond, and C. Boone. 2003. Formins: signaling ef- fectors for assembly and polarization of actin filaments. J. Cell Sci. 116: 2603–2611.
    (84) Ferrell, J. E. Jr. 1996. Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs. Trends Bio- chem. Sci. 21:460–466.
    (85) Finger, F. P., T. E. Hughes, and P. Novick. 1998. Sec3 is a spatial landmark for polarized secretion in budding yeast. Cell 92:559–571.
    (86) Fischer,M.,N.Schnell,J.Chattaway,P.Davies,G.Dixon,and D.Sanders. 1997.The Saccharomyces cerevisiae CCH1 gene is in volved in calcium influx and mating, FEBS Lett. 419:259–262.
    (87) Flandez, M., I. C. Cosano, C. Nombela, H. Martin, and M. Molina. 2004. Reciprocal regulation between Slt2 MAPK and isoforms of Msg5 dual- specificity protein phosphatase modulates the yeast cell integrity pathway. J. Biol. Chem. 279:11027–11034.
    (88) Flynn, P., H. Mellor, R. Palmer, G. Panayotou, and P. J. Parker. 1998. Multiple interactions of PRK1 with RhoA. Functional assignment of the Hr1 repeat motif. J. Biol. Chem. 273:2698–2705.
    (89) Foor, F., S. A. Parent, N. Morin, A. M. Dahl, N. Ramadan, G. Chrebet, K. A. Bostian, and J. B. Nielsen. 1992. Calcineurin mediates inhibition by FK506 and cyclosporin of recovery from alpha-factor arrest in yeast.Nature 360:682–684.
    (90) Fostel, J. M., and P. A. Lartey. 2000. Emerging novel antifungal agents. Drug Disc. Today 5:25–32.
    (91) Foti, M., A. Audhya, and S. D. Emr. 2001. Sac1 lipid phosphatase and Stt4 phosphatidylinositol 4-kinase regulate a pool of phosphatidylinositol 4- phosphate that functions in the control of the actin cytoskeleton and vac- uole morphology. Mol. Biol. Cell 12:2396–2411.
    (92) Friant, S., R. Lombardi, T. Schmelzle, M. N. Hall, and H. Riezman. 2001. Sphingoid base signaling via Pkh kinases is required for endocytosis in yeast. EMBO J. 20:6783–6792.
    (93) Friant, S., B. Zanolari, and H. Riezman. 2000. Increased protein kinase or decreased PP2A activity bypasses the sphingoid base requirement in endo- cytosis. EMBO J. 19:2834–2844.
    (94) Fujiwara, T., K. Tanaka, A. Mino, M. Kikyo, K. Takahashi, K. Shimizu, and Y. Takai. 1998. Rho1p-Bni1p-Spa2p interactions: implication in local- ization of Bni1p at the bud site and regulation of the actin cytoskeleton in Saccharomyces cerevisiae. Mol. Biol. Cell 9:1221–1233.
    (95) Garcia, R., C. Bermejo, C. Grau, R. Perez, J. M. Rodriquez-Pena, J. Fran- cois, C. Nombela, and J. Arroyo. 2004. The global transcriptional response to transient cell wall damage in Saccharomyces cerevisiae and its regulation by the cell integrity signaling pathway. J. Biol. Chem. 279:15183–15195.
    (96) Garrett-Engele, P., B. Moilanen, and M. S. Cyert. 1995. Calcineurin, the Ca2+/calmodulin-dependent protein phosphatase, is essential in yeast mutants with cell integrity defects and in mutants that lack a functional vacuolar H+-ATPase. Mol. Cell. Biol. 15:4103–4114.
    (97) Gentzsch, M., and W. Tanner. 1996. The PMT gene family: protein O- glycosylation in Saccharomyces cerevisiae is vital. EMBO J. 15:5752–5759.
    (98) Geogopapadakou, N. H., and T. J. Walsh. 1996. Antifungal agents: chemo- therapeutic targets and immunologic strategies.Antimicrob.Agents Chemo- ther. 40:279–291.
    (99) Gozalbo, D., P. Roig, E. Villamon, and M. L. Gill. 2004. Candida and candidiasis: the cell wall as a potential target for antifungal therapy. Curr. Drug Targets Infect. Disord. 4:117–135.
    (100) Gray, J. V., J. P. Ogas, Y. Kamada, M. Stone, D. E. Levin, and I. Hersko- witz. 1997. A role for the Pkc1 MAP kinase pathway of Saccharomyces cerevisiae in bud emergence and identification of a putative upstream reg- ulator. EMBO J. 16:4924–4937.
    (101) Green, R., G. Lesage, A-M. Sdicu, P. Menard, and H. Bussey. 2003. A synthetic analysis of the Saccharomyces cerevisiae stress sensor Mid2p, and indentification of a Mid2p-interacting protein, Zeo1, that modulates the PKC1-MPK1 cell integrity pathway. Microbiology 149:2487–2499.
    (102) Groll, A. H., and T. J. Walsh. 2001. Uncommon opportunistic fungi: new nosocomial threats. Clin. Microbiol. Infect. Dis. 7:8–24.
    (103) Guo, W., F. Tamanoi, and P. Novick. 2001. Spatial regulation of the exocyst complex by Rho1 GTPase. Nat. Cell Biol. 3:353–360.
    (104) Gustin, M. C., J. Albertyn, M. Alexander, and K. Davenport. 1998. MAP Kinase pathways in the yeast Saccharomyces cerevisiae.Microbiol.Mol.Biol. Rev. 62:1264–1300.
    (105) Hahn, J.-S., and D. J. Thiele. 2002. Regulation of the Saccharomyces cere- visiae Slt2 kinase pathway by the stress-inducible Sdp1 dual specificity phosphatase. J. Biol. Chem. 277:21278–21284.
    (106) Hallett, M. A., H. S. Lo, and A. Bender. 2002. Probing the importance of potential roles of the binding of the PH-domain protein Boi1 to acidic phospholipids. BMC Cell Biol. 3:16–29.
    (107) Han, G-S. A. Audhya, D. J. Markley, S. D. Emr, and G. M. Carman. 2002. The Saccharomyces cerevisiae LSB6 gene encodes phosphatidylinositol 4-ki- nase activity. J. Biol. Chem. 277:47709–47718.
    (108) Harhammer, R., A. Gohla, and G. Schultz. 1996. Interaction of G protein Gbetagamma dimers with small GTP-binding proteins of the Rho family. FEBS Lett. 399:211–214.
    (109) Harold, F. M. 2002. Force and compliance: rethinking morphogenesis in walled cells. Fungal Genet. Biol. 37:271–282.
    (110) Harrington, L. A., and B. J. Andrews. 1996. Binding to the yeast Swi4,6- dependent cell cycle box, CACGAAA, is cell cycle regulated in vivo. Nu- cleic Acids Res. 24:558–565.
    (111) Harrison, J. C., E. S. Bardes, Y. Ohya, and D. J. Lew. 2001. A role for the Pkc1p/Mpk1p kinase cascade in the morphogenesis checkpoint. Nat. Cell Biol. 3:417–420.
    (112) Harrison, J. C., T. R. Zyla, E. S. G. Bardes, and D. J. Lew. 2004. Stress- activation mechanisms for the“cell integrity”MAPK pathway. J. Biol. Chem. 279:2616–2622.
    (113) Hart,M.J.,Y.Maru,D.Leonard,O.N.Witte,T.Evans,and R.A.Cerione. 1992.A GDP dissociation inhibitor that serves as a GTPase inhibitor for the Ras-like protein CDC42Hs. Science 258:812–815.
    (114) Heinisch, J. J., A. Lorberg, H. P. Schmitz, and J. J. Jacoby. 1999. The protein kinase C-mediated MAP kinase pathway involved in the mainte- nance of cellular integrity in Saccharomyces cerevisiae. Mol. Microbiol. 32: 671–680.
    (115) Heitman,J.,N.R.Movva,andM.N.Hall.1991.Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253:905–909.
    (116) Helliwell, S. B., I. Howald, N. Barbet, and M. N. Hall. 1998. TOR2 is part of two related signaling pathways coordinating cell growth in Saccharomy- ces cerevisiae. Genetics 148:99–112.
    (117) Helliwell, S. B., A. Schmidt, Y. Ohya, and M. N. Hall. 1998. The Rho1 effector Pkc1,but not Bni1,mediates signalling from Tor2 to the actin cyto- skeleton. Curr. Biol. 8:1211–1214.
    (118) Helliwell, S. B., P. Wagner, J. Kunz, M. Deuter-Reinhard, R. Henriquez, and M. N. Hall. 1994. TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol. Biol. Cell 5:105–118.
    (119) Herskowitz, I. 1995. MAP kinase pathways in yeast: for mating and more. Cell 80:187–197.
    (120) Hicke, L., B. Zanolari, and H. Riezman. 1998. Cytoplasmic tail phosphor- ylation of the alpha-factor receptor is required for its ubiquitination and internalization. J. Cell Biol. 141:349–358.
    (121) Hohmann, S. 2002. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 66:300–372.
    (122) Homma, K., S. Terui, M. Minemura, H. Qadota, Y. Anraku, Y. Kanaho, Y. Ohya. 1998. Phosphatidylinositol-4-phosphate 5-kinase localized on the plasma membrane is essential for yeast cell morphogenesis. J. Biol. Chem. 273:15779–15786.
    (123) Hori, Y., A. Kikuchi, M. Isomura, M. Katayama, Y. Miura, H. Fujioka, K. Kaibuchi, and Y. Takai. 1991. Post-translational modifications of the C- terminal region of rho are important for its interaction with membranes and the stimulatory and inhibitory GDP/GTP exchange proteins. Oncogene 6: 515–522.
    (124) Hosotani, T., H. Koyama, M. Uchino, T. Miyakawa, and E. Tsuchiya. 2001.PKC1, a protein kinase C homologue of Saccharomyces cerevisiae, partic- ipates in microtubule function through the yeast EB1 homologue, BIM1. Genes Cells 6:775–788.
    (125) Hottiger, T., C. de Virgilio, M. N. Hall, T. Boller, and A. Wiemken. 1994. The role of trehalose synthesis for the acquisition of thermotolerance in yeast. II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro. Eur. J. Biochem. 219:187–193.
    (126) Huang, D. J. Moffat, and B. Andrews. 2002. Dissection of a complex phe- notype by functional genomics reveals roles for the yeast cyclin-dependent protein kinase Pho85 in stress adaptation and cell integrity. Mol. Cell. Biol. 22:5076–5088.
    (127) Huang, C-Y., and J. E. Ferrell, Jr. 1996. Ultrasensitivity in the mitogen- activated protein kinase cascade. Proc. Natl. Acad. Sci. USA 93:10078–10083.
    (128) Huang, K. N., and L. S. Symington. 1994. Mutation of the gene encoding protein kinase C 1 stimulates mitotic recombination in Saccharomyces cere- visiae. Mol. Cell. Biol. 14:6039–6045.
    (129) Huh, W. K., J. V. Falvo, L. C. Gerk, A. S. Carroll, R. W. Howson, J. S. Weissman, and E. K. O’Shea. 2003. Global analysis of protein localization in budding yeast. Nature 425:686–691.
    (130) Igual, J. C., A. L. Johnson, and L. H. Johnston. 1996. Coordinated regu- lation of gene expression by the cell cycle transcription factor SWI4 and the protein kinase C MAP kinase pathway for yeast cell integrity. EMBO J. 15: 5001–5013.
    (131) Iida, H., H. Nakamura, T. Ono, M. S. Okumura, and Y. Anraku. 1994. MID1, a novel Saccharomyces cerevisiae gene encoding a plasma membrane protein, is required for Ca2+ influx and mating. Mol. Cell. Biol. 14:8259–8271.
    (132) Imai, J., A. Toh-e, and Y. Matsui. 1996. Genetic analysis of the Saccharo- myces cerevisiae RHO3 gene, encoding a Rho-type small GTPase, provides evidence for a role in bud formation. Genetics 142:359–369.
    (133) Imamura,H.,K.Tanaka,T.Hihara,M.Umikawa,T.Kamei,K.Takahashi, T. Sasaki, and Y. Takai. 1997. Bni1p and Bnr1p: downstream targets of the rho family small G-proteins which interact with profilin and regulate actin cytoskeleton in Saccharomyces cerevisiae. EMBO J. 16:2745–2755.
    (134) Inagaki, M., T. Schmelzle, K. Yamaguchi, K. Irie, M. N. Hall, and K. Matsumoto. 1999. PDK1 homologs activate the Pkc1-mitogen-activatedprotein kinase pathway in yeast. Mol. Cell. Biol. 19:8344–8352.
    (135) Inoue, S. B., H. Qadota, M. Arisawa, T. Watanabe, and Y. Ohya. 1999. Prenylation of Rho1p is required for activation of yeast 1,3-beta-glucan synthase. J. Biol. Chem. 274:38119–38124.
    (136) Inoue, S. B., N. Takewaki, T. Takasuka, T. Mio, M. Adachi, Y. Fujii, C. Miyamoto, M. Arisawa, Y. Furuichi, and T. Watanabe. 1995. Characteriza- tion and gene cloning of 1,3--D-glucan synthase from Saccharomyces cer- evisiae. Eur. J. Biochem. 231:845–854.
    (137) Irie, K., M. Takase, K. S. Lee, D. E. Levin, H. Araki, K. Matsumoto, and Y. Oshima. 1993. MKK1 and MKK2, which encode Saccharomyces cerevisiae mitogen-activated protein kinase kinase homologs, function in the pathway mediated by protein kinase C. Mol. Cell. Biol. 13:3076–3083.
    (138) Ito, T., T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki. 2001. A comprehensive two-hybrid analysis to explore the yeast protein interac- tome. Proc. Natl. Acad. Sci. USA 98:4569–4574.
    (139) Jacoby, J. J., S. M. Nilius, and J. J. Heinisch. 1998. A screen for upstream components of the yeast protein kinase C signal transduction pathway identifies the product of the SLG1 gene. Mol. Gen. Genet. 258:148–155.
    (140) Jacoby, J. J., H. P. Schmitz, and J. J. Heinisch. 1997. Mutants affected in the putative diacylglycerol binding site of yeast protein kinase C. FEBS Lett. 417:219–222.
    (141) Johnson, D. I. 1999. Cdc42: an essential rho-type GTPase controlling eu- karyotic cell polarity. Microbiol. Mol. Biol. Rev. 63:54–105.
    (142) Johnson, D. I., and J. Pringle. 1990. Molecular characterization of CDC42, a Saccharomyces cerevisiae gene involved in the development of cell po- larity. J. Cell Biol. 111:143–152.
    (143) Jung,U.S.,A.K.Sobering,M.J.Romeo,andD.E.Levin.2002.Regulation of the yeast Rlm1 transcription factor by the Mpk1 cell wall integrity MAP kinase. Mol. Microbiol. 46:781–789.
    (144) Jung, U. S., and D. E. Levin. 1999. Genome-wide analysis of gene expres- sion regulated by the yeast cell wall integrity signalling pathway. Mol. Microbiol. 34:1049–1057.
    (145) Kagami, M., A. Toh-e, and Y. Matsui. 1997. SRO9, a multicopy suppressor of the bud growth defect in the Saccharomyces cerevisiae rho3-deficientcells, shows strong genetic interactions with tropomyosin genes, suggesting its role in organization of the actin cytoskeleton. Genetics 147:1003–1016.
    (146) Kaibuchi,K.,Y.Fukumoto,N.Oku,Y.Takai,K.Arai,and M.Muramatsu. 1989. Molecular genetic analysis of the regulatory and catalytic domains of protein kinase C. J. Biol. Chem. 264:13489–13496.
    (147) Kamada, Y., Y. Fujioka, N. N. Suzuki, F. Inagaki, S. Wullscheger, R. Loewith, M. N. Hall, and Y. Ohsumi. TOR2 directly phosphorylates the AGC kinase YPK2 to regulate actin polarization. Mol. Cell. Biol., in press.
    (148) Kamada, Y., U. S. Jung, J. Piotrowski, and D. E. Levin. 1995. The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae medi- ates a novel aspect of the heat shock response. Genes Dev. 9:1559–1571.
    (149) Kamada,Y.,H.Qadota,C.P.Python,Y.Anraku,Y.Ohya,andD.E.Levin. 1996. Activation of yeast protein kinase C by Rho1 GTPase. J. Biol. Chem. 271:9193–9196.
    (150) Kanzaki, M., M. Nagasawa, I. Kojima, C. Sato, K. Naruse, M. Sokabe, and H. Iida. 1999. Molecular identification of a eukaryotic, stretch-activated nonselective cation channel. Science 285:882–886.
    (151) Kanzaki, M., M. Nagasawa, I. Kojima, C. Sato, K. Naruse, M. Sokabe, and H. Iida. 2000. Report clarification. Science 288:1347.
    (152) Kapteyn, J. C., P. van Egmond, E. Sievi, H. van den Ende, M. Makarow, and F. M. Klis. 1999. The contribution of the O-glycosylated protein Pir2/ Hsp150 to the construction of the yeast cell wall in wild type cells and1,6-glucan-deficient mutants. Mol. Microbiol. 31:1835–1844.
    (153) Kelleher, D., D. Karaoglu, E. Mandon, and R. Gilmore. 2003. Oligosac- charyltransferase isoforms that contain different catalytic STT3 subunits have distinct enzymatic properties. Mol. Cell 12:101–111.
    (154) Kelly, R., D. Card, E. Register, P. Mazur, P., T. Kelly, K I. Tanaka, J. Onishi, J. M. Williamson, H. Fan, T. Satoh, and M. Kurtz. 2000. Gera- nylgeranyltransferase I of Candida albicans: null mutants or enzyme inhib- itors produce unexpected phenotypes. J. Bacteriol. 182:704–713.
    (155) Ketela, T., J. L. Brown, R. C. Stewart, and H. Bussey. 1998. Yeast Skn7p activity is modulated by the Sln1p-Ypd1p osmosensor and contributes to regulation of the HOG pathway. Mol. Gen. Genet. 259:372–378.
    (156) Ketela, T., R. Green, and H. Bussey. 1999. Saccharomyces cerevisiae Mid2pis a potential cell wall stress sensor and upstream activator of the PKC1- MPK1 cell integrity pathway. J. Bacteriol. 181:3330–3340.
    (157) Khalfan, W., I. Ivanovska, and M. D. Rose. 2000. Functional interaction between the PKC1 pathway and CDC31 network of SPB duplication genes. Genetics 155:1543–1559.
    (158) King, C. C., F. T. Zenke, P. E. Dawson, E. M. Dutil, A. C. Newton, B. A. Hemmings, and G. M. Bokoch. 2000. Sphingosine is a novel activator of 3-phosphoinositide-dependent kinase 1. J. Biol. Chem. 275:18108–18113.
    (159) Klis, F. M. 1994. Review: cell wall assembly in yeast. Yeast 10:851–869.
    (160) Klis, F. M., P. Mol, K.Hellingwerf,and S.Brul.2002.Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 26:239–256.
    (161) Koch, C., A. Schleiffer, G. Ammerer, and K. Nasmyth. 1996. Switching transcription on and off during the yeast cell cycle: Cln/Cdc28 kinases activate bound transcription factor SBF (Swi4/Swi6) at Start, whereas Clb/ Cdc28 kinases displace it from the promoter in G2.Genes Dev.10:129–141.
    (162) Koch, G., K. Tanaka, T. Masuda, W. Yamochi, H. Nonaka, Y. Takai. 1997. Association of the Rho family small GTP-binding proteins with Rho GDP dissociation inhibitor (RhoGDI) in Saccharomyces cerevisiae.Oncogene15: 417–422.
    (163) Kohno,H.,K.Tanaka,A.Mino,M.Umikawa,H.Imamura,T.Fujiwara,Y. Fujita, K. Hotta, H. Qadota, T. Watanabe, Y. Ohya, and Y. Takai. 1996. Bni1p implicated in cytoskeletal control is a putative target of Rho1p small GTP binding protein in Saccharomyces cerevisiae. EMBO J. 15:6060–6068.
    (164) Kollar, R., B. B. Reinhold, E. Petrakova, H. J. Yeh, G. Ashwell, J. Drgonova, J. C. Kapteyn, F. M. Klis, and E. Cabib. 1997. Architecture of the yeast cell wall.1,6-glucan interconnects mannoprotein,1,3-glucan, and chitin. J. Biol. Chem. 272:17762–17775.
    (165) Kopecka, M., and M. Gabriel. 1992. The influence of congo red on the cell Wall and 1,3--D-glucan microfibrilbio genes is in Saccharomyces cerevisiae. Arch. Microbiol. 158:115–126.
    (166) Krause, S. A., and J. V. Gray. 2002. The protein kinase C pathway is required for viability in quiescence in Saccharomyces cerevisiae. Curr. Biol. 12:588–593.
    (167) Krems, B., C. Charizanis, and K-D. Entian. 1996. The response regulator- like protein Pos9/Skn7 of Saccharomyces cerevisiae is involved in oxidativestress resistance. Curr. Genet. 29:327–334.
    (168) Kunz, J., R. Henriquez, U. Schneider, M. Deuter-Reinhard, N. R. Movva, and M. N. Hall. 1993. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell 73: 585–596.
    (169) Lagorce, A., N. C. Hauser, D. Labourdette, C. Rodriquez, H. Martin-Yken, J. Arroyo, J. D. Hoheise, and J. Francois. 2003. Genome-wide analysis of the response to cell wall mutations in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 278:20345–20357.
    (170) Lagorce, A., V. le Berre-Anton, B. Aguilar-Uscanga, H. Martin-Yken, A. Dagkessamanskaia, and J. Francois. 2002. Involvement of GFA1, which encodes glutamine-fructose-6-phosphate amidotransferase, in the activa- tion of chitin synthesis pathway in response to cell-wall defects in Saccha- romyces cerevisiae. Eur. J. Biochem. 269:1697–1707.
    (171) Lee, J., C. Godon, G. Lagniel, D. Spector, J. Garin, J. Labarre, and M. B. Toledano. 1999. Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J. Biol. Chem. 274:16040–16046.
    (172) Lee, K. S., L. K. Hines, and D. E. Levin. 1993. A pair of functionally redundant yeast genes (PPZ1 and PPZ2) encoding type 1-related protein phosphatases function within the PKC1-mediated pathway. Mol. Cell. Biol. 13:5843–5853.
    (173) Lee, K. S., K. Irie, Y. Gotoh, Y. Watanabe, H. Araki, E. Nishida, K. Matsumoto, and D. E. Levin. 1993. A yeast mitogen-activated protein kinase homolog (Mpk1p) mediates signaling by protein kinaseC.Mol.Cell. Biol. 13:3067–3075.
    (174) Lee, K. S., and D. E. Levin. 1992. Dominant mutations in a gene encoding a putative protein kinase (BCK1) bypass the requirement for a Saccharo- myces cerevisiae protein kinase C homolog. Mol. Cell. Biol. 12:172–182.
    (175) Lehrich, R. W., and J. N. Forrest, Jr. 1994. Protein kinase C zeta is associated with the mitotic apparatus in primary cell cultures of the shark rectal gland. J. Biol. Chem. 269:32446–32450.
    (176) Lendenfeld,T.,andC.P.Kubicek.1998.Characterization and properties of protein kinase C from the filamentous fungus Trichoderma reesei. Biochem. J. 330:689–694.
    (177) Levin, D. E., and E. Bartlett-Heubusch. 1992. Mutants in the S. cerevisiaePKC1 gene display a cell cycle-specific osmotic stability defect. J. Cell Biol. 116:1221–1229.
    (178) Levin, D. E., B. Bowers, C. Y. Chen, Y. Kamada, and M. Watanabe. 1994. Dissecting the protein kinase C/MAP kinase signalling pathway of Saccha- romyces cerevisiae. Cell. Mol. Biol. Res. 40:229–239.
    (179) Levin, D. E., and Errede. 1995. The proliferation of MAP kinase signaling pathways in yeast. Curr. Biol. 7:197–202.
    (180) Levin,D.E.,F.O.Fields,R.Kunisawa,J.M.Bishop,and J.Thorner.1990. A candidate protein kinase C gene, PKC1, is required for the S. cerevisiae cell cycle. Cell 62:213–224.
    (181) Lew,D.J.2003.The morphogenesis checkpoint:how yeast cells watch their figures. Curr. Opin. Cell Biol. 15:648–653.
    (182) Lew, D. J., and S. I. Reed. 1995. A cell cycle checkpoint monitors cell morphogenesis in budding yeast. J. Cell Biol. 129:739–749.
    (183) Li, S., A. Ault, C. L. Malone, D. Raitt, S. Dean, L. H. Johnston, R. J. Deschenes, and J. S. Fassler. 1998. The yeast histidine protein kinase, Sln1p, mediates phosphotransfer to two response regulators, Ssk1p and Skn7p. EMBO J. 17:6952–6962.
    (184) Li, S., S. Dean, Z. Li, J. Horecka, R. J. Deschenes, and J. J. Fassler. 2002. The eukaryotic two-component histidine kinase Sln1p regulates OCH1 via the transcription factor, Skn7p. Mol. Biol. Cell 13:412–424.
    (185) Li, Y., R. Moir, I. Sethy-Coraci, J. Warner, and I. Willis. 2000. Repression of ribosome and tRNA synthesis in secretion-defective cells is signaled by a novel branch of the cell integrity pathway. Mol. Cell. Biol. 20:3843–3851.
    (186) Lipke, P. N., and J. Kurjan. 1992. Sexual agglutination in budding yeasts: structure, function, and regulation of adhesion glycoproteins. Microbiol. Rev. 56:180–194.
    (187) Liu, J. 1993. FK506 and cyclosporine, molecular probes for studying intra- cellular signal transduction. Immunol. Today 14:290–295.
    (188) Locke,E.G.,M.Bonilla,L.Liang,Y.Takita,andK.W.Cunningham.2000. A homolog of voltage-gated Ca2+channels stimulated by depletion of secretory Ca2+ in yeast. Mol. Cell. Biol. 20:6686–6694.
    (189) Lodder, A. L., T. K. Lee, and R. Ballester. 1999. Characterization of the Wsc1 protein, a putative receptor in the stress response of Saccharomycescerevisiae. Genetics 152:1487–1499.
    (190) Loewith, R., E. Jacinto, S. Wullschleger, A. Lorberg, J. L. Crespo, D. Bonenfant, W. Oppliger, P. Jenoe, and M. N. Hall. 2002. Two TOR com- plexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10:457–468.
    (191) Lommel, M., M. Bagnat, and S. Strahl. 2004. Aberrant processing of the WSC family and Mid2p cell surface sensors results in death of Saccharo- myces cerevisiae O-mannosylation mutants. Mol. Cell. Biol. 24:46–57.
    (192) Lu, J. M. H., R. J. Deschenes, and J. S. Fassler. 2003. Saccharomyces cerevisiae histidine phosphotransferase Ypd1p shuttles between the nucleus and cytoplasm for SLN1-dependent phosphorylation of Ssk1p and Skn7p. Eukaryot. Cell 2:1304–1314.
    (193) Lum, P. Y., C. D. Armour, S. B. Stepaniants, G. Cavet, M. K. Wolf, J. S. Butler, J. C. Hinshaw, P. Garnier, G. D. Prestwich, A. Leonardson, P. Garrett-Engele, C. M. Rush, M. Bard, G. Schimmack, J. W. Phillips, C. J. Roberts, and D. D. Shoemaker. 2004. Discovering modes of action for Therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116:121–137.
    (194) Luyten, K., J. Albertyn, W. F. Skibbe, B. A. Prior, J. Ramos, J. M. Theve- lein, and S. Hohmann. 1995. Fps1, a yeast member of the MIP family of channel proteins,is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J. 14:1360–1371.
    (195) Madaule, P., R. Axel, and A. M. Myers. 1987. Characterization of two members of the rho gene family from the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 84:779–783.
    (196) Madden, K., Y. J. Sheu, K. Baetz, B. Andrews, and M. Snyder. 1997. SBF cell cycle regulator as a target of the yeast PKC-MAP kinase pathway. Science 275:1781–1784.
    (197) Madden, K., and M. Snyder. 1998. Cell polarity and morphogenesis in budding yeast. Annu. Rev. Microbiol. 52:687–744.
    (198) Madania,A.,P.Dumoulin,S.Grava,H.Kitamoto,C.Scha¨rer-Brodbeck,A. Soulard, V. Moreau, and B. Winsor. 1999. The Saccharomyces cerevisiae homologue of human Wiskott-Aldrich syndrome protein Las17p interacts with the Arp2/3 complex. Mol. Biol. Cell 10:3521–3538.
    (199) Maeda, T., S. M. Wurgler-Murphy, and H. Saito. 1994. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369:242–245.
    (200) Manning, B. D., J. G. Barrett, J. A. Wallace, H. Granok, and M. Snyder. 1999. Differential regulation of Kar3p kinesin-related protein by two asso- ciated proteins, Cik1 and Vik1. J. Cell Biol. 144:1219–1233.
    (201) Manning, B. D., R. Padmanabha, and M. Snyder. 1997. The rho-GEF Rom2p localizes to sites of polarized cell growth and participates in cy- toskeletal functions in Saccharomyces cerevisiae. Mol. Biol. Cell 8:1829–1844.
    (202) Marchal, C., S. Dupre, and D. Urban-Grimal. 2002. Casein kinase I con- trols a late step in the endocytic trafficking of yeast uracil permease. J. Cell Sci. 115:217–226.
    (203) Marcoux, N., Y. Bourbonnais, P-M. Charest, and D. Pallotta. 1998. Over- expression of MID2 suppresses the profilin-deficient phenotype of yeast cells. Mol. Microbiol. 29:515–526.
    (204) Martin, H., J. Arroyo, M. Sanchez, M. Molina, and C. Nombela. 1993. Activity of the yeast MAP kinase homologue Slt2 is critically required for cell integrity at 37 degrees C. Mol. Gen. Genet. 241:177–184.
    (205) Martin, H., J. M. Rodriguez-Pachon, C. Ruiz, C. Nombela, and M. Molina. 2000. Regulatory mechanisms for modulation of signaling through the cell integrity Slt2-mediated pathway in Saccharomyces cerevisiae. J. Biol. Chem. 275:1511–1519.
    (206) Masuda, T., K. Tanaka, H. Nonaka, W. Yamochi, A. Maeda, and Y. Takai. 1994.Molecular cloning and characterization of yeast rho GDP dissociation inhibitor. J. Biol. Chem. 269:19713–19718.
    (207) Matheos, D. P., T. J. Kingsbury, U. S. Ahsan, and K. W. Cunningham. 1997. Tcn1p/Crz1p, a calcineurin-dependent transcription factor that dif- ferentially regulates gene expression in Saccharomyces cerevisiae. Genes Dev. 11:3445–3458.
    (208) Matsui, Y., and A. Toh-e. 1992. Yeast RHO3 and RHO4 ras superfamily genes are necessary for bud growth,and their defectis suppressed by a high dose of bud for mation genes CDC42 and BEM1. Mol. Cell. Biol. 12:5690–5699.
    (209) Mattison, C. P., S. S. Spencer, K. A. Kresge, J. Lee, and I. M. Ota. 1999. Differential regulation of the cell wall integrity mitogen-activated proteinkinase pathway in budding yeast by the protein tyrosine phosphatases Ptp2 and Ptp3. Mol. Cell. Biol. 19:7651–7660.
    (210) Mazur, P., and W. Baginsky. 1996. In vitro activity of 1,3--D-glucan synthase requires the GTP-binding protein Rho1. J. Biol. Chem. 271:14604–14609.
    (211) Mazur, P., N. Morin, W. Baginsky, M. el-Sherbeini, J. A. Clemas, J. B. Nielsen, and F. Foor. 1995. Differential expression and function of two homologous subunits of yeast 1,3--D-glucan synthase. Mol. Cell. Biol. 15: 5671–5681.
    (212) Mazzoni, C., P. Zarov, A. Rambourg, and C. Mann. 1993. The SLT2 (MPK1) MAP kinase homolog is involved in polarized cell growth in Sac- charomyces cerevisiae. J. Cell Biol. 123:1821–1833.
    (213) McMillan, J. N., M. S. Longtine, R. A. Sia, C. L. Theesfeld, E. S. Bardes, J. R. Pringle, and D. J. Lew. 1999. The morphogenesis checkpoint in Saccharomyces cerevisiae: cell cycle control of Swe1p degradation by Hsl1p and Hsl7p. Mol. Cell. Biol. 19:6929–6939.
    (214) Measday, V., L. Moore, J. Ogas, M. Tyers, and B. Andrews. 1994. The PCL2(ORFD)-PHO85 cyclin-dependent kinase complex: a cell cycle regu- lator in yeast. Science 266:1391–1395.
    (215) Mellor, H., and P. J. Parker. 1998. The extended protein kinase C super- family. Biochem. J. 332:281–292.
    (216) Mendoza, I., F. Rubio, A. Rodriguez-Navarro, and J. M. Pardo. 1994. The protein phosphatase calcineurin is essential for NaCl tolerance of Saccha- romyces cerevisiae. J. Biol. Chem. 269:8792–8796.
    (217) Merchan, S. D. Bernal, R. Serrano, and L. Yenush. 2004. Response of the Saccharomyces cerevisiae Mpk1 mitogen-activated protein kinase pathway to increases in internal turgor pressure caused by loss of Ppz protein phosphatases. Eukaryot. Cell 3:100–107.
    (218) Mizuta, K., and J. R. Warner. 1994. Continued functioning of the secretory pathway is essential for ribosome synthesis. Mol. Cell. Biol. 14:2493–2502.
    (219) Mochly-Rosen, D. 1995. Localization of protein kinases by anchoring pro- teins: a theme in signal transduction. Science 268:247–251.
    (220) Moffat, J., and B. Andrews. 2004. Late-G1 cyclin-CDK activity is essential for control of cell morphogenesis in budding yeast. Nat. Cell Biol. 6:59–66.
    (221) Montijn, R. C., E. Vink, W. H. Muller, A. J. Verkleij, H. Van Den Ende, B. Henrissat,andF.M.Klis.1999.Localization of synthesisof-1,6-glucaninSaccharomyces cerevisiae. J. Bacteriol. 181:7414–7420.
    (222) Morgan, B. A., G. R. Banks, W. M. Toone, D. Raitt, S. Kuge, and L. H. Johnston. 1997. The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae. EMBO J. 16:1035–1044.
    (223) Morgan,B.A.,N.Bouquin,G.F.Merrill,andL.H.Johnston.1995.Ayeast transcription factor bypassing the requirement for SBF and DSC1/MBF in budding yeast has homology to bacterial signal transduction proteins. EMBO J. 14:5679–5689.
    (224) Moriya, H., and M. Johnston. 2004. Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein ki- nase I. Proc. Natl. Acad. Sci. USA 101:1572–1577.
    (225) Morton, W. M., K. R. Ayscough, and P. J. McLaughlin. 2000. Latrunculin alters the actin-monomer subunit interface to prevent polymerization. Nat. Cell Biol. 2:376–378.
    (226) Moser, M. J., J. R. Geiser, and T. N. Davis. 1996. Ca2+-calmodulin pro- motes survival of pheromone-induced growth arrest by activation of cal- cineurin and Ca2+-calmodulin-dependent protein kinase. Mol. Cell. Biol. 16:4824–4831.
    (227) Muller, E. M., E. G. Locke, and K. W. Cunningham. 2001. Differential regulation of two Ca2+influx systems by pheromone signaling in Saccha- romyces cerevisiae. Genetics 159:1527–1538.
    (228) Mrsa, V., and W. Tanner. 1999. Role of NaOH-extractable cell wall pro- Teins Ccw5p,Ccw6p,Ccw7p and Ccw8p(members of the Pir protein family) in stability of the Saccharomyces cerevisiae cell wall. Yeast 15:813–820.
    (229) Nagasu, T., Y. Shimma, Y. Nakanishi, J. Kuromitsu, K. Iwama, K. Na- kayama, K. Suzuki, and Y. Jigami. 1992. Isolation of new temperature- sensitive mutants of Saccharomyces cerevisiae deficient in mannose outer chain elongation. Yeast 8:535–547.
    (230) Nakamura, T., Y. Liu, D. Hirata, H. Namba, S. Harada, T. Hirokawa, and T. Miyakawa. 1993. Protein phosphatase type 2B (calcineurin)-mediated, FK506-sensitive regulation of intracellular ions in yeast is an important determinant for adaptation to high salt stress conditions. EMBO J. 12: 4063–4071.
    (231) Nakhost, A., N. Kabir, P. Forscher, and W. S. Sossin. 2002. Protein kinaseC isoforms are translocated to microtubules in neurons. J. Biol. Chem. 277: 40633–40639.
    (232) Nanduri, J., and A. M. Tartakoff. 2001. The arrest of secretion response in yeast: signaling from the secretory path to the nucleus via Wsc proteins and Pkc1p. Mol. Cell 8:281–289.
    (233) Nanduri,J.,S.Mitra,C.Andrei,Y.Liu,Y.Yu,M.Hitomi,andA.Tartakoff. 1999. An unexpected link between the secretory path and the organization of the nucleus. J. Biol. Chem. 274:33785–33789.
    (234) Navarro-Garcia, F., R. Alonso-Monge, H. Rico, J. Pla, R. Sentandreu, and C. Nombela. 1998. A role for the MAP kinase gene MKC1 in cell wall construction and morphological transitions in Candida albicans. Microbi- ology 144:411–424.
    (235) Neves, M. J., and J. Francois. 1992. On the mechanism by which a heat shock induces trehalose accumulation in Saccharomyces cerevisiae. Bio- chem. J. 288:859–864.
    (236) Newton, A. C. 1995. Protein kinase C: structure, function, and regulation. J. Biol. Chem. 270:28495–28498.
    (237) Nierras, C. R., and J. R. Warner. 1999. Protein kinase C enables the regulatory circuit that connects membrane synthesis to ribosome synthesis in Saccharomyces cerevisiae. J. Biol. Chem. 274:13235–13241.
    (238) Nomanbhoy, T. K., and R. A. Cerione. 1996. Characterization of the inter- action between RhoGDI and Cdc42Hs using fluorescence spectroscopy. J. Biol. Chem. 271:10004–10009.
    (239) Nomoto, S., Y. Watanabe, J. Ninomiya-Tsuji, L. X. Yang, Y. Nagai, K. Kiuchi, M. Hagiwara, H. Hidaka, K. Matsumoto, and K. Irie. 1997. Func- tional analyses of mammalian protein kinase C isozymes in budding yeast and mammalian fibroblasts. Genes Cells 2:601–614.
    (240) Nonaka, H., K. Tanaka, H. Hirano, T. Fujiwara, H. Kohno, M. Umikawa, A. Mino, and Y. Takai. 1995. A downstream target of RHO1 small GTP- binding protein is PKC1, a homolog of protein kinase C, which leads to activation of the MAP kinase cascade in Saccharomyces cerevisiae. EMBO J. 14:5931–5938.
    (241) Ogas, J., B. J. Andrews, and I. Herskowitz. 1991. Transcriptional activation of CLN1, CLN2 and a putative new G1 cyclin (HCS26) by Swi4, a positive regulator of G1 specific transcription. Cell 66:1015–1026.
    (242) Ono, T., T. Suzuki, Y. Anraku, and H. Iida. 1994. The MID2 gene encodes a putative integral membrane protein with a Ca2+-binding domain and shows mating pheromone-stimulated expression in Saccharomyces cerevisiae. Gene 151:203–208.
    (243) Orlean, P. 1997. Biogenesis of yeast wall and surface components, p. 229– 362. In J. R. Pringle et al. (ed.), The molecular biology of the yeast Sac- charomyces, vol. 3. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
    (244) Osumi, M. 1998. The ultrastucture of yeast: Cell wall structure and forma- tion. Micron 29:207–233.
    (245) Ota, I. M., and A. Varshavsky. 1993. A yeast protein similar to bacterial two-component regulators. Science 262:566–569.
    (246) Ozaki, K., K. Tanaka, H. Imamura, T. Hihara, T. Kameyama, H. Nonaka, H. Hirano, Y. Matsuura, and Y. Takai. 1996. Rom1p and Rom2p are GDP/GTP exchange proteins (GEPs) for the Rho1p small GTP binding protein in Saccharomyces cerevisiae. EMBO J. 15:2196–2207.
    (247) Ozaki-Kuroda,K.,Y.Yamamoto,H.Nohara,M.Kinoshita,T.Fujiwara,K. Irie, and Y. Takai. 2001. Dynamic localization and function of Bni1p at the sites of directed growth in Saccharomyces cerevisiae. Mol. Cell. Biol. 21: 827–839.
    (248) Page, B. D., L. L. Satterwhite, M. D. Rose, and M. Snyder. 1994. Localiza- tion of the Kar3 kinesin heavy chain-related protein requires the Cik1 interacting protein. J. Cell Biol. 124:507–519.
    (249) Page, N., M. Gerard-Vincent, P. Menard, M. Beaulieu, M. Azuma, G. J. Dijkgraaf, H. Li, J. Marcoux, T. Nguyen, T. Dowse, A. M. Sdicu, and H. Bussey. 2003. A Saccharomyces cerevisiae genome-wide mutant screen for altered sensitivity to K1 killer toxin. Genetics 163:875–894.
    (250) Page, N., J. Sheraton, J. L. Brown, R. C. Stewart, and H. Bussey. 1996. Identification of ASK10 as a multicopy activator of Skn7p-dependent tran- scription of a HIS3 reporter gene. Yeast 12:267–272.
    (251) Paidhungat, M., and S. Garrett. 1997. A homolog of mammalian, voltage- gated calcium channels mediates yeast pheromone-stimulated Ca2+ uptake and exacerbates the cdc1(Ts) growth defect. Mol. Cell. Biol. 17:6339–6347.
    (252) Palazzo, A. F., T. A. Cook, A. S. Alberts, and G. G. Gundersen. 2001. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nat. Cell Biol. 3:723–729.
    (253) Paravicini, G., M. Cooper, L. Friedli, D. J. Smith, J. L. Carpentier, L. S. Klig, and M. A. Payton. 1992. The osmotic integrity of the yeast cell requires a functional PKC1 gene product. Mol. Cell. Biol. 12:4896–4905.
    (254) Paravicini,G.,and L.Friedli.1996.Protein-protein interactions in the yeast PKC1 pathway: Pkc1p interacts with a component of the MAP kinase cascade. Mol. Gen. Genet. 251:682–691.
    (255) Park,H.,andW.J.Lennarz.2000.Evidence for interaction of yeast protein kinase C with several subunits of oligosaccharyl transferase. Glycobiology,10:737–744.
    (256) Peterson, J., Y. Zheng, L. Bender, A. Myers, R. Cerione, and A. Bender. 1994. Interactions between the bud emergence proteins Bem1p and Bem2p and rho-type GTPases in yeast. J. Cell Biol. 127:1395–1406.
    (257) Philip,B.,andD.E.Levin.2001.Wsc1 and Mid2 are cell surface sensors for cell wall integrity signaling that act through Rom2, a guanine nucleotide exchange factor for Rho1. Mol. Cell. Biol. 21:271–280.
    (258) Ponting,C.P.,K.Hoffman,andP.Bork.1999.A latrophilin/CL-1-like GPS domain in polycystin-1. Curr. Biol. 9:R585–R587.
    (259) Popolo, L., D. Gilardelli, P. Bonfante, and M. Vai. 1997. Increase in chitin as an essential response to defects in assembly of cell wall polymers in the ggp1 mutant of Saccharomyces cerevisiae. J. Bacteriol. 179:463–469.
    (260) Posas,F.,A.Casamayor,andJ.Arino.1993.The PPZ protein phosphatases are involved in the maintenance of osmotic stability of yeast cells. FEBS Lett. 318:282–286.
    (261) Posas, F., M. Takekawa, and H. Saito. 1998. Signal transduction by MAP kinase cascades in budding yeast. Curr. Opin. Microbiol. 1:175–182.
    (262) Posas, F., S. M. Wurgler-Murphy, T. Maeda, E. A. Witten, T. C. Thai, and H. Saito. 1996. Yeast HOG1 MAP kinase cascade is regulated by a multi- step phosphorelay mechanism in the SLN1-YPD1-SSK1“two-component”osmosensor. Cell 86:865–875.
    (263) Pruyne, D., M. Evangelista, C. Yang, E. Bi, S. Zigmond, A. Bretscher, and C. Boone. 2002. Role of formins in actin assembly: nucleation and barbed- end association. Science 297:612–615.
    (264) Qadota, H., Y. Anraku, D. Botstein, and Y. Ohya. 1994. Conditional lethal- ity of a yeast strain expressing human RHOA in place of RHO1.Proc.Natl. Acad. Sci. USA 91:9317–9321.
    (265) Qadota, H., C. P. Python, S. B. Inoue, M. Arisawa, Y. Anraku, Y. Zheng, T. Watanabe, D. E. Levin, and Y. Ohya. 1996. Identification of yeast Rho1p GTPase as a regulatory subunit of 1,3--glucan synthase. Science 272: 279–281.
    (266) Raitt, D. C., A. L. Johnson, A. M. Erkine, K. Makino, B. Morgan, D. S. Gross, and L. H. Johnston. 2000. The Skn7 Response Regulator of Sac- charomyces cerevisiae Interacts with Hsf1 In Vivo and Is Required for the Induction of Heat Shock Genes by Oxidative Stress. Mol. Biol. Cell 11: 2335–2347.
    (267) Rajavel, M., B. Philip, B. M. Buehrer, B. Errede, and D. E. Levin. 1999. Mid2 is a putative sensor for cell integrity signaling in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:3969–3976.
    (268) Ram, A. F., S. S. C. Brekelmans, L. J. W. M. Oehlen, and F. M. Klis. 1995. Identification of two cell cycle regulated genes affecting the-1,3-glucan content of cell wall in Saccharomyces cerevisiae. FEBS Lett. 358:165–170.
    (269) Ram, A. F., J. C. Kapteyn, R. C. Montijn, L. H. Caro, J. E. Douwes, W. Baginsky, P. Mazur, H. van den Ende, and F. M. Klis. 1998. Loss of the plasma membrane-bound protein Gas1p in Saccharomyces cerevisiae results in the release of 1,3-glucan into the medium and induces a compensation mechanism to ensure cell wall integrity. J. Bacteriol. 180:1418–1424.
    (270) Rees, D. A., E. R. Morris, D. Thom, and J. K. Madden. 1982. Shapes and interactions of carbohydrate chains,p.196–290.InG.O.Aspinall(ed.),The polysaccharides, vol. 1. Academic Press, New York, NY.
    (271) Reinke, A., S. Anderson, J. M. McCaffer, J. Yates, III, S. Aronova, S. Chu, S. Fairclough, C. Iverson, K. P. Wedaman, and T. Powers. 2004. TOR Complex 1 includes a novel component,Tco89p(YPL180w),and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces cerevisiae. J. Biol. Chem. 279:14752–14762.
    (272) Reiser,V.,D.C.Raitt,andH.Saito.2003.Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure. J. Cell Biol. 161:1035–1040.
    (273) Reynolds, T. B., and G. R. Fink. 2001. Bakers’yeast, a model for fungal biofilm formation. Science 291:878–881.
    (274) Richman, T. J., K. A. Toenjes, S. E. Morales, K. C. Cole, B. T. Wasserman, C. M. Taylor, Jacob A. Koster, M. F. Whelihan, and D. I. Johnson. 2004. Analysis of cell-cycle specific localization of the Rdi1p RhoGDI and thestructural determinants required for Cdc42p membrane localization and clustering at sites of polarized growth. Curr. Genet. 45:339–349.
    (275) Ridley, A. J. 1995. Rho-related proteins: actin cytoskeleton and cell cycle. Curr. Opin. Genet. Dev. 5:24–30.
    (276) Roberts, C. J., B. Nelson, M. J. Marton, R. Stoughton, M. R. Meyer, H. A. Bennett, Y. D. He, H. Dai, W. L. Walker, T. R. Hughes, M. Tyers, C. Boone, and S. H. Friend. 2000. Signaling and circuitry of multiple MAP kinase pathways revealed by a matrix of global gene expression profiles. Science 287:873–880.
    (277) Robinson, L. C., C. Bradley, J. D. Bryan, A. Jerome, Y. Kweon, and H. R. Panek. 1999. The Yck2 yeast casein kinase 1 isoform shows cell cycle- specific localization to sites of polarized growth and is required for proper septin organization. Mol. Biol. Cell 10:1077–1092.
    (278) Robinson, L. C., M. M. Menold, S. Garrett, and M. R. Culbertson. 1993. Casein kinase I-like protein kinases encoded by YCK1 and YCK2 are re- quired for yeast morphogenesis. Mol. Cell. Biol. 13:2870–2881.
    (279) Robinson,N.G.,L.Guo,J.Imai,A.Tohe,Y.Matsui,andF.Tamanoi.1999. Rho3 of Saccharomyces cerevisiae, which regulates the actin cytoskeleton and exocytosis, is a GTPase which interacts with Myo2 and Exo70. Mol. Cell. Biol. 19:3580–3587.
    (280) Roelants, F. M., P. D. Torrance, N. Bezman, and J. Thorner. 2002. Pkh1 and Pkh2 differentially phosphorylate and activate Ypk1 and Ykr2 and define protein kinase modules required for maintenance of cell wall integ- rity. Mol. Biol. Cell 13:3005–3028.
    (281) Roemer, T., G. Paravicini, M. A. Payton, and H. Bussey. 1994. Character- Ization of the yeast(136)-beta-glucan biosynthetic components,Kre6p and Skn1p, and genetic interactions between the PKC1 pathway and extracel- lular matrix assembly. J. Cell Biol. 127:567–579.
    (282) Romeo, M. J., M. L. Angus-Hill, A. K. Sobering, Y. Kamada, B. R. Cairns, and D. E. Levin. 2002. HTL1 encodes a novel factor that interacts with the RSC chromatin remodeling complexin Saccharomyces cerevisiae.Mol.Cell. Biol. 22:8165–8174.
    (283) Roumanie, O., C. Weinachter, I. Larrieu, M. Crouzet, F., and Doignon. 2001. Functional characterization of the Bag7, Lrg1 and Rgd2 RhoGAPproteins from Saccharomyces cerevisiae. FEBS Lett. 506:149–156.
    (284) Rusnak, F., and P. Mertz. 2000. Calcineurin: form and function. Physiol. Rev. 80:1483–1521.
    (285) Sagot, I., S. K. Klee, and D. Pellman. 2002a. Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nat. Cell Biol. 4:42–50.
    (286) Sagot, I., A. A. Rodal, J. Moseley, B. L. Goode, and D. Pellman. 2002b. An actin nucleation mechanism mediated by Bni1 and profilin. Nat. Cell Biol. 4:626–631.
    (287) Saka, A., M. Abe, H. Okano, M. Minemura, H. Qadota, T. Utsugi, A. Mino, K. Tanaka, Y. Takai, and Y. Ohya. 2001. Complementing yeast rho1 mu- tation groups with distinct functional defects. J. Biol. Chem. 276:46165–46171.
    (288) Schafer, R. W., and J. Rine. 1992. Protein prenylation: genes, enzymes, targets, and functions. Annu. Rev. Genet. 26:209–237.
    (289) Schekman, R., and V. Brawley. 1979. Localized deposition of chitin on the yeast cell surface in response to mating pheromone. Proc. Natl. Acad. Sci. USA 76:645–649.
    (290) Schmelzle, T., and M. N. Hall. 2000. TOR, a central controller of cell growth. Cell 103:253–262.
    (291) Schmelzle, T. S. B. Helliwell, and M. N. Hall. 2002. Yeast protein kinases and the RHO1 exchange factor TUS1 are novel components of the cell integrity pathway in yeast. Mol. Cell. Biol. 22:1329–1339.
    (292) Schmidt, A., M. Bickle, T. Beck, and M. N. Hall. 1997. The yeast phospha- tidylinositol kinase homolog TOR2 activates RHO1 and RHO2 via the exchange factor ROM2. Cell 88:531–542.
    (293) Schmidt, A., J. Kunz, and M. N. Hall. 1996. TOR2 is required for organi- zation of the actin cytoskeleton in yeast. Proc. Natl. Acad. Sci. USA 93: 13780–13785.
    (294) Schmidt, A., T. Schmelzle, and M. Hall. 2002. The RHO1-GAPs SAC7, BEM2, and BAG7 control distinct RHO1 functions in Saccharomyces cere- visiae. Mol. Microbiol. 45:1433–1441.
    (295) Schmitz, H. P., S. Huppert, A. Lorberg, and J. J. Heinisch. 2002. Rho5p downregulates the yeast cell integrity pathway. J. Cell Sci. 115:3139–3148.
    (296) Schmitz, H. P., J. Jockel, C. Block, and J. J. Heinisch. 2001. Domain shuffling as a tool for investigation of protein function: substitution of the cysteine-rich region of Raf kinase and PKC eta for that of yeast Pkc1p.J. Mol. Biol. 311:1–7.
    (297) Schmitz, H. P., A. Lorberg, and J. J. Heinisch. 2002. Regulation of yeast protein kinase C activity by interaction with the small GTPase Rho1p through its amino-terminal HR1 domain. Mol. Microbiol. 44:829–840.
    (298) Schoenwaelder, S. M., and K. Burridge. 1999. Bidirectional signaling be- tween the cytoskeleton and integrins. Curr. Opin. Cell Biol. 11:274–286.
    (299) Schwartz, K., K. Richards, and D. Botstein. 1997. BIM1 encodes a micro- tubule-binding protein in yeast. Mol. Biol. Cell 8:2677–2691.
    (300) Sekiya-Kawasaki, M., M. Abe, A. Saka, D. Watanabe, K. Kono, M. Mine- mura-Asakawa,S.Ishihara,T.Watanabe,andY.Ohya.2002.Dissection of upstream regulatory components of the Rho1 effector 1,3--glucan syn- thase, in Saccharomyces cerevisiae. Genetics 162:663–676.
    (301) Shahinian, S., and H. Bussey. 2000.-1,6-Glucan synthesis in Saccharomy- ces cerevisiae. Mol. Microbiol. 35:477–489.
    (302) Shao, X., B. A. Davletov, R. B. Sutton, T. C. Sudhof, and J. Rizo. 1996. Bipartite Ca2+-binding motif in C2 domains of synaptotagmin and protein kinase C. Science 273:248–251.
    (303) Shaw, J. D., K. B. Cummings, G. Huyer, S. Michaelis, and B. Wendland. 2001. Yeast as a model system for studying endocytosis. Exp. Cell Res. 271: 1–9.
    (304) Sheu, Y. J., B. Santos, N. Fortin, C. Costigan, and M. Snyder. 1998. Spa2p interacts with cell polarity proteins and signaling components involved in yeast cell morphogenesis. Mol. Cell. Biol. 18:4053–4069.
    (305) Shibata, H., H. Mukai, Y. Inagaki, Y. Homma, K. Kimura, K. Kaibuchi, S. Narumiya, and Y. Ono. 1996. Characterization of the interaction between RhoA and the amino-terminal region of PKN. FEBS Lett. 385:221–224.
    (306) Shimizu, J., K. Yoda, and M. Yamasaki. 1994. The hypo-osmolarity-sensi- tive phenotype of the Saccharomyces cerevisiae hpo2 mutant is due to a mutation in PKC1, which regulates expression of-glucanase. Mol. Gen. Genet. 242:641–648.
    (307) Sia, R. A. L., E. S. G. Bardes, and D. J. Lew. 1998. Control of Swe1p degradation by the morphogenesis checkpoint. EMBO J. 17:6678–6688.
    (308) Sidorova, J. M., and L. L. Breeden. 1993. Analysis of the SWI4/SWI6 proteincomplex,which directs G1/S-specific transcription in Saccharomyces cerevisiae. Mol. Cell. Biol. 13:1069–1077.
    (309) Sidorova, J. M., G. E. Mikesell, and L. L. Breeden. 1995. Cell cycle- regulated phosphorylation of Swi6 controls its nuclear localization. Mol. Biol. Cell 6:1641–1658.
    (310) Singer, M. A., and S. Lindquist. 1998. Multiple effects of trehalose on protein folding in vitro and in vivo. Mol. Cell 1:639–648.
    (311) Singer, M. A., and S. Lindquist. 1998. Thermotolerance in Saccharomyces cerevisiae: the yin and yang of trehalose. Trends Biotechnol. 16:460–468.
    (312) Singh, K. K. 2000. The Saccharomyces cerevisiae Sln1p-Ssk1p two-compo- nent system mediates response to oxidative stress and in an oxidant-specific fashion. Free Radic. Biol. Med. 29:1043–1050.
    (313) Smits,G.J.,J.C.Kapteyn,H.vandenEnde,andF.M.Klis.1999.Cell wall dynamics in yeast. Curr. Opin. Microbiol. 2:348–352.
    (314) Snyder,M.1989.The SPA2 protein of yeast localizes to sites of cell growth. J. Cell Biol. 108:1419–1429.
    (315) Sobering, A. K., U. S. Jung, K. S. Lee, and D. E. Levin. 2002. Yeast Rpi1 is a putative transcriptional regulator that contributes to preparation for sta- tionary phase. Eukaryot. Cell 1:56–65.
    (316) Sobering, A. K., R. Watanabe, M. J. Romeo, B. C. Yan, C. A. Specht, P. Orlean, H. Riezman, and D. E. Levin. 2004. Yeast Ras regulates the com- plex that catalyzes the first step in GPI-anchor biosynthesis at the ER. Cell 117:637–648.
    (317) Soler, M., A. Plovins, H. Martin, M. Molina, and C. Nombela. 1995. Char- acterization of domains in the yeast MAP kinase Slt2 (Mpk1) required for functional activity and in vivo interaction with protein kinases Mkk1 and Mkk2. Mol. Microbiol. 17:833–842.
    (318) Spellman, P. T., G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Botstein, and B. Futcher. 1998. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cere- visiae by microarray hybridization. Mol. Biol. Cell 9:3273–3297.
    (319) Sreenivas, A., M. J. Villa-Garcia, S. A. Henry, and G. M. Carman. 2001. Phosphorylation of the yeast phopsholipid synthesis regulatory protein Opi1p by protein kinase C. J. Biol. Chem. 276:29915–29923.
    (320) Stathopoulos, A. M., and M. S. Cyert. 1997. Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression inyeast. Genes Dev. 11:3432–3444.
    (321) Stathopoulos-Gerontides, A., J. J. Guo, and M. S. Cyert. 1999. Yeast cal- cineurin regulates nuclear localization of the Crz1p transcription factor through dephosphorylation. Genes Dev. 13:798–803.
    (322) Stirling, D. A., and M. J. Stark. 2000. Mutations in SPC110, encoding the yeast spindle pole body calmodulin-binding protein, cause defects in cell integrity as well as spindle formation. Biochim. Biophys. Acta 1499:85–100.
    (323) Strahl-Bolsinger, S., M. Gentzsch, and W. Tanner. 1999. Protein O-man- nosylation. Biochim. Biophys. Acta 1426:297–307.
    (324) Sun, Y., R. Taniguchi, D. Tanoue, T. Yamaji, H. Takematsu, K. Mori, T. Fujita, T. Kawasaki, and Y. Kozutsumi. 2000. Sli2 (Ypk1), a homologue of mammalian protein kinase SGK, is a downstream kinase in the sphingolip- id-mediated signaling pathway of yeast. Mol. Cell. Biol. 20:4411–4419.
    (325) Sussman, A., K. Huss, L-C. Chio, S. Heidler, M. Shaw, D. Ma, G. Zhu, R. M. Campbell, T-S. Park, P. Kulanthaivel, J. E. Scott, J. W. Carpenter, M.A.Strege,M.D.Belvo,J.R.Swartling,A.Fischl,W-K.Yeh,C.Shih,and X. S. Ye. 2004. Discovery of cercosporamide, a known antifungal natural product, as a selective Pkc1 kinase inhibitor through high-throughput screening. Eukaryot. Cell 3:932–943.
    (326) Szallasi, Z., K. Bogi, S. Gohari, T. Biro, P. Acs, and P. M. Blumberg. 1996. Non-equivalent roles for the first and second zinc fingers of protein kinase C delta. Effect of their mutation on phorbol ester-induced translocation in NIH 3T3 cells. J. Biol. Chem. 271:18299–18301.
    (327) Terashima, H., N. Yabuki, M. Arisawa, K. Hamada, and K. Kitada. 2000. Up-regulation of genes encoding glycosylphosphatidylinositol (GPI)-at- tached proteins in response to cell wall damage caused by disruption of FKS1 in Saccharomyces cerevisiae. Mol. Gen. Genet. 264:64–74.
    (328) Thevelein, and S. Hohmann. 1999. Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol. Microbiol. 31:1087–1104.
    (329) Tirnauer, J. S. E. O’Toole, L. Berrueta, B. E. Bierer, and D. Pellman. 1999. Yeast Bim1p promotes the G1-specific dynamics of microtubules. J. Cell Biol. 145:993–1007.
    (330) Toh-e, A. S. Yasunaga, H. Nisogi, K. Tanaka, T. Oguchi, and Y. Matsui.1993. Three yeast genes, PIR1, PIR2 and PIR3, containing internal tandem repeats, are related to each other, and PIR1 and PIR2 are required for tolerance to heat shock. Yeast 9:481–494.
    (331) Toker, A., and A. C. Newton. 2000. Akt/protein kinase B is regulated by autophosphorylation at the hypothetical PDK-2 site. J. Biol. Chem. 275: 8271–8274.
    (332) Tolliday, N., L. VerPlank, and R. Li. 2002. Rho1 directs formin-mediated actin ring assembly during budding yeast cytokinesis. Curr. Biol. 12:1864–1870.
    (333) Torres, J., C. J. di Como, E. Herrero, and M. Angeles de la Torre-Ruiz. 2002. Regulation of the cell integrity pathway by rapamycin-sensitive TOR function in budding yeast. J. Biol. Chem. 277:43495–43504.
    (334) Torres, L., H. Martin, M. I. Garcia-Saez, J. Arroyo, M. Molina, M. San- chez, and C. Nombela. 1991. A protein kinase gene complements the lytic phenotype of Saccharomyces cerevisiae lyt2 mutants. Mol. Microbiol. 5: 2845–2854.
    (335) Tsuchiya, E., T. Hosotani, and T. Miyakawa. 1998. A mutation in NPS1/ STH1, an essential gene encoding a component of a novel chromatin- remodeling complex RSC, alters the chromatin structure of Saccharomyces cerevisiae centromeres. Nucleic Acids Res. 26:3286–3292.
    (336) Uetz, P., L. Giot, G. Cagney, T. A. Mansfield, R. S. Judson, J. R. Knight, D. Lockshon, V. Narayan, M. Srinivasan, P. Pochart, A. Qureshi-Emili, Y. Li, B. Godwin, D. Conover, T. Kalbfleisch, G. Vijayadamodar, M. Yang, M. Johnston,S.Fields,andJ.M.Rothberg.2000.A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403:623–627.
    (337) Umikawa, M., K. Tanaka, T. Kamei, K. Shimizu, H. Imamura, T. Sasaki, and Y. Takai. 1998. Interaction of Rho1p target Bni1p with F-actin-binding elongation factor 1: implication in Rho1p-regulated reorganization of the actin cytoskeleton in Saccharomyces cerevisiae. Oncogene 16:2011–2016.
    (338) Utsugi, T., M. Minemura, A. Hirato, M. Abe, D. Watanabe, and Y. Ohya. 2002. Movement of yeast 1,3--glucan synthase is essential for uniform cell wall biosynthesis. Genes Cells 7:1–9.
    (339) Valdivia, R. H., and R. Schekman. 2003. The yeasts Rho1p and Pkc1p regulate the transport of chitin synthase III (Chs3p) from internal stores to the plasma membrane. Proc. Natl. Acad. Sci. USA 100:10287–10292.
    (340) van Blitterwijk, W. J. 1998. Specificity of cysteine-rich domains in diacyl- glycerol kinases and protein kinases C. Biochem. J. 331:677–680.
    (341) van Drogen, F., and M. Peter. 2002. Spa2p functions as a scaffold-like protein to recruit the Mpk1p MAP kinase module to sites of polarized growth. Curr. Biol. 12:1698–1703.
    (342) Vay, H. A., B. Philip, and D. E. Levin. 2004. Mutational analysis of the Cytoplasmic domain of the Wsc1 cell wall stress sensor.Mol.Microbiol.150: 3281–3288.
    (343) Verna, J., A. Lodder, K. Lee, A. Vagts, and R. Ballester. 1997. A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae.Proc.Natl.Acad.Sci.USA94:13804–13809.
    (344) Vink, E. R. J. Rodriguez-Suarez, M. Gerard-Vincent, J. C. Ribas, H. de Nobel, H. van den Ende, A. Duran, F. M. Klis, and H. Bussey. 2004. An in vitro assay for (1, 6)--D-glucan synthesis in Saccharomyces cerevisiae. Yeast 21:1121–1131.
    (345) Volkov, Y., A. Long, and D. Kelleher. 1998. Inside the crawling T cell: leukocyte function-associated antigen-1 cross-linking is associated with mi- crotubule-directed translocation of protein kinase C isoenzymes beta(I) and delta. J. Immunol. 161:6487–6495.
    (346) Walch-Solimena, C., and P. Novick. 1999. The yeast phosphatidylinositol- 4-OH kinase Pik1 regulates secretion at the Golgi. Nat. Cell Biol. 1999. 1: 523–525.
    (347) Watanabe,D.,M.Abe,and Y.Ohya.2001.Yeast Lrg1p acts as a specialized RhoGAP regulating 1,3--Glucan synthesis. Yeast 18:943–951.
    (348) Watanabe, M., C-Y. Chen, and D. E. Levin. 1994. Saccharomyces cerevisiae PKC1 encodes a protein kinase C (PKC) homolog with a substrate speci- ficity similar to that of mammalian PKC. J. Biol. Chem. 269:16829–16836.
    (349) Watanabe, Y., K. Irie, and K. Matsumoto. 1995. Yeast RLM1 encodes a serum response factor-like protein that may function downstream of the Mpk1 (Slt2) mitogen-activated protein kinase pathway. Mol. Cell. Biol. 15: 5740–5749.
    (350) Watanabe, Y., G. Takaesu, M. Hagiwara, K. Irie, and K. Matsumoto. 1997. Characterization of a serum response factor-like protein in Saccharomyces cerevisiae, Rlm1, which has transcriptional activity regulated by the Mpk1 (Slt2) mitogen-activated protein kinase pathway. Mol. Cell. Biol. 17:2615–2623.
    (351) Wiederhold, N. P., and R. E. Lewis. 2003. The echinocandin antifungals: an overview of the pharmacology, spectrum and clinical efficacy. Expert Opin. Investig. Drugs 12:1313–1333.
    (352) Wigge, P. A., O. N. Jensen, S. Homes, S. Soues, M. Mann, and J. V.Kilmartin. 1998. Analysis of the Saccharomyces spindle pole by matrix- assisted laser desorption/ionization (MALDI) mass spectrometry. J. Cell Biol. 141:967–977.
    (353) Wijnen, H., and B. Futcher. 1999. Genetic analysis of the shared role of CLN3 and BCK2 at the G1 -S transition in Saccharomyces cerevisiae. Genet- ics 153:1131–1143.
    (354) Wild, A. C., J. W. Yu, M. A. Lemmon, and K. J. Blumer. 2004. The p21-activated protein kinase-related kinase Cla4 is a coincidence detector of signaling by Cdc42 and phosphatidylinositol 4-phosphate. J. Biol. Chem. 279:17101–17110.
    (355) Williams, K. E., and M. S. Cyert. 2001. The eukaryotic response regulator Skn7p regulates calcineurin signaling through stabilization of Crz1p. EMBO J. 20:3473–3483.
    (356) Withee, J. L., J. Mulholland, R. Jeng, and M. S. Cyert. 1997. An essential role of the yeast pheromone-induced Ca2+ signal is to activate calcineurin. Mol. Biol. Cell 8:263–277.
    (357) Wu, W. J., D. A. Leonard, R. A. Cerione, and D. Manor. 1997. Interaction Between Cdc42Hs and RhoGDI is mediated through the Rho insert region. J. Biol. Chem. 272:26153–26158.
    (358) Yamochi, W., K. Tanaka, H. Nonaka, A. Maeda, T. Musha, and Y. Takai. 1994. Growth site localization of Rho1 small GTP-binding protein and its involvement in bud formation in Saccharomyces cerevisiae. J. Cell Biol. 125:1077–1093.
    (359) Yan, Q., and W. J. Lennarz. 2002. Studies on the function of oligosaccharyl transferase subunits: a glycosylatable photoprobe binds to the luminal do- main of Ost1p. Proc. Natl. Acad. Sci. USA 99:15994–15999.
    (360) Yang, W-L., M. E. C. Bruno, and G. M. Carman. 1996. Regulation of yeast CTP synthetase activity by protein kinase C. J. Biol. Chem. 271:11113–11119.
    (361) Yashar, B., K. Irie, J. A. Printen, B. J. Stevenson, G. F. Sprague, Jr., K. Matsumoto, and B. Errede. 1995. Yeast MEK-dependent signal transduc- tion: Response thresholds and parameters affecting fidelity. Mol. Cell. Biol. 15:6545–6553.
    (362) Yoshida, S., E. Ikeda, I. Uno, and H. Mitsuzawa. 1992. Characterization of astaurosporine-sensitive and temperature-sensitivemutant,stt1,of Saccha-romyces cerevisiae—STT1 is allelic to PKC1.Mol.Gen.Genet.231:337–344.
    (363) Yoshida, S., Y. Ohya, M. Goebl, A. Nakano, and Y. Anraku. 1994. A novel gene, STT4, encodes a phosphatidylinositol 4-kinase in the PKC1 protein kinase pathway of Saccharomyces cerevisiae. J. Biol. Chem. 269:1166–1172.
    (364) Yoshida,S.,Y.Ohya,A.Nakano,andY.Anraku.1994.Genetic interactions among genes involved in the STT4-PKC1 pathway of Saccharomyces cere- visiae. Mol. Gen. Genet. 242:631–640.
    (365) Yoshida, S., Y. Ohya, A. Nakano, and Y. Anraku. 1995. STT3, a novel essential gene related to the PKC1/STT1 protein kinase pathway,is inolved in protein glycosylation in yeast. Gene 164:167–172.
    (366) Yoshimoto, H., K. Saltsman, A. P. Gasch, H. X. Li. N. Ogawa, D. Botstein, P O. Brown, and M. S. Cyert. 2002. Genome-wide analysis of gene expres- Sion regulated by the calcineurin/Crz1p signaling pathway in Saccharomyces cerevisiae. J. Biol. Chem. 277:31079–31088.
    (367) Yu, J. W., J. M. Mendrola, A. Audhya, S. Singh, D. Keleti, D. B. DeWald, D. Murray, S. D. Emr, and M. A. Lemmon. 2004. Genome-wide analysis of membrane targeting by S. cerevisiae pleckstrin homology domains. Mol. Cell 13:677–688.
    (368) Zarzov, P., C. Mazzoni, and C. Mann. 1996. The SLT2 (MPK1) MAP kinase is activated during periods of polarized cell growth in yeast. EMBO J. 15:83–91.
    (369) Zhang, X., E. Bi, P. Novick, L. Du, K. G. Kozminski, J. H. Lipschutz, and W. Guo. 2001. Cdc42 interacts with the exocyst and regulates polarized exocytosis. J. Biol. Chem. 276:46745–46750.
    (370) Zhang, X., R. L. Lester, and R. C. Dickson. 2004. Pil1p and Lsp1p nega- Tively regulate the 3-phosphoinositide-dependent protein kinase-like kinase Pkh1p and downstream signaling pathways Pkc1p and Ypk1. J. Biol. Chem. 279:22030–22038.
    (371) Zhao, C., U. S. Jung, P. Garrett-Engele, T. Roe, M. S. Cyert, and D. E. Levin. 1998. Temperature-induced expression of yeast FKS2 is under the dual control of protein kinase C and calcineurin. Mol. Cell. Biol. 18:1013–1022.
    (372) Zlotnik, H., M. P. Fernandez, B. Bowers, and E. Cabib. 1984. Saccharomy- ces cerevisiae mannoproteins form an external cell wall layer that deter- mines wall porosity. J. Bacteriol. 181:1018–1026.
    (373) Zufferey, R., R. Knauer, P. Burda, I. Stagljar, S. te Heesen, L. Lehle, and M. Aebi. 1995. STT3, a highly conserved protein required for yeast oligo- saccharyl transferase activity in vivo. EMBO J. 14:4949–4960.
    (1) Casamayor A, Snyder M (2002) Bud-site selection and cell polarity in budding yeast. Curr Opin Microbiol 5: 179–186.
    (2) Chant J, Pringle JR (1995) Patterns of bud-site selection in the yeast Saccharomyces cerevisiae. J Cell Biol 129: 751–765.
    (3) Madden K, Snyder M (1998) Cell polarity and morphogenesis in budding yeast. Annu Rev Microbiol 52: 687–744.
    (4) Cabib E, Drgonova J, Drgon T (1998) Role of small G proteins in yeast cell polarization and wall biosynthesis. Annu Rev Biochem 67: 307–333.
    (5) Schmidt A, Hall MN (1998) Signaling to the actin cytoskeleton. Annu Rev Cell Dev Biol 14: 305–338.
    (6) Qadota H, Python CP, Inoue SB, Arisawa M, Anraku Y, et al. (1996) Identification of yeast Rho1p GTPase as a regulatory subunit of 1,3-beta-glucan synthase. Science 272: 279–281.
    (7) Watanabe M, Chen CY, Levin DE (1994) Saccharomyces cerevisiae PKC1 encodes a protein kinase C (PKC) homolog with a substrate specificity similar to that of mammalian PKC. J Biol Chem 269: 16829–16836.
    (8) Douglas CM, Foor F, Marrinan JA, Morin N, Nielsen JB, et al. (1994) The Saccharomyces cerevisiae FKS1 (ETG1) gene encodes an integral membrane protein which is a subunit of 1,3-beta-D-glucan synthase. Proc Natl Acad Sci U S A 91: 12907–12911.
    (9) Heinisch JJ, Lorberg A, Schmitz HP, Jacoby JJ (1999) The protein kinase C-mediated MAP kinase pathway involved in the maintenance of cellular integrity in Saccharomyces cerevisiae. Mol Microbiol 32: 671–680.
    (10) Ozaki K, Tanaka K, Imamura H, Hihara T, Kameyama T, et al. (1996) Rom1p and Rom2p are GDP/GTP exchange proteins (GEPs) for the Rho1p small GTP binding protein in Saccharomyces cerevisiae. Embo J 15: 2196–2207.
    (11) Schmelzle T, Helliwell SB, Hall MN (2002) Yeast protein kinases and the RHO1 exchange factor TUS1 are novel components of the cell integrity pathway in yeast. Mol Cell Biol 22: 1329–1339.
    (12) Bickle M, Delley PA, Schmidt A, Hall MN (1998) Cell wall integrity modulates RHO1 activity via the exchange factor ROM2. Embo J 17: 2235–2245.
    (13) Audhya A, Emr SD (2002) Stt4 PI 4-kinase localizes to the plasma membrane and functions in the Pkc1-mediated MAP kinase cascade. Dev Cell 2: 593–605.
    (14) Manning BD, Padmanabha R, Snyder M (1997) The Rho-GEF Rom2p localizes to sites of polarized cell growth and participates in cytoskeletal functions in Saccharomyces cerevisiae. Mol Biol Cell 8: 1829–1844.
    (15) Philip B, Levin DE (2001) Wsc1 and Mid2 are cell surface sensors for cell wall integrity signaling that act through Rom2, a guanine nucleotide exchange factor for Rho1. Mol Cell Biol 21: 271–280.
    (16) Yamochi W, Tanaka K, Nonaka H, Maeda A, Musha T, et al. (1994) Growth site localization of Rho1 small GTP-binding protein and its involvement in bud formation in Saccharomyces cerevisiae. J Cell Biol 125: 1077–1093.
    (17) Delley PA, Hall MN (1999) Cell wall stress depolarizes cell growth via hyperactivation of RHO1. J Cell Biol 147: 163–174.
    (18) Utsugi T, Minemura M, Hirata A, Abe M, Watanabe D, et al. (2002) Movement of yeast 1,3-beta-glucan synthase is essential for uniform cell wall synthesis. Genes Cells 7: 1–9.
    (19) Levin DE (2005) Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69: 262–291.
    (20) Irie K, Takase M, Lee KS, Levin DE, Araki H, et al. (1993) MKK1 and MKK2, which encode Saccharomyces cerevisiae mitogen-activated protein kinase-kinase homologs, function in the pathway mediated by protein kinase C. Mol Cell Biol 13: 3076–3083.
    (21) Levin DE, Bowers B, Chen CY, Kamada Y, Watanabe M (1994) Dissecting the protein kinase C/MAP kinase signalling pathway of Saccharomyces cerevisiae. Cell Mol Biol Res 40: 229–239.
    (22) Kamada Y, Jung US, Piotrowski J, Levin DE (1995) The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev 9: 1559–1571.
    (23) Zarzov P, Mazzoni C, Mann C (1996) The SLT2(MPK1) MAP kinase is activated during periods of polarized cell growth in yeast. Embo J 15: 83–91.
    (24) Harrison JC, Bardes ES, Ohya Y, Lew DJ (2001) A role for the Pkc1p/Mpk1p kinase cascade in the morphogenesis checkpoint. Nat Cell Biol 3: 417–420.
    (25) Jung US, Levin DE (1999) Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway. Mol Microbiol 34: 1049–1057.
    (26) Mizunuma M, Hirata D, Miyahara K, Tsuchiya E, Miyakawa T (1998) Role of calcineurin and Mpk1 in regulating the onset of mitosis in budding yeast. Nature 392: 303–306.
    (27) Martin H, Rodriguez-Pachon JM, Ruiz C, Nombela C, Molina M (2000) Regulatory mechanisms for modulation of signaling through the cell integrity Slt2-mediated pathway in Saccharomyces cerevisiae. J Biol Chem 275: 1511–1519.
    (28) Krause SA, Gray JV (2002) The protein kinase C pathway is required for viability in quiescence in Saccharomyces cerevisiae. Curr Biol 12: 588–593.
    (29) Torres J, Di Como CJ, Herrero E, De La Torre-Ruiz MA (2002) Regulation of the cell integrity pathway by rapamycin-sensitive TOR function in budding yeast. J Biol Chem 277: 43495–43504.
    (30) Watanabe Y, Irie K, Matsumoto K (1995) Yeast RLM1 encodes a serum response factor-like protein that may function downstream of the Mpk1 (Slt2) mitogen-activated protein kinase pathway. Mol Cell Biol 15: 5740–5749.
    (31) Martin H, Arroyo J, Sanchez M, Molina M, Nombela C (1993) Activity of the yeast MAP kinase homologue Slt2 is critically required for cell integrity at 37 degrees C. Mol Gen Genet 241: 177–184.
    (32) Kamada Y, Qadota H, Python CP, Anraku Y, Ohya Y, et al. (1996) Activation of yeast protein kinase C by Rho1 GTPase. J Biol Chem 271: 9193–9196.
    (33) Nonaka H, Tanaka K, Hirano H, Fujiwara T, Kohno H, et al. (1995) A downstream target of RHO1 small GTP-binding protein is PKC1, a homolog of protein kinase C, which leads to activation of the MAP kinase cascade in Saccharomyces cerevisiae. Embo J 14: 5931–5938.
    (34) Madaule P, Axel R, Myers AM (1987) Characterization of two members of the rho gene family from the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 84: 779–783.
    (35) Andrews PD, Stark MJ (2000) Dynamic, Rho1p-dependent localization of Pkc1p to sites of polarized growth. J Cell Sci 113(Pt 15): 2685–2693.
    (36) Rothstein R (1991) Targeting, disruption, raplacement, and rescue:intergrative DNA transformation in yeast. Method Enzymol 194: 281–301.
    (37) Wang H, Jiang Y (2003) The Tap42-protein phosphatase type 2A catalytic subunit complex is required for cell cycle-dependent distribution of actin in yeast. Mol Cell Biol 23: 3116–3125.
    (38)《Molecular Cloning 3》Cold Spring Harbor Laboratory Press, 2006,Cold Spring Harbor, NY.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700