Smad3/siRNA阻断TGF-β1/Smad3信号转导通路的防治肝纤维化作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TGF-β1是一个多效性生长因子,在调节细胞外基质(ECM)的生成和器官、组织纤维化的发生、发展过程中发挥重要作用。肝星状细胞(HSCs)是肝内产生ECM的主要细胞,它的激活与活化状态的维持是肝纤维化的发生和发展过程中的重要事件之一,而HSCs的活化和生成ECM是由TGF-β1/Smad3信号通路调控的。大量研究表明,在不同位点、用不同的阻断剂如抗体、竞争性Ⅱ型TGF-β受体、Ⅰ型TGF-β受体(TβR-Ⅰ)的小分子抑制剂、寡义核苷酸或小干扰RNA(siRNA)等阻断TGF-β1/Smad3通路后,体内外均能抑制ECM的过渡生成,并能减轻器官纤维化的程度,但以Smad3蛋白为靶点拮抗TGF-β1/Smad3通路的研究尚无报道。
     我们首先建立了TGF-β1/Smad3信号通路的虫荧光素酶的报告基因系统,通过TβR-Ⅰ的小分子抑制剂—SB-431542的抑制实验已确认此模型的有效性,并筛选了稳定表达的MvLu1细胞株。通过柚皮素抑制TGF-β1/Smad3的报告基因系统实验,我们首先证明柚皮素是TGF-β1/Smad3通路的拮抗剂;体外实验表明,柚皮素不仅可以抑制TGF-β1诱导的HSCs生成ECM,而且可以明显抑制Smad3的mRNA转录过程。首次证明柚皮素是通过直接或间接抑制Smad3的转录过程而阻断TGF-β1/Smad3信号通路的,其抗纤维化作用也至少部分是通过此作用机制来完成的。由于Smad3位于信号通路的下游、更接近靶基因,同时体内外实验表明Smad3基因敲除可以防治肝、肺等器官纤维化的发生,所以我们设计了siRNA来沉默Smad3基因。通过报告基因与RT-PCR实验,第一次证明Smad3的siRNA可剂量依赖型抑制其基因的表达,并可阻断TGF-β1/Smad3信号通路;同时可在mRNA和蛋白水平抑制TGF-β1诱导的HSCs生成ECM;DMN诱导的大鼠肝纤维化实验表明,siRNA/Smad3能明显增加实验鼠的存活率,增加其体重及肝的重量,能有效降低血清内TGF-β1和ECM组份水平,能明显改善肝功能,能显著降低肝内ECM组份的含量。表明siRNA/Smad3具有防治肝纤维化的作用,可向发展抗纤维化药物的发现进行更深入的研究。
The multiple biological actions of TGF-81 contribute to the regulation of the production, degradation, and accumulation of ECM proteins in a direct or indirect manner, and that it may play a pivotal role in the fibroproliferative changes in many vital organs and tissue. Activation of hepatic stellate cells (HSCs), leading to accumulation of extracellular matrix (ECM), is the central event of fibrogenesis. liver fibrosis occurs as a consequence of the transdifferentiation of HSCs into myofibroblasts and is orcharded by TGF-β/Smad3 signaling pathway. There are a number of reports of cellular or animal models of fibrosis where loss of TGF-β1/Smad3 cascade regulation results in a diminished fibrotic response where agents that block TGF-βfunction inhibit the production of ECM and reduce the fibrotic response in the liver and other tissues. Several strategies now exist for preventing or halting fibrogenesis, ranging from biological agents including antibodies, antisense oligonucleotides, soluble type II TGF-βreceptor and siRNA to small molecular compounds. However, it has not reported that an agent blocks TGF-β/Smad3 signaling cascade through targeting Smad3 protein.The luciferase reporter based on TGF-β/Smad3 signaling was developed, whose expression was inhibited by SB-431542, a small molecular inhibitor of type I TGF-βreceptor. A stable MvlLu strain cloned the reporter system was worked.Naringenin, a Chinese herbs extract, was firstly proven to be an antagonist of TGF-β/Smad3 signaling, which obviously inhibited the expression of the luciferase reporter. The compound could interdict not only the formation of ECM, but the transcription of Smad3 in HSCs induced by TGF-B1 in vitro. We firstly provided obvious evidences that naringenin can intervene TGF-β1/Smad3 signaling pathway by directly or indirectly down-regulated Smad3 protein expression to exert anti-fibrogenic effects, at least partly.But the most compellent example of events is that loss of Smad3, a downstream mediator of TGF-β1 signaling, might be resistant to fibrogenesis in vivo and in vitro. Based on these and other advances in understanding the fundamentals of the injury response and TGF-β1/Smad3 signal pathway, a strategy which blocks TGF-B signaling via silencing Smad3 gene with small interference RNA (siRNA) was developed. A siRNA/Smad3 could intervene the TGF-β1/Smad3 signaling, which was shown by the luciferase reporter system, and knockdown Smad3 gene in a dose-dependent manner from RT-PCR results. The siRNA could inhibit the expression of ECM at levels of mRNA and protein in HSCs induced by TGF-β1. The siRNA/Smad3 could survive, increase body weigh and liver weigh, decrease the serum levels of TGF-β1 and the components of serum ECM, improve the liver biological functions, and reduce the liver contents of ECM components in experimental liver fibrotic rats induced by DMN. These results implied that siRNA targeting Smad3 has exciting anti-fibrogenesis actions and future studies will be required to determine the approach is most beneficial.
引文
[1] Piek E, Heldin CH, ten Dijke P. Specificity, diversity, and regulation in TGF-β superfamily signaling. FASEB J 1999; 13: 2105-2124.
    [2] Letterio JJ and Roberts AB. Regulation of immune responses by TGF-β. Annu Rev Immunol 1998; 16: 137-161.
    [3] Kingsley DM. The TGF-β superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 1994; 8: 133-146.
    [4] Hogan BLM. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev 1996; 10: 1580-1594.
    [5] Mathews LS. Activin receptors and cellular signaling by the receptor serine kinase family. Endocr Rev 1994; 15: 310-325.
    [6] Talpale J and Keski-Oja J. Growth factors in the extracellular matrix. FASEBJ 1997; 11: 51-59.
    [7] Saharinen J, Taipale J, Monni O, Keski-Oja J. Identification and characterization of a new latent transforming growth factor-β-binding protein, LTBP-4. J Biol Chem 1998; 273: 18459-18469.
    [8] Munger JS, Harpel JG, Giancotti FG, Rill, DB. Interactions between gruwth factors and integrins: latent forms of transforming growth factor-β are ligands for the integrin αβ1. Mol Biol Cell 1998; 9: 2627-2638.
    [9] Chen RH, Moses HL, Maruoka EM, Derynck R, Kawabata M. Phosphorylation-dependent interaction of the cytoplasmic domains of the type Ⅰ and typeⅡ transforming growth factor-β receptors. J Biol Chem 1995; 270: 12235-12241.
    [10] Rodrignez C, Chen F, Weinberg RA, Lodish HF. Cooperative binding of transforming growth factor (TGF)-β2 to the types Ⅰ and Ⅱ TGF-βreceptors. J Biol Chem 1995; 270: 15919-15922.
    [11] ten Dijke P, Yamashita H, Sampath TK, Reddi AH, Estevez M, Riddle DL, Ichijo H, Heldin C-H, Miyazono K. Identification of type Ⅰ receptors for osteogenic protein-1 and bone morphogenetic protein-4. J Biol Chem 1994; 269: 16985-16988.
    [12] Rosenzweig BL, Imamura T, Okadome T, Cox GN, Yamashita H, ten Dijke P, Heldin C-H, Miyazono K. Cloning and characterization of a human type Ⅱ receptor for bone morphogenetic proteins. Proc Natl Acad Sci USA 1995: 92: 7632-7636.
    [13] Heldin C-H, Miyazono K, ten Dike P. TGF-β signaling from cell membrane to nucleus through SMAD proteins. Nature 1997; 390: 465-471.
    [14] Yamashita H, ten Dijke P, Huylebroeck D, Sampath TK, Andries M, Smith JC, Heldin C-H, Miyazono K. Osteogenic protein-1 binds to activin type Ⅱ receptors and induces certain activin-like effects. J Cell Biol 1995; 130: 217-226.
    [15] Piek E, Afrakhte M, Sampath K, van Zoelen EJ, Heldin C-H, ten Dijke P. Functional antagonism between activin and osteogenic protein-1 in human embryonal carcinoma cells. J Cell Physiol 1999; 180: 141-149.
    [16] Lebrun JJ and Vale WW. Activin and inhibin have antagonistic effects on ligand-dependent heteromerization of the type Ⅰ and type Ⅱ activin receptors and human erythroid differentiation. Mol Cell Biol 1997; 17: 1682-1691.
    [17] Wrana JL, Attisano L, Wieser R, Ventura F, Massague J. Mechanism of activation of the TGF-β receptor. Nature 1994; 370: 341-347.
    [18] Massague J. TGF-β signal transduction. Annu Rev Biochem 1998; 67: 753-791.
    [19] Feng XH, Filvaroff EH, Derynck R. Transforming growth factor-β (TGF-β)-induced downregulation of cyclin A expression requires a functional TGF-β receptor complex. Characterization of chimeric and truncated type Ⅰ and type Ⅱ receptors. J Biol Chem 1995; 270: 24237-24245.
    [20] Raftery LA, Twombly V, Wharton K, Gelbart WM. Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila. Genetics 1995; 139: 241-254.
    [21] Sekelsky JJ, Newfeld SJ, Raftery LA, Chartoff EH, Gelbart WM. Genetic characterization and cloning of Mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics 1995: 139: 1347-1358.
    [22] Savage C, Das P, Finelli AL, Townsend SR, Sun C-Y, Baird SE, Padgett RW. Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor β pathway components. Proc Natl Acad Sci USA 1996; 93: 790-794.
    [23] Das P, Maduzia LL, Wang H, Finelli AL, Cho SH, Smith MM, Padgett RW. The Drosophila gene Medea demonstrates the requirement for different classes of Smads in dpp signaling. Development 1998; 125: 1519-1528.
    [24] Macias-Silva M, Hoodless PA, Tang SJ, Buchwald M, Wrana JL. Specific activation of Smadl signaling pathways by the BMP7 type Ⅰ receptor, ALK2. J Biol Chem 1998; 273: 25628-25636.
    [25] Chen Y-G and Massague, J. Smadl recognition and activation by the ALK1 group of transforming growth factor-β family receptors. J Biol Chem 1999; 274: 3672-3677.
    [26] Thomsen GH. Xenopus mothers against decapentaplegic is an embryonic ventralizing agent that acts downstream of the BMP-2/4 receptor. Development 1996; 122: 2359-2366.
    [27] Chen Y, Bhushan A, Vale W. Smad8 mediates the signaling of the receptor serine kinase. Proc Natl Acad Sci USA 1997; 94: 12938-12943.
    [28] Tamaki K, Souchelnytskyi S, Itoh S, Nakao A, Sampath K, Heldin C-H, ten Dijke P. Intracellular signaling of osteogenic protein-1 through Smad5 activation. J Cell Physiol 1998; 177: 355-363.
    [29] Eppert K, Scherer SW, Ozcelik H, Pirone R, Hoodless P, Kim H, Tsni L-C, Bapat B, Gallinger S, Andrulis IL, Thomsen GH, Wrana JL, Attisano L. MADR2 maps to 18q21 and encodes a TGFβ-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 1996; 86: 543-552.
    [30] Macias-Silva M, Abdollah S, Hoodless PA, Pirone R, Attisano L, Wrana JL. MADR2 is a substrate of the TGFβ receptor and its phosphorylation is required for nuclear accumulation and signaling. Cell 1996; 87: 1215-1224.
    [31] Zhang Y, Feng X-H, Wu R-Y, Derynck R. Receptor-associated Mad homoiognes synergize as effectors of the TGF-β response. Nature 1996; 383: 168-172.
    [32] Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, Tamaki K, Hanai J-I, Heldin C-H, Miyazono K, ten Dijke P. TGF-β receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J 1997; 16: 5353-5362.
    [33] Verrecchia F, Chu ML, Manviel A. Identification of novel TGF-β/Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. J Biol Chem 2001; 276: 17058-17062.
    [34] Goumans MJ, Lebrin F, Valdimarsdottir G. Controlling the angiogenic switch: a balance between two distinct TGF-β receptor signafing pathways. Trends Cardiovasc Med 2003; 13: 301-307.
    [35] Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P. Balancing the activation state of the endothelium via two distinct TGF-β type Ⅰ receptors. EMBOJ 2002; 21: 1743-1753.
    [36] Ota T, Fujii M, Sugizaki T, Ishii M, Miyazawa K, Aburatani H, Miyazono K. Targets of transcriptional regulation by two distinct type Ⅰ receptors for transforming growth factor-β in human umbilical vein endothelial cells. J Cell Physiol 2002; 193: 299-318.
    [37] Vindevoghel L, Lechleider RJ, Kon A, de Caestecker MP, Uitto J, Roberts AB, Mauviel A. SMAD3/4-dependent transcriptional activation of the human type Ⅶ collagen gene (COL7A1) promoter by transforming growth factor β. Proc Natl Acad Sci USA 1998; 95: 14769-14774.
    [38] Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM. Direct binding of Smad3 and Smad4 to critical TGFβ-inducible elements in the promoter of human plasrninogen activator inhibitor-type 1 gene. EMBO J 1998; 17: 3091-3100.
    [39] ten Dijke P and Hill CS. New insights into TGF-β-Smad signaling. Trend Biochem Sci 2004; 29: 265-273.
    [40] Lagna G, Hata A, Hemmati-Brivanlou A, Massagne J. Partnership between DPC4 and SMAD proteins in TGF-β signalling pathways. Nature 1996; 383: 832-836.
    [41] de Winter JP, Roelen BAJ, ten Dijke P, van der Burg B and van den Eijnden-van Raaij AJM. DPC4 (SMAD4) mediates transforming growth factor-β1 (TGF-β1) induced growth inhibition and transcriptional response in breast turnout cells. Oncogene 1997; 14: 1891-1899.
    [42] Liu F, Pouponnot C, Massague J. Dual role of the Smad4/DPC4 tumor suppressor in TGFβ-inducible transcriptional complexes. Genes Dev 1997; 11: 3157-3167.
    [43] Hahn SA, Schutte M, Hoque ATMS, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH, Kern SE. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 1996; 271: 350-353.
    [44] Schutte M, Hruban RH, Hedrick L, Cho KR, Nadasdy GM, Weinstein CL, Bova GS, Isaacs WB, Cairns P, Nawroz H, Sidransky D, Casero RA, Jr Meltzer PS, Hahn SA, Kern SE. DPC4 gene in various tumor types. Cancer Res 1996; 56; 2527-2530.
    [45] Shi Y, Hata A, Lo RS, Massagne J, Pavletich NP. A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature 1997; 388: 87-93.
    [46] Le Dai J, Turnacioglu KK, Schutte M, Sugar AY, Kern SE. Dpc4 transcriptional activation and dysfunction in cancer cells. Cancer Res 1998; 58: 4592-4597.
    [47] Lazzereschi D, Nardi F, Turco A, Ottini L, D'Amico C, Mariani-Costantini R, Gulino A, Coppa A. A complex pattern of mutations and abnormal spficing of Smad4 is present in thyroid tumouts. Oncogene 2005 Jun 6 [Epub ahead of print] http://doi:10.1038/sj.onc.1208603.
    [48] Baez A, Cantor A, Fonseca S, Marcos-Martinez M, Mathews LA, Muro-Cacho CA, Munoz-Antonia T. Differences in Smad4 expression in human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck squamous cell carcinoma. Clin Cancer Res 2005; 11(9): 3191-3197.
    [49] Wan M, Huang J, Jhala NC, Tytler EM, Yang L, Vickers SM, Tang Y, Lu C, Wang N, Cao X. SCF (β-TrCP1) controls Smad4 protein stability in pancreatic cancer cells. Am J Pathol 2005; 166(5): 1379-1392.
    [50] Li Q, Wu L, Oelschiager DK, Wan M, Stockard CR, Grizzle WE, Wang N, Chen H, Sun Y, Cao X. Smad4 inhibits tumor growth by inducing apoptosis in estrogen receptor a positive breast cancer cells. J Biol Chem 2005; 280(29): 27022-27028.
    [51] Tang Y, Katuri V, Srinivasan R, Fogt F, Redman R, Anand G, Said A, Fiahbein T, Zasloff M, Reddy EP, Mishra B, Mishra L. Transforming growth factor-β suppresses nonmetastatic colon cancer through Smad4 and adaptor protein ELF at an early stage of tumorigenesis. Cancer Res 2005; 65(10): 4228-4237.
    [52] Derynck R, Zhang Y, Feng X-H. Smads: Transcriptional activators of TGF-β responses. Cell 1998; 95: 737-740.
    [53] Yingling JM, Datto MB, Wong C, Frederick JP, Liberati NT, Wang XF. Tumor suppressor Smad4 is a transforming growth factor β-inducible DNA binding protein. Mol Cell Biol 1997; 17: 7019-7028.
    [54] Zawel L, Dai JL, Buckhaults P, Zhou S, Kinzler KW, Vogelstein B, Kern SE. Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell 1998; 1: 611-617.
    [55] Labbe E, Silvestri C, Hoodless PA, Wrana JL, Attisano L. Smad2 and Smad3 positively and negatively regulate TGFβ-dependent transcription through the forkhead DNA-binding protein FAST2. Mol Cell 1998; 2: 109-120.
    [56] Zhang Y, Feng XH, Derynck R. Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-β-induced transcription. Nature 1998; 394: 909-913.
    [57] Zhou S, Zawel L, Lengauer C, Kinzler KW, Vogelstein B. Characterization of human FAST-1, a TGFβ and activin signal transducer. Mol Cell 1998; 2:121-127.
    [58] Hua XX, Liu XD, Ansari DO, Lodish HF. Synergistic cooperation of TFE3 and Smad proteins in TGF-β-induced transcription of the plasminogen activator inhibitor-1 gene. Genes Dev 1998; 12: 3084-3095.
    [59] Liberati NT, Datto MB, Frederick JP, Shen X, Wong C, Rougier-Chapman EM, Wang X-F. Smads bind directly to the Jun family of AP-1 transcription factors. Proc Natl Acad Sci USA 1999; 96: 4844-4849.
    [60] Shi Y, Wang YF, Jayaraman L, Yang H, Massague J, Pavletich NP. Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-β signaling. Cell 1998; 94: 585-594.
    [61] Janknecht R, Wells NJ, Hunter T. TGF-β-stimulated cooperation of Smad proteins with the coactivators CBP/p300. Genes Dev 1998; 12: 2114-2119.
    [62] Abraham SE, Carter MC, Moran E. Transforming growth factorβ1 (TGFβ1) reduces cellular levels of p34~(cdc2) and this effect is abrogated by adenovirus independently of the E1A-associated pRB binding activity. Mol Biol Cell 1992; 3: 655-665.
    [63] Datto MB, Hu PPC, Kowalik TF, Yingling J, Wang XF. The viral oncoprotein E1A blocks transforming growth factor β-mediated induction of p21/WAF1/Cipl and p15/INK4B. Mol Cell Biol 1997; 17: 2030-2037.
    [64] Feng XH, Zhang Y, Wu RY, Derynck R. The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for Smad3 in TGF-β-induced transcriptional activation. Genes Dev 1998; 12: 2153-2163.
    [65] Inoue H, Imamura T, Ishidou Y, Takase M, Udagawa Y, Oka Y, Tsuneizumi K, Tabata T, Miyazono K, Kawabata M. Interplay of signal mediators of decapentaplegic (Dpp): molecular characterization of mothers against dpp, Medea, and daughters against dpp. Mol Biol Cell 1998; 9: 2145-2156.
    [66] Souchelnytskyi S, Nakayama T, Nakao A, Moren A, Heldin C-H, Christian JL, ten Dijke P. Physical and functional interaction of murine and Xenopus Smad7 with bone morphogenetie protein receptors and transforming growth factor-β receptors. J Biol Chem 1998; 273: 25364-25370.
    [67] Afrakhte M, Moren A, Jossan S, Itoh S, Sampath K, Westermark B, Heldin C-H, Heldin N-E, ten Dijke P. Induction of inhibitory Smad6 and Smad7 mRNA by TGF-β family members. Biochem Biophys Res Commun 1998; 249: 505-511.
    [68] Itoh S, Landstrom M, Hermansson A, Itoh F, Heldin C-H, Heldin N-E, ten Dijke P. Transforming growth factor β1 induces nuclear export of inhibitory Smad7. J Biol Chem 1998; 273: 29195-29201.
    [69] Takase M, Imamura T, Sampath TK, Takeda K, Ichijo H, Miyazono K, Kawabata M. Induction of Smad6 mRNA by bone morphogenetic proteins. Biochem Biophys Res Commun 1998; 244: 26-29.
    [70] Hata A, Lagna G, Massagne J, Hemmati-Brivanlou A. Smad6 inhibits BMP/Smadl signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev 1998; 12:186-197.
    [71] Nakayama T, Snyder M, Grewal S, Tsuneizumi K, Tabata T, Christian J. Xenopus Smad8 acts downstream of BMP-4 to modulate its activity during vertebrate embryonic patterning. Development 1998; 125: 857-867.
    [72] Ishisaki A, Yamato K, Hashimoto S, Nakao A, Tamaki K, Nonaka K, ten Dijke P, Sugino H, Nishihara T. Differential inhibition of Smad6 and Smad7 on bone morphogenetic protein-and activin-mediated growth arrest and apoptosis in B cells. J Biol Chem 1998; 274: 13637-13642.
    [73] Nakao A, Afrakhte M, Moren A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Hcldin N-E, Heldin C-H, ten Dijke P. Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signalling. Nature 1997; 389: 631-635.
    [74] Shi Y and Massagne J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 2003; 113: 685-700.
    [75] Zhao J, Shi W, Chen H, Watburtun D. Smnd7 and Smad6 differentially modulate transforming growth factor-β-induced inhibition of embryonic lung morphogenesis. J Biol Chem 2000; 275: 23992-23997.
    [76] Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T, Miyazono K. Smurf1 interacts with transforming growth factor-β type Ⅰ receptor through Smad7 and induces receptor degradation. J Biol Chem 2001; 276: 2477-2480.
    [77] Shi W, Sun C, He B, Xiong W, Shi X, Yao D, Cao X. GADD34-PP1c recruited by Smad7 dephosphorylates TGF-β type Ⅰ receptor. J Cell Biol 2004; 164: 291-300.
    [78] Imarmura T, Takase M, Nishihara A, Oeda E, Hanai J, Kawabata M, Miyazono K. Smand6 inhibits signaling by the TGF-β superfamily. Nature 1997; 389: 622-626.
    [79] yon Bubnoff A and Cho KWY. Intracellular BMP signaling regulation in Vertebrates: pathway or network? Develol Biol 2001; 239: 1-14.
    [80] Munger JS, Huang X, Kawakatsu H, Griffiths M J, Dalton SL, Wu J, Pittet JF, Kaminski N, Garat C, Matthay MA, Rifkin DB, Sheppard D. The integrin a_vβ6 binds and activates latent TGF-β1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 1999; 96: 319-328.
    [81] Liu M, Munger JS, Steadele M, Busald C, Tellier M, Schnapp LM. Integrin a8β1 mediates adhesion to LAP-TGF-β1. J Cell Sci 2002; 115: 4641-4648.
    [82] Kracklauer MP, Schmidt C and Sdabas GM. TGFβ_1 signaling via a_vβ6 integrin. Mol Can 2003; 2: 1-28. Available from: http://www.mulecular-cancer.com/cuntent/2/1/28
    [83] Levine D, Rockey DC, Milner TA, Breus JM, Fallon JT, Schnapp LM. Expression of the integrin a8β1 during pulmonary and hepatic fibrosis. Am J Pathol 2001; 156: 1927-1935.
    [84] Denda S, Reichardt LF, Muller U. Identification of osteopontin as a novel ligand for the integrin a8β1 and potential roles for this integrin-ligand interaction in kidney morphogenesis. Mol Biol Cell 1998; 9: 1425-1435.
    [85] Muller U, Bossy B, Venstrom K, Reichardt LF. Integrin a8β1 promotes attachment, cell spreading and neurite outgrowth on fibroneetin. Mol Biol Cell 1995; 6: 433-448.
    [86] Schnapp LM, Hatch N, Ramos DM, Klimanskaya Ⅳ, Sheppard D, Pytela R. The human integrin a8β1 functions as z receptor for tenascin, fibronectin, and vitronectin. J Biol Chem 1995; 270(39): 23196-23202.
    [87] Brandenberger R, Schmidt A, Linton J, Wang D, Backus C, Denda S, Muller U, Reichardt IF. Identification and characterization of a novel extracellular matrix protein nehronectin that is associated with a8β1 in the embryonic kidney. J Cell Biol 2001; 154: 447-458.
    [88] Keski-Oja J, Koli K, yon Melchner H. TGF-8 activation by traction? Trends Cell Bio12004; 14(12): 657-659.
    [89] Annes JP, Chen Y, Munger JS, Rifkin DB. Integrin aVβ6-mediated activation of latent TGF-β requires the latent TGF-β binding protein-1. J Cell Biol 2004; 165(5): 723-734.
    [90] Fjellbirkeland L, Cambier S, Broaddus VC, Hill A, Brunetta P, Dolganov G, Jablons D, Nishimura SL. Integrin avβ8-mediated activation of transforming growth factor-β inhibits human airway epithelial. Am J Pathol 2003; 163(2): 533-542.
    [91] Luettich K and Schmidt C. TGFβ1 activates c-Jun and Erkl viaa Vβ6 integrin. Mol Cancer 2003; 2(1):33.
    [92] Yu L, Hebert MC, Zhang YE. TGF-β receptor-activated p38 MAP kinase mediates Smad-independent TGF-β responses. EMBO J 2002; 21(14): 3749-3759.
    [93] Engel ME, McDonnel MA, Law BK, Moses HL. Interdependent SMAD and JNK signaling in transforming growth factor-β-mediated transcription. J Biol Chem 1999; 274: 37413-37420.
    [94] Yu J, Hebert MC, Zhang YE. TGF-β receptor-activated p38MAP kinase mediates Smad-indepent TGF-β responses. EMBO J 2002; 21: 3749-3759.
    [95] Yue J and Mulder KM. Activation of the mitogen-activated protein kinase pathway by transforming growth factor-β. Methods Mol Biol 2000; 142: 125-131.
    [96] Yamagnchi K, Nagai S, Ninomiya-Tsuji J, Nishita M, Tamai K, Irie K, Ueno N, Nishida E, Shibuya H, Matsumoto K. XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAKlin the BMP signaling pathway. EMBO J 1999; 18: 179-187.
    [97] Imamichi Y, Waidmann O, Hein R, Eleftheriou P, Giehl K, Menke A. TGF β-induced focal complex formation in epithelial cells is mediated by activated ERK and JNK MAP kinases and is independent of Smad4. Biol Chem 2005; 386(3): 225-236.
    [98] Qiao B, Padilla SR, Benya PD. Transforming growth factor (TGF)-β-activated kinase 1 mimics and mediates TGF-β-induced stimulation of type Ⅱ collagen synthesis in chondrocytes independent of Col2a1 transcription and Smad3 signaling. J Biol Chem 2005; 280(17): 17562-17571.
    [99] Ghayor C, Rey A, Caverzasio J. Prostaglandin-dependent activation of ERK mediates cell proliferation induced by transforming growth factor β in mouse osteoblastic cells. Bone 2005; 36(1): 93-100.
    [100] Xie L, Law BK, Chytil AM, Brown KA, Aakre ME, Moses HL. Activation of the Erk pathway is required for TGF-β1-induced EMT in vitro. Neoplasia 2004; 6(5): 603-610.
    [101] Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N, Tanignchi T, Nishida E, Matsumoto K. Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction. Science 1995; 270:2008-2011.
    [102] Shirakabe K, Yamaguchi K, Shibuya H, Irie K, Matsuda S, Morignchi T, Gotoh Y, Matsumoto K, Nishida E. TAK1 mediates the ceramide signaling to stress-activated protein kinase/c-Jun N-terminal kinase. J Biol Chem 1997; 272: 8141-8144.
    [103] Wang W, Zhou G, Hu M CT, Yao Z, Tan TH. Activation of the hematopoietic progenitor kinase-1 (HPK1)-dependent, stress-activated c-Jun N-terminal kinase (JNK) pathway by transforming growth factor β (TGF-β)-activatcd kinase (TAK1), a kinase mediator of TGF β signal transduction. J Biol Chem 1997; 272: 22771-22775.
    [104] Bakin AV, Rinehart C, Tomlinson AK, Ancaga CL. P38 mitogcn-activated protein kinase is required for TGFβ-mediated fibroblastic transdifferentiation and cell migration. J Cell Sci 2002; 115: 3193-3206.
    [105] Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME, Arteaga CL, Moses HL. Transforming growth factor-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 2001; 12 (1): 27-36.
    [106] Edlund S, Landstrom M, Heldin CH, Aspenstrom P. Transforming growth factor-β-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol Biol Cell 2002; 13: 902-914.
    [107] Mucsi I, Skorecki KL, Goldberg HJ. Extracellular signal-regulated kinase and the small GTP-binding protein, Rac, contribute to the effects of transforming growth factor-β1 on gene expression. J Biol Chem 1996; 271: 16567-16572.
    [108] Atfi A, Djelloul S, Chastre E, Davis RR, Gespach C. Evidence for a role of Rho-like GTPases and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in transforming growth factor β-mediated signaling. J Biol Chem 1997; 272: 1429-1432.
    [109] Grisword-Prenner I, Kamibayashi C, Maruoka EM, Mumby MC, Derynck R. Physical and functional interactions between type Ⅰ transforming growth factor β receptor and Ba, a WD-40 repeat subunit of phosphatase 2A. Mol Biol Cell 1998; 18:6595-6604.
    [110] Yoo J, Ghiassi M, Jirmanova L, Balliet AG, Hoffman B, furnace AJ Jr, Liebermann DA, Bottinger EP, Roberts AB. Transforming growth factor-β-induced apoptosis is mediated by Smad-dependent expression of GADD45b through p38 activation. J Biol Chem 2003; 274(44): 43001-43007.
    [111] Hayashida T, Decafstecker M, Schnaper W. Cross-talk between ERK MAP kinase and Smad signaling pathways enhances TGF-β-dependent responses in human mesangial cells. FASEB J 2003; 17: 1576-1578.
    [112] Furnkawa F, matsuzaki K, Mori S, Tahashi Y, Yoshida K, Sugano Y, Yamagata H, Matsushita M, Seki T, Inagaki Y, Nishizawa M, Fujisawa J, Inoue K. p38 MAPK mediates fibrngenic signal through Smad3 phosphorylation in rat myofibroblasts. Hepatology 2003; 38: 879-889.
    [113] Yagi K, Goto D, Hamamoto T, Takenoshita S, Kato M, Miyazono K. Alternatively-spliced variant of Smad2 lacking exon 3: Comparison with wild-type Smad2 and Smad3. J Biol Chem 1999; 274: 703-709.
    [114] Kretzschmar M, Doody J, Massague J. Opposing BMP and EGF signalling pathways converge on the TGF-β family mediator Smadl. Nature 1997; 389:618-622
    [115] Kretzschmar M, Doody J, Timokhina I, Massague J. A mechanism of repression of TGFβ/Smad signaling by oncogenic Ras. Genes Dev 1999; 13: 804-816.
    [116] Yue J, Frey RS, Mulder KM. Cross-talk between the Smadl and Ras/MEK signaling pathways for TGFβ. Oncogene 1999; 58: 4752-4757.
    [117] Conery A.R, Cao Y, Thompson EA, Townsend CM Jr, Ko TC, Luo K. Akt interacts directly with Smad3 to regulate the sensitivity to TGF-β induced apoptosis. Nat Cell Biol 2004; 6(4): 366-372.
    [118] Remy I, Montmarquette A, Michnick SW. PKB/Akt modulates TGF-β signalling through a direct interaction with Smad3. Nat Cell Biol 2004; 6(4): 358-365.
    [119] Wanke I, Schwarz M, Buchmann A. Insulin and dexamethasone inhibit TGF-β-induced apoptosis of hepatoma cells upstream of the caspase activation cascade.Toxicology 2004; 204(2-3): 141-154.
    [120] Lhuillier L and Dryer SE. Developmental regulation of neuronal K(Ca) channels by TGFβ1: an essential role for PI3 kinase signaling and membrane insertion. J Neurophysiol 2002; 88(2): 954-964.
    [121] Horowitz JC, Lee DY, Waghray M, Keshamonni VG, Thomas PE, Zhang H, Cui Z, Thannickal VJ. Activation of the pro-survival phosphatidylinositol 3-kinase/AKT pathway by transforming growth factor-β1 in mesenchymal cells is mediated by p38 MAPK-dependent induction of an autocrine growth factor. J Biol Chem 2004; 279(2): 1359-1367.
    [122] Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science 1999; 284: 770-776.
    [123] Schroeter EH, Kisslinger JA, Kopan R. Notch-1 signaling requires ligand-induced proteolytic release of intracellular domain. Nature 1998; 393: 382-386.
    [124] Takizawa T, Ochiai W, Nakashima K, Taga T. Enhanced gene activation by Notch and BMP signaling cross.talk. Nucleic Acids Res 2003; 31(19): 5723-5731.
    [125] Masuda S, Kumano K, Shimizu K, Imai Y, Kurokawa M, Ogawa S, Miyagishi M, Taira K, Hirai H, Chiba S. Notchl oncoprotein antagonizes TGF-β/Smad-mediated cell growth suppression via sequestration of coactivator p300. Cancer Sci 2005; 96(5): 274-282.
    [126] Rao P and Kadesch T. The intracellular form of notch blocks transforming growth factor β-mediated growth arrest in Mv1Lu epithelial cells. Mol Cell Biol 2003; 23(18): 6694-6701.
    [127] Razzaque MS, Foster CS, Abmed AR. Role of connective tissue growth factor in the patholenesis of conjunctival scarring in ocular cicatricial pemphigoid. Invest Opbtbalmol Vis Sci 2003; 44: 1998-2003.
    [128] Chujo S, Shirasaki F, Kawara S, Inagaki Y, Kinbara T, Inaoki M, Takigawa M, Takehara K. Connective tissue growth factor causes persistent proalpha2 (Ⅰ) collagen gene expression induced by transforming growth factor-β in a mouse fibrosis model. J Cell Physiol 2005; 203: 447-456.
    [129] Zhao Q, Chen N, Wang WM, Liu J, Dai BB. Effect of transforming growth factor-beta on activity of connective tiddue growth gene promoter in mouse NIH/3T3 fibroblasts. Acta Pharmacol Sin 2004; 25(4): 485-489.
    [130] Yanagi Y, Suzawa M, Kawabata M, Miyazono K, Yanagisawa J, Kato S. Positive and negative modulation of vitamin D receptor fiunction by transforming growth factor-β signaling through Smad proteins. J Biol Chem 1999; 274(19): 12971-12974.
    [131] Subramaniam N, Leong GM, Cock TA, Flanagan JL, Fong Colette, Eisman JA, Kouzmenko AP. Cross-talk between 1, 25-dihydroxyvitamin D_3 and transforming growth factor-β signaling requires binding of VDR and Smad3 proteins to their cognate DNA recognition elements. J Biol Chem 2001; 276(19): 15741-15746.
    [132] Murthy S and Weigel NL. 1a,25-dihydroxyvitamin D3 induced growth inhibition of PC-3 prostate cancer cells requires an active transforming growth factor β signaling pathway. Prostate 2004; 59(3): 282-291.
    [133] Kim CH, Kim YH, Kim YK, Kang BS, Lee TK, Moon SH, Park YG. IL-1β induces and TGF-β reduces vitamin D3-induced bone resorption in mouse calvarial bone cells. Immunol Invest 2003; 32(3): 171-186.
    [134] Koh JM, Nam-Goong IS, Hong JS, Kim HK, Kim JS, Kim SY, Kim GS. Oestrogen receptor a genotype, and interactions between vitamin D receptor and transforming growth factor-β genotypes are associated with quantitative calcaneal ultrasound in postmenopausal women. Clin Endocrinol (Oxf) 2004; 60(2): 232-240.
    [135] Kveiborg M, Flyvbjerg A, Kassem M. Synergistic effects of 1, 25-Dihydroxyvitamin D3 and TGF-β1 on the production of insulin-like growth factor binding protein 3 in human bone marrow stromai cell cultures. APMIS 2002; 110(5): 410-414.
    [136] Nelson BH, martyak TP, Thompson LJ, Moon JJ, Wang T. Uncoupling of promitogenic and antiapoptotic functions of IL-2 by Smad-dependent TGF-β signalin. J Immunol 2003; 170: 5563-5570.
    [137] Yamaguchi Y, Minami K, Ohshita A, Kawabuchi Y, Noma K, Toge T. Enhancing effect of PS-K on IL-2-induced lymphocyte activation: possible involvement of antagonistic action against TGF-β. Anticancer Res 2004; 24(2B): 639-647.
    [138] Wolfraim LA, Walz TM, James Z, Fernandez T, Letterio JJ. p21Cipl and p27Kipl act in synergy to alter the sensitivity of naive T cells to TGF-β-mediated G1 arrest through modulation of IL-2 responsiveness. J Immunol 2004; 173(5): 3093-3102.
    [139] Burgess HA, Dangherty LE, Thatcher TH, Lakatos HF, Ray DM, Redonnet M, Phipps RP, Sime PJ. PPARγ agnnists inhibit TGF-β induced pulmonary myofibroblast differentiation and collagen production: implications for therapy of lung fibrosis. Am J Physiol Lung Cell Mol Physiol 2005; 288(6): L1146-1153.
    [140] Ghosh AK, Bhattacharyya S, Lakos G, Chen SJ, Mori Y, Varga J. Disruption of transforming growth factor β signaling and profibrotic responses in normal skin fibroblasts by peroxisome proliferator-activated receptor γ. Arthritis Rheum 2004; 50(4): 1305-1318.
    [141] Guo B, Koya D, Isono M, Sugimoto T, Kashiwagi A, Haneda M. Peroxisome proliferator-activated receptor-γ ligands inhibit TGF-β1-induced fibronectin expression in glomerular mesangial cells. Diabetes 2004; 53(1): 200-208.
    [142] Han C, Demetris AJ, Lin Y, Shelhamer JH, Wu T. Transforming growth factor-β(TGF-β) activates cytosolic phospholipase A2a (cPLA2a)-mediated prostaglandin E2 (PGE)2/EP1 and peroxisome proliferator-activated receptor-γ(PPAR-γ)/Smad signaling pathways in human liver cancer cells. A novel mechanism for subversion of TGF-β-induced mitoinhibition. J Biol Chem 2004;279(43): 44344-44354.
    [143] Fu M, Zhang J, Zhu X, Myles DE, Willson TM, Liu X, Chen YE. Peroxisome proliferator-activated receptor γ inhibits transforming growth factor β-induced connective tissue growth factor expression in human aortic smooth muscle cells by interfering with Smad3. J Biol Chem 2001; 276(49): 45888-45894.
    [144] Ahdjoudj S, Kaabeche K, Holy X, Fromigne O, Modrowski D, Zerath E, Marie PJ. Transforming growth factor-β inhibits CCAAT/enhancer-binding protein expression and PPARγ activity in unloaded bone marrow stromal cells. Exp Cell Res 2005; 303(1): 138-147.
    [145] Fu M, Zhang J, Lin Y, Zhu X, Zhao L, Ahmad M, Ehrengruber MU, Chen YE. Early stimulation and late inhibition of peroxisome proliferator-activated receptor γ (PPAR γ) gene expression by transforming growth factor β in human aortic smooth muscle cells: role of early growth-response factor-1 (Egr-1), activator protein 1 (AP1) and Smads. Biochem J 2003; 370(Pt 3): 1019-1025.
    [146] Sola S, Castro RE, Kren BT, Steer CJ, Rodrigues CM. Modulation of nuclear steroid receptors by ursodeoxycholic acid inhibits TGF-β1-induced E2F-1/p53-mediated apoptosis of rat hepatocytes. Biochemistry 2004; 43(26): 8429-8438.
    [147] Sola S, Ma X, Castro RE, Kren BT, Steer CJ, Rodrigues CM. Ursodeoxycholic acid modulates E2F-1 and p53 expression through a caspase-independent mechanism in transforming growth factor β1-induced apoptosis of rat hepatocytes. J Biol Chem 2003; 278(49): 48831-48838.
    [148] Zolota V, Batistatou A, Tsamandas AC, Iliopoulos G, Scopa CD, Bonikos DS. Immunohistochemical expression of TGF-β1, p21WAF1, p53, Ki67, and angiogenesis in gastric carcinomas: a clinicopathologic study. lnt J Gastrointest Cancer 2002; 32(2-3): 83-89.
    [149] Fan G, Ma X, Wong PY, Rodrigues CM, Steer CJ. p53 dephosphorylation and p21(Cip1/Waf1) translocation correlate with caspase-3 activation in TGF-β1-induced apoptosis of HuH-7 cells. Apoptosis 2004; 9(2): 211-221.
    [150] Takebayashi-Suzuki K, Funami J, Tokumori D, Saito A, Watabe T, Miyazono K, Kanda A, Suzuki A. Interplay between the tumor suppressor p53 and TGF β signaling shapes embryonic body axes in Xenopus. Development 2003; 130(17): 3929-3939.
    [151] Cordenonsi M, Dupont S, Maretto S, Insinga A, Imbriano C, Piccolo S. Links between tumor suppressors: p53 is requixed for TGF-β gene responses by cooperating with Smads. Cell 2003; 113(3): 301-314.
    [152] Whitraan M and McKeon F. p53 and TGF-β in development: prelude to tumor suppression? Cell 2003; 113(3): 275-276.
    [153] Wilkinson DS, Ogden SK, Stratton SA, Piechan JL, Nguyen TT, Smulian GA, Barton MC. A direct intersection between p53 and transforming growth factor β pathways targets chromatin modification and transcription repression of the a-fetoprotein gene. Mol Cell Biol 2005; 25(3): 1200-1212.
    [154] Ghosh AK, Bhattacharyya S, Varga J. The tumor suppressor p53 abrogates Smad-dependent collagen gene induction in mesenchymai cells. J Biol Chem 2004; 279(46): 47455-47463.
    [155] Dupont S, Zacchigna L, Adorno M, Soligo S, Volpin D, Piccolo S, Cordenonsi M. Convergence of p53 and TGF-β signaling networks. Cancer Lett 2004; 213(2): 129-138.
    [156] Olaso E, Ikeda K, Eng FJ, Xu L, Wang LH, Lin HC, Friedman SL. DDR2 receptor promotes MMP-2-mediated proliferation and invasion by hepatic stellate cells. J Clin Invest 2001; 108(9): 1369-1378.
    [157] Geets A. History, heterogeneity, developmental biology, functions of quiescent hepatic stellate cells. Semin Liver Dis 2001; 21: 311-335.
    [158] Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 2000; 275: 2247-2250.
    [159] Hui AY, Friedman SL. Molecular basis of hepatic fibrosis. Exp Rev Mol Med 2003; 5: 1-22.
    [160] Bedossa P, Houglum K, Trautwein C, Holstege A, Chojkier M. Stimulation of collagen a 1 (Ⅰ) gene expression is associated with lipid peroxidation in hepatocellular injury: a link to tissue fibrosis? Hepatology 1994; 19 (5): 1262-1271.
    [161] Buck M, Kim DJ, Houglum K, Hassanein T, Chojkier M. c-Myb modulates transcription of the a-smooth muscle actin gene in activated hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2000; 278 (2): G321-328.
    [162] Lee KS, Buck M, Houglum K, Chojkier M. Activation of hepatic stellate cells by TGF a and collagen type Ⅰ is mediated by oxidative stress through c-myb expression. J Clin Invest 1995; 96 (5): 2461-2468.
    [163] Miyahara T, Schrum L, Rippe R, Xiong S, Yce HF Jr, Motomura K, Anania FA, Willson TM, Tsukamoto H. Peroxisome proliferator-activated receptors and hepatic stellate cell activation. J Biol Chem 2000; 275: 35715-35722.
    [164] Marra F, Efsen E, Romanelli RG, Caligiuri A, Pastacaldi S, Batignani G, Bonacchi A, Caporale R, Laffi G, Pinzani M, Gentillni P. Ligands of peroxisome proliferators-activated receptor γ, modulate profibrognnic and proinflammatory actions in hepatic stellate cells. Gastroenterology 2000; 119 (2): 466-478.
    [165] Rockey DC, Mahcr JJ, Jarnagin WR, Gabbiani G, Friedman SL. Inhibition of rat hepatic lipocyte activation in culture by interferon-γ. Hepatology 1992; 16(3): 776-784.
    [166] Jarnagin WR, Rockey DC, Koteliansky VE, Wang SS, Bissell DM. Expression of variant fibronectins in wound healing: cellular source and biological activity of the EIIIA segment in rat hepatic fibrosis. J Cell Biol 1994; 127 (6 Pt 2): 2037-2048.
    [167] Pinzani M and Marra F. Cytokine receptors and signaling in hepatic stellate cells. Semin Liver Dis 2001; 21: 397-416.
    [168] Marra F, Arrighi MC, Fazi M, Caligiuri A, Pinzani M, Romanelli RG, Efsen E, Laffi G, Gentilini P. Extracellular signal-regulated kinase activation differentially regulates platelet-derived growth factor's actions in hepatic stellate cells, and is induced by in vivo liver injury in the rat. Hepatology 1999; 30(4): 951-958.
    [169] Gallois C, Habib A, Tao J, Moulin S, Maclouf J, Mallat A, Lotersztajn S. Role of NF-κB in the antiproliferative effect of endothelin-1 and tumor necrosis factor-a in human hepatic stellate cells. Involvement of cyclooxygenase-2. J Biol Chem 1998; 273(36): 23183-23190.
    [170] Fridman SL. Cytokines and fibrogenesis. Semin Liver Dis 1999; 19:129-140
    [171] Bissell DM, Roulot D, George J. Transforming growth factor-β and the liver. Hepatology 2001; 34: 859-67.
    [172] Massague J and Chen YG Controlling TGF-β signaling. Genes Dev 2000; 14: 627-644.
    [173] Leask A and Abraham DJ. TGF-β signaling and the fibrotic response. FASEB J 2004; 18: 816-827.
    [174] Dooley S, Delvoux B, Lahme B, Mangasser-Stephan K, Gressner AM. Modulation of transforming growth factor β response and signaling during transdifferentiation of rat hepatic stellate cells to myofibroblasts. Hepatology 2000; 31(5): 1094-1106.
    [175] Inagaki Y, Mamura M, Kanamaru Y, Grcenwel P, Nemoto T, Takehara K, Ten Dijke P, Nakao A. Constitutive phosphorylation and nuclear localization of Sma3 are correlated with increased collagen gene transcription in activated hepatic stellate cells. J Cell Physiol 2001; 187(1): 117-123.
    [176] Inagaki Y, Nemoto T, Nakao A, Dijke Pt, Kobayashi K, Takehara K, Greenwel P. Interaction between GC box binding factors and Smad proteins modulates cell lineage-specific a2(Ⅰ) collagen gene transcription. J Biol Chem 2001; 276(19): 16573-16579.
    [177] Garcia-Trevijano ER, Iraburu MJ, Fontana L, Dominguez-Rosales JA, Auster A, Covarrubias-Pinedo A, Rojkind M. Transforming growth factor β1 induces the expression of a(Ⅰ) procollagen mRNA by a hydrogen peroxide-C/EBPβ-dependent mechanism in rat hepatic stellate cells. Hepatology 1999; 29(3): 960-970.
    [178] Reimann T, Hempel U, Krautwald S, Axmann A, Scheibe R, Seidel D, Wenzel KW. Transforming growth factor-β1 induces activation of Ras, Raf-1, MEK and MAPk in rat hepatic stellate cells. FEBS Lett 1997; 403(1): 57-60.
    [179] Armendariz-Borunda J, Simkevich CP, Roy N, Raghow R, Kang AH, Seyer JM. Activation of Ito cells involves regulation of AP-1 binding proteins and induction of type Ⅰ collagen gene expression. Biochem J 1994; 304(Pt 3): 817-824.
    [180] Davis BH, Chen A and Beno DW. Raf and mitogen-activated protein kinase regulate stellate cell collagen gene expression. J Biol Chem 1996; 271: 11039-11042.
    [181] Gentilini A, Marra F, Gentilini P, Pinzani M. Phosphatidylinositol-3 kinase and extracellular signal-regulated kinase mediate the chemotactic and mitogenic effects of insulin-like growth factor-1 in human hepatic stelate cells. J Hepatol 2000: 32(2): 227-234.
    [182] Tangkijvanich P, Tam SP, and Yee HF Jr. Wound-induced migration of rat hepatic stellate cells is modulated by endothelin-1 through rho-kinase-mediated alterations in the acto-myosin cytoskeleton. Hepatology 2001; 33: 74-80.
    [183] Marra F, Romanelli RG, Giannini C, Failli P, Pastacaldi S, Arrighi MC, Pinzani M, Laffi G, Montalto P, Gentilini P. Monocyte chemotactic protein-1 as a chemoattractant for human hepatic steliate cells. Hepatology 1999; 29(1): 140-148.
    [184] Pinzani M, Abboud HE, Gesualdo L, Abbood SL. Regulation of macrophage colony-stimulating factor in liver fat-storing cells by peptide growth factors.Am J Physiol 1992; 262(4Pt 1): C876-881.
    [185] Marra F, Valente AJ, Pinzani M, Abboud HE. Cultured human liver fat-storing cells produce monocyte chemotactic protein-1. Regulation by proinflammatory cytokines. J Clin Invest 1993; 92(4): 1674-1680.
    [186] Thompson KC, Trowem A, Fowell A, Marathe M, Haycock C, Arthur MJ, Sheron N. Primary rat and mouse hepatic stellate cells express the macrophage inhibitor cytokine interleukin-10 during the course of activation in vitro. Hepatology 1998; 28(6): 1518-1524.
    [187] Nelson DR, Lauwers GY, Lau JY, Davis GL. Interleukin-10 treatment reduces fibrosis in patients with chronic hepatitis C; a pilot trial of interfon nonresponders. Gastroenterology 2000; 118(4): 655-660.
    [188] Mayer DC and Leinwand LA. Sarcomeric gene expression and contractility in myofihroblasts. J Cell Biol 1997; 139: 1477-1484.
    [189] Kojima H, Yamao J, Tsujimoto T, Uemura M, Takaya A, Fukui H. Mixed endothelin receptor antagonist, SB209670, decreases portal pressure in biliary cirrhotic rats in vivo by reducing portal venous system resistance. J Hepatol 2000; 32(1): 43-50.
    [190] Pinzani M, Milani S, De Franco R, Grappone C, Caligiuri A, Gentilini A, Tosti-Guerra C, Maggi M, Failli P, Ruocco C, Gentilini P. Endothelin 1 is overexpressed in human cirrhotic liver and exerts multiple effects on activated hepatic stellate cells. Gastroenterology 1996; 110(2): 534-548.
    [191] Reinehr RM, Kubitz R, Peters-Regehr T, Bode JG, Haussinger D. Activation of rat hepatic stellate cells in culture is associated with increased sensitivity to endothelin 1. Hepatology 1998; 28(6): 1566-1577.
    [192] Okuno M, Moriwaki H, Imai S, Muto Y, Kawada N, Suzuki Y and Kojima S. Rednoids exacerbate rat liver fibrosis by inducing the activation of latent TGF-β in liver steliate cells. Hepatology 1997; 26: 913-921.
    [193] Benyon RC and Arthur MJ, Extracellular matrix degradation and the role of hepatic stellate cells. Semin Liver Dis 2001; 21: 373-384.
    [194] Trim JE, Samra SK, Arthur MJ, Wright MC, McAulay M, Beri R, Mann DA. Upstream tissue inhibitor of metalloproteinases-1 (TIMP-1) element-1, a novel and essential regulatory DNA motif in the human TIMP-1 gene promoter, directly interacts with a 30-kDa nuclear protein. J Biol Chem 2000; 275(29): 6657-6663.
    [195] Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Noguchi R, Nakatani T, Tsujinoue H, Yanase K, Namisaki T, Imazu H, Fukui H. Tissue inhibitor of metalloproteiases-1 attenuates spontaneous liver fibrosis resolution in the transgenic mouse. Hepatology 2002; 36(4Pt 1): 850-860.
    [196] Bataller R,and Brenner DA. Liver fibrosis. J Clin Invest 2005; 115: 209-218.
    [197] Fukasawa H, Yamamoto T, Suzuki H, Tognwa A, Ohashi N, Fujigaki Y, Uchida C, Aoki M, Hosono M, Kitagawa M and Hishida A. Treatment with anti-TGF-β antibody ameliorates chronic progressive nephritis by inhibiting Smad/TGF-β signaling. Kidney International 2004; 65: 63-74.
    [198] Eng FJ and Friedman SL. Transcriptional regulation in hepatic stellate cells. Semin Liver DIS 2001; 21: 385-395.
    [199] Elsharkawy AM, Wright MC, Hay RT, Arthur MJ, Hughes T, Bahr M.I, Degitz K, Mann DA. Persistent activation of nuclear factor-κB in cultured rat hepatic stellate cells involves the induction of potentially novel Rel-like factors and prolonged changes in the expression of IκB family proteins. Hepatology 1999; 30(3): 761-769.
    [200] Murphy FR, Issa R, Zhou X, Ratnarajah S, Nagase H, Arthur MJ, Benyon C, Iredale JP. Inhibition of apoptosis of activated activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition: implications for reversibility of liver fibrosis. J Biol Chem 2002; 277(13): 11069-11076.
    [201] 马骥 卢秉久 陶淑春等,疏肝汤剂防治大鼠肝纤维化作用的实验研究,辽宁中医杂志 2001:28 (12):707~708.
    [202] Friedman SL. Liver fibrosis-from bench to bedside. J Hepatol 2003; 38: s38-s53.
    [203] Azuma A, Li YJ, Abe S, Usuki J, Matsuda K, Henmi S, Miyanchi Y, Ueda K, Izawa A, Sone S, Hashimoto S, Kudoh S. Interferon-{β} inhibits bleomycin-induced lung fibrosis by decreasing transforming growth factor-{β} and thrombospondin. Am J Respir Cell Mol Biol 2005; 32(2): 93-98.
    [204] Wen FQ, Liu X, Kobayashi T, Abe S, Fang Q, Kohyama T, Ertl R, Terasaki Y, Manouilova L, Rennard SI. Interferon-γ inhibits transforming growth factor-β production in human airway epithelial cells by targeting Smads. Am J Respir Cell Mol Biol 2004; 30(6): 816-822.
    [205] Venkatesan N, Roughley PJ, Ludwig MS. Proteogiycan expression in bleomycin lung fibroblasts: role of transforming growth factor-β (1) and interferon-γ. Am J Physiol Lung Cell Mol Physiol 2002; 283(4): L806-814.
    [206] Eickelberg O, Pansky A, Koehler E, Bihl M, Tamm M, Hildebrand P, Perruchoud AP, Kashgarian M, Roth M. Molecular mechanisms of TGF-(β) antagonism by interferon (γ) and cyclosporine A in lung fibroblasts. FASEB J 2001; 15(3): 797-806.
    [207] Vallone TM, Ditelberg J, Kaplan MM. Reversal of cirrhosis in a patient with primary biliary cirrhosis-autoimmune hepatitis overlap syndrome. Dig DIS Sci 2005; 50(1): 167-170.
    [208] ter Borg PC, Hagendorf A, van Buuren HR, Koper JW, Lamberts SW. A pilot study exploring the role of glucocorticoid receptor variants in primary biliary cirrhosis and primary sclerosing cholangitis. Neth J Med 2004; 62(9): 326-331.
    [209] Mohamadnejad M, Malekzadeh R, Nasseri-Moghaddam S, Hagh-Azali S, Rakhshani N, Tavangar SM, Sedaghat M, Alimohamadi SM. Impact of immunosuppressive treatment on liver fibrosis in autoimmune hepatitis. Dig Dis Sci 2005; 50(3): 547-551.
    [210] Okita K, Sakaida I, Hino K. Current strategies for chemoprevention of hepatocellular carcinoma. Oncology 2002; 62 (Suppl 1): 24-28.
    [211] Leo MA and Lieber CS. Alcohol, vitamin A, and β-carotene: adverse interactions, including hepatotoxicity and carcinogenicity. Am J Clin Nutr 1999; 69(6): 1071-1085.
    [212] Hui AY, Cheng AS, Chan HL, Go MY, Chan FK, Sakata R, Ueno T, Sata M, Sung JJ. Effect of prostagiandin E2 and prostaglandin I2 on PDGF-induced proliferation of LI90, a human hepatic stellate cell line. Prostaglandins Leukot Essent Fatty Acids 2004; 71(5): 329-333.
    [213] Hui AY, Dannenberg AJ, Sung JJ, Subbaramaiah K, Du B, Olinga P, Friedman SL. Prostaglandin E2 inhibits transforming growth factor β1-mediated induction of collagen a 1(Ⅰ) in hepatic stellate cells. J Hepatol 2004; 41(2): 251-258.
    [214] Olga OZ and Nikolai DY. Invasive and non-invasive monitoring of hepatitis C virus-induced liver fibrosis: alternatives or complements? Curr Pharm Biotechnol 2003; 4(3): 195-209.
    [215] Morgan TR, Weiss DG, Nemchausky B, Schiff ER, Anand B, Simon F, Kidao J, Cecil B, Mendenhall CL, Nelson D, Lieber C, Pedrosa M, Jeffers L, Bloor J, Lumeng L, Marsano L, McClain C, Mishra G, Myers B, Leo M, Ponomarenko Y, Taylor D, Chedid A, French S, Kanel G, Murray N, Pinto P, Fong TL, Sather MR. Colchicine treatment of alcoholic cirrhosis: a randomized, placebo-controlled clinical trial of patient survival. Gastroenterology 2005; 128(4): 882-890.
    [216] Kaplan MM, Cheng S, Price LL, Bonis PA. A randomized controlled trial of colchicine plus ursodiol versus methotrexate plus ursodiol in primary biliary cirrhosis: ten-year results. Hepatology 2004; 39(4): 915-923.
    [217] Bickel M, Baringhaus KH, Gerl M, Gunzler V, Kanta J, Schmidts L, Stapf M, Tschank G, Weidmann K, Werner U. Selective inhibition of hepatic collagen accumulation in experimental liver fibrosis in rats by a new prolyl 4-hydroxylase inhibitor. Hepatology 1998; 28: 404-411.
    [218] Horn S, Horina JH, Krejs GJ, Holzer H, Ratschek M. End-stage renal failure from mushroom poisoning with Cortinarius orellanus: report of four cases and review of the literature. Am J Kidney Dis 1997; 30(2): 282-286.
    [219] de Freitas Junior S, Bustorff-Silva JM, Castroe Silva Junior O, Jorge Gde L, Leonardi LS. Retinyl-palmitate reduces liver fibrosis induced by biliary obstruction in rats. Hepatogastroenterology 2003; 50(49): 146-150.
    [220] Pinzani M, Rombouts K, Colagrande S. Fibrosis in chronic liver diseases: diagnosis and management. J Hepatol 2005; 42 Suppl(1): S22-36.
    [221] Wu J and Danielsson A. Inhibition of hepatic fibrogenesis: a review of pharmacologic candidates. Scand J Gastroenterol 1994; 29(5): 385-3891.
    [222] Jiang W, Wang JY, Yang CQ, Lin WB, Wang YQ, He BM. Effects of a plasmid expressing antisense tissue inhibitor of metalloproteinase-1 on liver fibrosis in rats. Chin Med J (Engl) 2005; 118(3): 192-197.
    [223] Di Sario A, Bendia E, Macarri G, Candelaresi C, Taffetani S, Marzioni M, Omenetti A, De Minicis S, Trozzi L, Benedetti A. The anti-fibrotic effect of pirfenidone in rat liver fibrosis is mediated by downregnlation of procollagen al(Ⅰ), TIMP-1 and MMP-2. Dig Liver Dis 2004; 36(11): 744-751.
    [224] Kanno S, Tomizawa A, Hiura T, Osanai Y, Shouji A, Ujibe M, Ohtake T, Kimura K, Ishikawa M. Inhibitory effects of naringenin on tumor growth in human cancer cell lines and sarcoma S-180-implanted mice. Biol Pharm Bull 2005; 28(3): 527-530.
    [225] Totta P, Acconcia F, Leone S, Cardillo I, Marino M. Mechanisms of naringenin-induced apoptotic cascade in cancer cells: involvement of estrogen receptor a and β signalling. IUBMB Life. 2004; 56(8): 491-499.
    [226] Edenharder R and Grunhage D. Free radical scavenging abilities of flavonoids as mechanism of protection against mutagenicity induced by tert-butyl hydroperoxide or cumene hydroperoxide in Salmonella typhimurium TA102. Murat Res 2003; 540(1): 1-18.
    [227] Bear WL and Teel RW. Effects of citrus flavonoids on the mutagenicity of heterocyclic amines and on cytochrome P450 1A2 activity.Anticancer Res 2000; 20(5B): 3609-3614.
    [228] Lin HY, Shen SC, Chen YC. Anti-inflammatory effect of heme oxygenase 1: glycosylation and nitric oxide inhibition in macrophages. J Cell Physiol 2005; 202(2): 579-590.
    [229] Lee CH, Jeong TS, Choi YK, Hyun BH, Oh GT, Kim EH, Kim JR, Han JI, Bok SH. Anti-atherogenic effect of citrus flavonoids, naringin and naringenin, associated with hepatic ACAT and aortic VCAM-1 and MCP-1 in high cholesterol-fed rabbits. Biochem Biophys Res Commun 2001; 294(3): 681-688.
    [230] Lee S, Lee CH, Moon SS, Kim E, Kim CT, Kim BH, Bok SH, Jeong TS. Naringenin derivatives as anti-atherogenic agents. Bioorg Med Chem Lett 2003; 13(22): 3901-3903.
    [231] Lee MH, Yoon S, Moon JO. The flavonoid naringenin inhibits dimethylnitrosamine-induced liver damage in rats. Biol Pharm Bull 2004; 27(1): 72-76.
    [232] Yoshiji H, Noguchi R, Kuriyama S, Ikenaka Y, Yoshii J, Yanase K, Namisaki T, Kitade M, Masaki T, Fukui H. Imatinib mesylate (STI-571) attenuates liver fibrosis development in rats. Am J Physiol Gastrointest Liver Physiol 2005; 288(5): C907-913.
    [233] Daniels CE, Wilkes MC, Edens M, Kottom TJ, Murphy SJ, Limper AH, Leof EB. Imatinib mesylate inhibits the profibrogenic activity of TGF-β and prevents bleomycin-mediated lung fibrosis. J Clin Invest 2004; 114(9): 1308-1316.
    [234] Gnainsky Y, Spira G, Paizi M, Brock R, Nagler A, Abu-Amara SN, Geiger B, Genina O, Monsonego-Ornan E, Pines M. Gnainsky Y, Spira G, Palzi M, Bruck R, Nagler A, Abu-Amara SN, Geiger B, Genina O, Monsonego-Ornan E, Pines M. Halofuginone, an inhibitor of collagen synthesis by rat stellate cells, stimulates insulin-like growth factor binding protein-1 synthesis by hepatocytes. J Hepatol 2004; 40(2): 269-277.
    [235] Pines M and Nagler A. Halofuginone: a novel antifibrotic therapy. Gen Pharmacol 1998; 30(4): 445-450.
    [236] Bruck R, Genina O, Aeed H, Alexiev R, Nagler A, Avni Y, Pines M. Halofuginone to prevent and treat thioacetamide-induced liver fibrosis in rats. Hepatology 2001; 33(2): 379-386.
    [237] Xavier S, Piek E, Fujii M, Javelaud D, Manviel A, Flanders KC, Samuni AM, Felici A, Reiss M, Yaxkoni S, Sowers A, Mitchell JB, Roberts AB, Russo A. Amelioration of radiation-induced fibrosis: inhibition of transforming growth factor-β signaling by halofuginone. J Biol Chem 2004; 279(15): 15167-1576.
    [238] Marc Van de Casteele, Tania Roskams, Ingdd Van der Elst, Jos F van Pelt, Johan Fevery Frederik Nevens. Halofuginone can worsen liver fibrosis in bile duct obstructed rats._Liver International 2004; 24(5): 502
    [239] Emilsson GM, Nakamura S, Roth A, Breaker RR. Ribozyme speed limits. RNA 2003; 9(8): 907-918.
    [240] Steitz TA and Moore PB. RNA, the first macromolecular catalyst: the ribosome is a ribozyme. Trends Biochem Sci 2003; 28(8): 411-448.
    [241] Schubert S and Kurreck J. Ribozyme-and deoxyribozyme-strategies for medical applications. Curr Drug Targets 2004; 5(8): 667-681.
    [242] Radhakrishnan SK, Layden TJ, Gartel AL. RNA interference as a new strategy agaist viral hepatitis. Virology 2004; 323: 173-181.
    [243] Mittal V. Improving the efficiency of RNA interference in mammals. Nature Reviews 2004; 5: 355-365.
    [244] Novina CD and Sharp PA. The RNAi revolution. Nature 2004; 430: 161-164.
    [245] Hannon GJ. RNA interference. Nature 2002; 418:244-251.
    [246] Soutschek J, Aldnc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J, John M, Kesavan V, Lavine G, Pandey RK, Racie T, Rajeev KG, Rohl I, Toudjarska I, Wang G, Wuschko S, Bumcrot D, Kotelianskyy V, Limmer S, Manoharan M, Vornlocher H-P. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNA. Nature 2004; 432: 173-178.
    [247] Lipardi C, Wei Q, Paterson BM. RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell 2001; 107(3): 297-307.
    [248] Fraser AG, Kamath RS, Zipperlen P, Martinez-Campos M, Sohrmann M, Ahringer J. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 2000; 408(6810): 325-330.
    [249] Tabara H, Grishok A, Mello CC. RNAi in C. elegans: soaking in the genome sequence. Science 1998; 282(5388): 430-431.
    [250] Border WA and Noble NA. Transforming growth factor β in tissue fibrosis. N Engl J Med 1994; 331: 1286-1292.
    [251] Gressner AM, Weiskirchen R, Breitkopf K, Dooley S. Roles of TGF-β in hepatic fibrosis. Front Biosci 2002; 7: d793-d807.
    [252] Branton MH and Kopp JB. TGF-β and fibrosis. Microbes and Infect 1999; 1: 1349-1365.
    [253] Chen WX, Li YM, Yu CH, Cai WM, Zheng M, Chen F. Quantitative analysis of transforming growth factor β1 mRNA in patients with alcoholic liver disease. World J Gastroenterol 2002; 8: 379-381.
    [254] Takiya S, Tagaya T, Takahashi K, Kawashima H, Kamiya M, Fukuzawa Y, Kobayashi S, Fukatsu A, Katoh K, Kakumu S. Role of transforming growth factor β1 on hepatic regeneration and apoptosis in liver diseases. J Clin Pathol 1995; 48: 1093-1097.
    [255] Roulot D, Sevcsik AM, Coste T, Strosberg AD, Marullo S. Role of transforming growth factor βⅡ receptor in hepatic fibrosis: studies of human chronic hepatitis C and experimental fibrosis in rats. Hepatology 1999; 29: 1730-1738.
    [256] Lewindon PJ, Pereira TN, Hoskins AC, Bridle KR, Williamson RM, Shepherd RW, Ramm GA. The role of hepatic stellate cells and transforming growth factor-β1 in cystic fibrosis liver disease.Am J Pathol 2002; 160: 1705-1715.
    [257] Milani S, Herbst H, Schuppan D, Stein H, Surrenti C. Transforming growth factors β1 and β2 are differentially expressed in fibrotic liver disease. Am J Pathol 1991; 139: 1221-1229.
    [258] Czaja MJ, Weiner FR, Flaoders KC, Giambrone MA, Wind R, Biempica L, Zern MA. In vitro and in vivo association of transforming growth facto-β1 with hepatic fibrosis. J Cell Biol 1989; 108: 2477-2482.
    [259] Kim Y, Ratziu V, Choi SG,Lalazar A, Theiss G, Dang Q, Kim SJ, Friedman SL. Transcriptional activational transforming growth factor β1 and its receptors by the kruppel-like factor zf9/Core promoter bingding protein and Spl. J Biol Chem 1998; 273: 33750-33758.
    [260] Bissell DM, Wang SS, Jarnagin WR, Roll FJ. Cell-specific expression of transforming growth factor-beta in rat liver. Evidence for autocrine regulation of hepatocyte proliferation. J Clin Invest 1995; 96: 447-455.
    [261] Cook DN, Brass DM, Schwartz DA. A matrix for new ideas in pulmonary fibrosis. Am J Respir Cell Mol Biol 2002; 27: 122-124.
    [262] McCormick LL, Zhang Y, Tootell E, Gilliam AC. Anti-TGF-β treatment prevents skin and lung fibrosis in murine sclerodermatous graft-versus-host disease: a model for human scleroderm. J Immunol 1999; 163: 5693-5699.
    [263] Shah M, Revis D, Herrick S, Baillie R, Thorgeirson S, Ferguson M, Roberts A. Role of elevated plasma transforming growth factor-β1 levels in wound healing. Am J Pathol 1999; 154:1115-1124.
    [264] Connor TB Jr, Roberts AB, Spore MB, Danielpour D, Dart LL, Michels RG, de Bustros S, Enger C, Kato H, Lansing M, Hayashi H, Glaser BM. Correlation of fibrosis and transforming growth factor-β type 2 levels in the eye.J Clin Invest 1989; 83: 1661-1666.
    [265] Shehata M, Sehwarzmeier JD, Hilgarth M, Hubmann R, Duechler M, Gisslinger H. TGF-β1 induces bone marrow reticulin fibrosis in hariry cell leukemia. J Clin Invest 2004; 113: 676-685.
    [266] Lafyatis R, Thompson NL, Remmers EF, Flanders KC, Roche NS, Kim SJ, Case JP, Sporn MB, Roberts AB, Wilder RL. Transforming growth factor-β production by synovial tissues from rheumatoid patients and streptococcal cell wall arthritic rats. Studies on secretion by synovial fibroblast-like cells and immunohistologic localization. J Immunol 1989; 143: 1142-1148.
    [267] Gressner AM Transdifferentiation of hepatic stellate cells (Ito cells) to myofibroblasts: a key event in hepatic fibrogenesis. Kidney Int Suppl 1996; 54: S39-S45.
    [268] Kato J, Ido A, Hnsuike S, Uto H, Hori T, Hayashi K, Murakami S, Terano A, Tsubouchi H. Transforming growth factor-β-induced stimulation of formation of collagen fiber network and anti-fibrotic effect of taurine in an in vitro model of hepatic fibrosis. Hepatol Res 2004; 30: 34-41.
    [269] Locci P, Baroni T, Lilli C, Martinese D, Marinucci L, Bellocchin S, Calvitti M, Becchetti E. TGFβ and TGFa, antagonistic effect in vitro on extracellular matrix accumulation by chick skin fibroblasts at two distinct embryonic stages, Int J Dee Biol 1999; 43: 157-165.
    [270] Terrell TG, Working PK, Chow CP, Green JD. Pathology of recombinant human transforming growth factor-β1 in rats and rabbits. Int Rev Exp Pathol 1993; 34 Pt B: 43-67.
    [271] Clouthier DE, Comerford SA, Hammer RE. Hepatic fibrosis, glomenrulosclerosis, and a lipodystrophy-like syndrome in PEPCK-TGF-β1 transgenic mice. J Clin Invest 1997; 100: 2697-2713.
    [272] Kanzler S, Lohse AW, Keil A, Henninger J, Dienes HP, Schirmacher P, Rose-John S, zum Bnschenfelde KH, Blessing M. TGF-β1 in liver fibrosis: an inducible transgenic mouse model to study liver fibrogenesis. Am J Physiol 1999; 276: G1059-1068.
    [273] Sanderson N, Factor V, Nagy P, Kopp J, Kondaiah P, Wakefield L, Roberts AB, Sporn MB, Thorgeirsson SS. Hepatic expression of mature transforming growth factor β1 in transgenic mice results in multiple tissue lesions, Proc Natl Acad Sci USA 1995; 92: 2572-2576.
    [274] Imai E, Isaka Y, Fujiwara Y, Kaneda Y, Kamada T, Ueda N. Introduction of a foreign gene into the kidney in vivo: development of glomerulosclerosis by the transfection of genes for PDGF and TGF-β. Contr Nephrol 1994; 107: 205-215.
    [275] Kopp JB, Factor VM, Mozes M, Nagy P, Sanderson N, Bottinger EP, Klotman PE, Thorgeirsson SS. Transgenic mice with increased plasma levels of TGF-β 1 develop progressive renal disease. Lab Invest 1996; 74: 991-1003.
    [276] Sime PJ, Xing Z, Graham FL, Csaky KG, Gauldie J. Adenovector-mediated gene transfer of active transforming growth factor-β1 induces prolonged severe fibrosis in rat lung. J Clin Invest 1997; 100: 768-776.
    [277] Schnaper HW, Hayashida T, Hubehak SC, Poncelet AC. TGF-β signal transduction and mesangial cell fibrogenesis. Am J Physiol Renal Physiol 2003; 284: F243-252.
    [278] Arias M, Lahme B, Van de Leur E, Gressner AM, Weiskirchen R. Adenoviral delivery of an antisense RNA complementary to the 3' coding sequence of transforming growth factor-β1 inhibits fibrogenic activities of hepatic stellate cells. Cell Growth Differ 2002; 13: 265-273.
    [279] Arias M, Sauer-Lehnen S, Treptan J, Janoschek N, Theuerkauf I, Buettner R, Gressner AM, Weiskirchen R. Adenoviral expression of a transforming growth factor-β1 antisense mRNA is effectie in preventing liver fibrosis in bile-duct ligated rats. BMC Gastroenterodogy 2003; 3(1): 29.
    [280] Isaka Y, Tsujie M, Ando Y, Nakamura H, Kaneda Y, Imai E, Hori M. Transforming growth factor-β1 antisense oligodeoxynucleotides block interstitial fibrosis in unilateral ureteral obstruction. Kidney Int 2000; 58: 1885-1892.
    [281] Han DC,, Hoffman BB, Hong SW, Guo J, Ziyadeh FN. Therapy with antisense TGF-β1 ologodeoxynucleotides reduces kidney weight and matrix mRNAs in diabetic mice. Am J Physiol Renal Physiol 2000; 278: F628-634.
    [282] Song YH, Chen XL, Kong X J, Liu NZ, Li W, Wu XL,Lin JS, Jin YX. Ribozymes against TGFβ1 reverse character of activated hepatic stellate cells in vitro and inhibit fiver fibrosis in rats. J Gene Med 2005; (Epub. ahead of print)Available from http://www3.interscience.wiley.com/cgi-bin/fulltext/110430967/HTMLSTART.
    [283] Lin JS, Song YH, Kong XJ, Li B, Liu NZ, Wu XL, Jin YX. Preparation and identification of anti-transforming growth factor β1 U1 small nuclear RNA chimeric ribozyme in vitro. Word J Gastroenterol 2003; 9: 572-577.
    [284] Yamamoto K, Morishita R, Tomita N, Shimozato T, Nakagami H, Kikuchi A, Aoki M, Higaki J, Kaneda Y, Ogihara T. Ribozyme oligonucleotides against transforming growth factor-β inhibited neointimal formation after vascular injury in rat model: potential application of ribozyme strategy to treat cardiovascular disease. Circulation 2000; 102: 1308-1314.
    [285] Cordeiro MF, Mead A, Ali RR, Alexander RA, Murray S, Chen C, York-Defalco C, Dean NM, Schultz GS, Khaw PT. Novel antisense oligonucleotides targeting TGF-β inhibit in vivo scarring and improve surgical outcome. Gene Ther 2003; 10: 59-71.
    [286] Shen ZJ, Kim SK, Kwon OS, Lee YS, Moon BJ. Specific inhibition of transforming growth factor-β2 expression in human osteoblasts cells by antisense phosphorothioate oligonucleotides. Eur J Biochem 2001; 268: 2331-2337.
    [287] Giri SN, Hyde DM, Hollinger MA. Effect of antibody to transforming growth factor β on bleomycin induced accumulation of lung collagen in mice. Thorax 1993; 48: 959-966.
    [288] Hakenjos L, Bamberg M, Rodemannm HP. TGF-β1-mediated alterations of rat lung fibroblast differentiation resulting in the radiation-induced fibrotic phenotype, Int J Radiat Biol 2000; 76: 503-509.
    [289] Encke J, Uh1 W, Stremmel W, Saner P. Immunosuppression and modulation in liver transplantation. Nephrol Dial Transplant 2004; 19 (Suppl 4): ⅳ22-25.
    [290] Yamamoto T, Takagawa S, Katayama I, Nishioka K. Anti-sclerotic effect of transforming growth factor-β antibody in a mouse model of bleomycin-induced scleroderma. Clin Immunol 1999; 92: 6-13.
    [291] Chen K, Wei Y, Sharp GC, Braley-Mullen H. Inhibition of TGFβ1 by anti-TGFβ1 antibody or lisinopril reduces thyroid fibrosis in granulomatous experimental autoimmune thyroiditis. J Immunol 2002; 169: 6530-6538.
    [292] Jester JV, Barry-Lane PA, Petroll WM, Olsen DR, Cavanagh HD. Inhibition of corneal fibrosis by topical application of blocking antibodies to TGF β in the rabbit. Cornea 1997; 16: 177-187.
    [293] Moller-Pedersen T, Cavanagh HD, Petroll WM, Jester JV. Neutralizing antibody to TGF-β modulates stromal fibrosis but not regression of photoahlative effect following PRK. Curr Eye Res 1998; 17: 736-747.
    [294] Kunz CR, Jadus MR, Kukes GD, Kramer F, Nguyen VN, Sasse SA. Intrapleural injection of transforming growth factor-β antibody inhibits pleural fibrosis in empyema. Chest 2004; 126: 1636-1644.
    [295] Davern TJ. Molecular therapeutics of liver disease. Clin Liver Dis 2001; 5: 381-414.
    [296] Yamamoto H, Ueno H, Ooshima A, Takeshita A. Adenovirus-mediated transfer of a truncated transforming growth factor-β (TGF-β) type Ⅱ receptor completely and specifically abolishes diverse signaling by TGF-β in vascular wall cells in primary culture. J Biol Chem 1996; 271: 16253-16259.
    [297] Nakamura T, Sakata R, Ueno T, Sara M, Ueno H. Inhibition of transforming growth factor β prevents progression of liver fibrosis and enhances hepatocyte regeneration in dimethylnitrosamine-treated rats. Hepatology 2000; 32: 247-255.
    [298] Qi Z, Atsuchi N, Ooshima A, Takeshita A, Ueno H. Blockade of type β transforming growth factor signaling prevents liver fibrosis and dysfunction in the rat. Proc Natl. Acad Sci USA 1999; 96: 2345-2349.
    [299] Nagashio Y, Ueno H, Imamura M, Asaumi H, Watanahe S, Yamagnchi T, Tagnchi M, Tashiro M, Otsuki M. Inhibition of transforming growth factor β decreases pancreatic fibrosis and protects the pancreas against chronic injury in mice.Lab Invest 2004; 84: 1610-1618.
    [300] Ueno H, Sakamoto T, Nakamura T, Qi Z, Astuchi N, Takeshita A, Shimizu K, Ohashi H. A Soluble transforming growth factor β receptor expressed in muscle prevents liver fibrogenesis and dysfunction in rats. Hum Gene Ther 2000; 11: 33-42.
    [301] George J, Roulot D, Koteliansky VE, Bissell DM. In vivo inhibition of rat stellate cell activation by soluble transforming growth factor β type Ⅱ receptor: a potential new therapy for hepatic fibrosis. Proc Natl Acad Sci USA 1999; 96: 12719-12724.
    [302] Yata Y, Gotwals P, Koteliansky V, Rockey DC. Dose-dependent inhibition of hepatic fibrosis in mice by a TGF-β soluble receptor: implications for antifibrotic therapy. Hepatology 2002; 35(5): 1022-1030.
    [303] Wang Q, Wang Y, Hyde DM, Gotwals PJ, Koteliansky VE, Ryan ST, Giri SN. Reduction of bleomycin induced lung fibrosis by transforming growth factor β soluble receptor in hamsters. Thorax 1999; 154: 805-812.
    [304] Haviv YS, Takayama K, Nagi PA, Tousson A, Cook W, Wang M, Lain JT, Naito S, Lei X, Carey DE, Curiel DT. Modulation of renal glomerular disease using remote delivery of adenoviral-encoded soluble type Ⅱ TGF-β receptor fusion molecule. J Gene Med 2003; 5: 839-851.
    [305] Zhou A, Ueno H, Shimomura M, Tanaka R, Shirakawa T, Nakamura H, Matsuo M, Iijima K. Blockade of TGF-beta action meliorates renal dysfunction and histologic progression in anti-GBM nephritis. Kidney Int 2003; 64: 92-101.
    [306] Leveen P, Larsson J, Ehinger M, Cilio CM, Sundler M, Sjostrand LJ, Holmdahl R, Karlsson S. Induced disruption of the transforming growth factor beta type Ⅱ receptor gene in mice causes a lethal inflammatory disorder that is transplantable. Blood 2002; 100: 560-568.
    [307] Jiang W, Yang CQ, Liu WB, Wang YQ, He BM, Wang JY. Blockage of transforming growth factor β receptors prevents progression of pig serum-induced rat liver fibrosis. World J Gastroenterol 2004; 10:. 1634-1638.
    [308] Nakamura H, Siddiqui SS, Shen X, Malik AB, Pulido JS, Kumar NM, Yue BYJT. RNA interference targeting transforming growth factor-β type Ⅱ receptor suppresses ocular inflammation and fibrosis. Molecular Vision 2004; 10: 703-711.
    [309] Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, Li L, Miyazono K, ten Dijkc P, Kim S, Li E. Activin receptor-like kinase I modulates transforming growth factor-β1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci USA 2000; 97: 2626-2631.
    [310] Goumans MJ, Valdimarsdottir G, Itoh S, Lebrin F, Larsson J, Mummery C, Karlsson S, ten Dijke P. Activin receptor-like kinase (ALK1) is an antagonistic mediator of lateral TGFβ/ALK5 signaling. Mol Cell 2003; 12: 817-828.
    [311] Laping NJ, Grygielko E, Mathur A, Butter S, Bomberger J, Tweed C, Martin W, Fornwald J, Lehr R, Harling J, Gaster L, Callahan JF, Olson BA. Inhibition of transforming growth factor (TGF)-β1-induced extracellular matrix with a novel inhibitor of the TGF-β type Ⅰ receptor kinase activity: SB-431542. Mol Pharmacol 2002; 62: 58-64.
    [312] Inman GJ, Nicolas FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, Laping NJ, Hill CS. SB-431542 is a potent and specific inhibitor of transforming growth factor-β superfamily type Ⅰ activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 2002; 62(1): 65-74.
    [313] Callahan JF, Burgess JL, Fornwald JA, Gaster LM, Harling JD, Harrington FP, Heer J, Kwon C, Lethr R, Mathur A, Olson BA, Weinstock J, Laping NJ. Identification of novel inhibitors of the transforming growth factor β 1 (TGF-β1) type Ⅰ receptor (ALKS). J Med Chem 2002; 45: 999-1001.
    [314] DaCosta Byfield S, Major C, Laping N J, Roberts AB. SB-505124 is a selective inhibitor of transforming growth factor-β type Ⅰ receptors ALK4, ALK5, and ALK7. Mol Pharmacol 2004; 65(3): 744-752.
    [315] de Gouville AC, Boullay V, Krysa G, Pilot J, Brusq JM, Loriolle F, Gauthier JM, Papworth SA, Laroze A, Gellibert F, Huet S. Inhibition of TGF-β signaling by an ALK5 inhibitor protects rats from dimethylnitrosamine-induced liver fibrosis. Br J Pharmacol 2005; 145(2): 166-177.
    [316] Flaoders KC. Smad3 as a mediator of the fibrotie response, Int J Exp Path 2004; 85: 47-64.
    [317] Schnabl B, Kweon YO, Frederick JP, Wang XF, Rippe RA, Brenner DA. The role of Smad3 in mediating mouse hepatic stellate cell activation. Hepatology 2001; 34: 89-100.
    [318] Isnno M, Chen S, Hong SW, Iglesias-de la Cruz MC, Ziyadeh FN. Smad pathway is activated in the diabetic mouse kidney and Smad3 mediates TGF-β-induced fibronectin in mesangial cells. Biochem Biophys Res Commun 2002; 296: 1356-1365.
    [319] Valcourt U, Kowanetz M, Niimi H, Heldin CH, Moustakas A. TGF-β and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenehymal cell transition. Mol Biol Cell 2005; 16(4): 1987-2002.
    [320] Bonniaud P, Kolb M, Galt T, Robertson J, Robbins C, Stampfli M, Lavery C, Margetts PJ, Roberts AB, Ganldie J. Smad3 null mice develop airspace enlargement and are resistant to TGF-β-mediated pulmonary fibrosis. J Immunol 2004; 173: 2099-2108.
    [321] Inazaki K, Kanamaru Y, Kojima Y, Sueyoshi N, Okumura K, Kaneko K, Yamashiro Y, Ogawa H, Nakao A. Smad3 deficiency attenuates renal fibrosis, inflammation,and apoptosis after unilateral ureterai obstruction. Kidney Int 2004; 66: 597-604.
    [322] Lakos G, Takagawa S, Chen SJ, Ferreira AM, Han G, Masuda K, Wang XJ, DiPietro LA, Varga J. Targeted disruption of TGF-β/Smad3 signaling modulates skin fibrosis in a mouse model of scleroderma. Am J Pathol 2004; 165: 203-217.
    [323] Dooley S, Hamzavi J, Breitkopf K, Wiercinska E, Said HM, Lorenzen J, Ten Dijke P, Gressner AM. Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology 2003; 125:178-191
    [324] Nakao A, Fujii M, Matsumura R, Kumano K, Saito Y, Miyazono K, Iwamoto I. Transient gene transfer and expression of Smad7 prevents bleomyein-induced lung fibrosis in mice. J Clin Invest 1999; 104: 5-11.
    [325] Fukasawa H, Yamamoto T, Togawa A, Ohashi N, Fujigaki Y, Oda T, Uchida C, Kitagawa K, Hattori T Suzuki S, Kitagawa M, Hishida A. Down-regulation of Smad7 expression by ubiquity-dependent degradation contributes to renal fibrosis in obstructive nephropathy in mice. Proc Natl Acad Sci USA 2004; 101: 8687-8692.
    [326] Terada Y, Hanada S, Nakao A, Kuwahara M, Sasaki S, Marumo F. Gene transfer of Smad7 using electroporation of adenovirus prevents renal fibrosis in post-obstructed kidney. Kidney Int 2002; 61: 94-98.
    [327] Hou CC, Wang W, Huang XR, Fu P, Chen TH, Sheikh-Hamad D, Lan HY. Ultrasound-microbubble-mediated gene transfer of inducible Smad7 blocks transforming growth factor-β signaling and fibrosis in rat remnant kidney. Am J Pathol 2005; 166: 761-771.
    [328] Li JH, Huang XR, Zhu HJ, Johnson R, Lan HY. Role of TGF-β signaling in extracellular matrix production under high glucose conditions. Kidney Int 2003; 63: 2010-2019.
    [329] Saika S, Ikeda K, Yamanaka O, Sato M, Muragaki Y, Ohnishi Y, Ooshima A, Nakajima Y, Namikawa K, Kiyama H, Flanders KC, Roberts AB. Transient adenoviral gene transfer of Smad7 prevents injury-induced epithelial-mesenchymal transition of lens epithelium in mice. Lab Invest 2004; 84: 1259-1270.-
    [330] Ulloa L, Doody J, Massagne J. Inhibition of transforming growth factor-β/SMAD signalling by the interferon-γ/STAT pathway. Nature 1999; 397: 710-713.
    [331] Soto P, Price-Schiavi SA, Carraway KL. SMAD2 and SMAD7 involvement in the post-translational regulation of Muc4 via the transforming growth factor-β and interferon-γ pathway in rat mammary epithelial cells. J Biol Chem 2003; 278: 20338-20344.
    [332] Hui AY and Friedman SL. Molecular basis of hepatic fibrosis. Exp Rev Mol Med 2003; 5: 1-23.
    [333] Campbell JS, Hughes SD, Gilbertson DG. Palmer TE, Holdren MS, Haran AC, Odell MM, Bauer RL, Ren HP, Haugen HS, Yeh MM, Fausto N. Platelet-derived growth factor C induces liver fibrosis, steatosis, and hepatocellular carcinoma. Proc Natl Acad Sci USA 2005; 102: 3389-3394.
    [334] Herrera B, Alvarez AM, Sanchez A, Fernandez M, Roncero C, Benito M, Fabregat I. Reactive oxygen species (ROS) mediates the mitochondrial-dependent apoptosis induced by transforming growth factor β in fetal hepatocytes. FASEB J 2001; 15: 741-751.
    [335] Monteleone G, Kumberova A, Croft NM, McKenzie C, Steer HW, MacDonald TT. Blocking Smad7 restores TGF-β1 signaling in chronic inflammatory bowel disease. J Clin Invest 2001; 108: 601-609.
    [336] Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M Flanders KC, Roberts AB, Sporn MB, Ward JM, Karlsson S. Transforming growth factor β1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA 1993; 90: 770-774.
    [337] Christ M, MeCartney-Francis NL, Kulkarni AB, Ward JM, Mizel DE, Mackall CL, Gress RE, Hines KL, "Tian H, Karlsson S. Immune dysregulation in TGF-β1-deficient mice. J Immunol 1994; 153: 1936-1946.
    [338] Yang X, Letterio JJ, Lechleider R J, Chen L, Hayman R, Gu H, Roberts AB, Deng C. Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-β. EMBO J 1999; 18: 1280-1291.
    [339] Matsuura I, Denissova NG, Wang G, He D, Long J, Liu F. Cyclin-dependent kinases regulate the antiproliferative function of Smads. Nature 2004; 430: 226-231.
    [340] Derynck R, Akhurst RJ, Balmain A. TGF-β signaling in tumor suppression and cancer progression. Nature Genetics 2001; 29: 117-129.
    [341] Kang Y, Hebron H, Ozbun L, Mariano J, Minoo P, Jakowlew SB. Nkx2.1 transcription factor in lung cells and a transforming growth factor-β1 heterozygous mouse model of lung carcinogenesis. Mol Carcinog 2004; 40: 212-231.
    [342] Yang YA, Dukhanina O, Tang B, Mamura M, Letterio JJ, Macgregor J, Patel SC, Khozin S, Liu ZY, Green J, Anver MR, Merlino G, Wakefield LM. Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects. J Clin Invest 2002; 109: 1607-1615.
    [343] Bates RC, Bellovin DI, Brown C, Maynard E, Wu B, Kawakatsu H, Sheppard D, Oettgen P, Mercurio AM. Transcriptional activation of integrin β6 during the epithelial-mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma. J Clin Invest 2005; 115: 339-347.
    [344] Johnsen SA, Subramaniam M, Katagiri T, Janknecht R, Spelsberg TC. Transcriptional regulation of Smad2 is required for enhancement of TGFβ/Smad signaling by TGFβ induced early gene. J Cell Biochem 2002; 87(2): 233-241.
    [345] Suganuma T, Kawabata M, Ohshima T, Ikeda MA. Growth suppression of human carcinoma cells by reintroduction of the p300 coactivator. Proc Natl Acad Sci USA 2002; 99(20): 13073-13078.
    [346] Bakin AV, Tomlinson AK, Bhowmick NA, Moses HL, Arteaga CL. Phosphatidyliositol 3-kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 2000; 275(47): 36803-36810.
    [347] Knsanagi K, Kawabata M, Mishima HK, Miyazono K. α-helix 2 in the amino-terminal Mad homology domain is responsible for specific DNA binding of Smad3. J Biol Chem 2001; 276(30): 28155-28163.
    [348] Yeom SY, Jeoung D, Ha KS, Kim PH. Small interfering RNA (siRNA) targeted to Smad3 inhibits transforming growth factor-β signaling. Biotech Let 2004; 26(9): 699-703.
    [349] Datto MB, Frederick JP, pan L, Borton AJ, Zhuang Y, Wang X-F. Targeted disruption of Smad3 reveals an essential role in transforming growth factor-β mediated signal transduction. Mol Cell Biol 1999; 19: 2495-2504.
    [350] Zhu Y, Richardson JA, Parada LF, Graff JM. Smad3 mutant mice develop metastatic colorectal cancer. Cell 1998; 94: 703-714.
    [351] Riggins RG, Kinzler KW, Vogelstein B, Thiagalingam S. Frequency of Smad gene mutations in human cancers. Cancer Res 1997; 57: 2578-2580.
    [352] Rodrignez-Barbero A, Obreo J, Yuste L, Montero JC, Rodriguez-Pena A, Pandiella A, Bernabeu C, Lopez-Novoa JM. Transforming growth factor-β1 induces collagen synthesis and accumulation via p38 mitogen-activated protein kinase (MAPK) pathway in cultured L(6)E(9) myoblasts. FEBS Lett 2002; 513 (2-3): 282-288.
    [353] Hashimoto N, Ishikawa Y, Utsunomiya J. Effects of portacaval shunt, transposition, and dimethyInitrosamine-induced chronic fiver injury on pancreatic hormones and amino acids in dog. J Surg Res 1989; 46(1): 35-40.
    [354] Roth S, Schurek J, Gressner AM. Expression and release of the latent transforming growth factor β binding protein by hepatocytes from rat liver. Hepatology 1997; 25(6): 1398-1405.
    [355] Nakamuta M, Ohta S, Tada S, Tsuruta S, Sugimoto R, Kotoh K, Kato M, Nakashima Y, Enjoji M, Nawata H. Dimethyl sulfoxide inhibits dimethylnitrosamine-induced hepatic fibrosis in rats. Int J Mol Med 2001; 8(5): 553-560.
    [356] Pereira TN, Lewindon PJ, Smith JL, Murphy TL, Lincoln DJ, Shepherd RW, Ramm GA. Serum marker of hepatic fibrogenesis in cystic fibrosis liver disease. J Hepatol 2004; 41: 576-583.
    [357] Wyatt HA, Dhawan A, Cheeseman P, Mieli-Vergani G, Price JF. Serum hyaluronic acid concentrations are increased in cystic fibrosis patients with liver disease.Arch Dis Child 2002; 86(3): 190-193.
    [358] He YT, Liu DW, Ding LY, Li Q, Xiao YH. Therapeutic effects and molecular mechanisms of anti-fibrosis herbs and selenium on rats with hepatic fibrosis. World J Gastroenterol 2004; 10(5): 703-706.
    [359] Liu YK, Shen W. Inhibitive effect of cordyceps sinensis on experimental hepatic fibrosis and its possible mechanism. World J Gastroenterol 2003; 9(3): 529-533.
    [360] Rockey DC, Boyles JK, Gabbiani G, Friedman SL. Rat hepatic lipocytes express smooth muscle actin upon activation in vivo and in culture. Submicrosc Cytol Pathol 1992; 24(2): 193-203.
    [361] Zhang R, Guo Z, Lu J, Meng J, Zhou C, Zhan X, Huang B, Yu X, Huang M, Pan X, Ling W, Chen X, Wan Z, Zheng H, Yan X, Wang Y, Ran Y, Liu X, Ma J, Wang C, Zhang B. Inhibiting severe acute respiratory syndrome-associated coronavirus by small interfering RNA. Chin Med J (Engl) 2003; 116(8): 1262-1264.
    [362] Zhang Y, Li T, Fu L, Yu C, Li Y, Xu X, Wang Y, Ning H, Zhang S, Chen W, Babiuk LA, Chang Z. Silencing SARS-CoV Spike protein expression in cultured cells by RNA interference. FEBS Lett 2004; 560(1-3): 141-146.
    [363] Wang Z, Ren L, Zhao X, Hung T, Meng A, Wang J, Chen YG. Inhibition of severe acute respiratory syndrome virus replication by small interfering RNAs in mammalian cells. J Virol 2004; 78(14): 7523-7527.
    [364] Shi Y, Yang de H, Xiong J, Jia J, Huang B, Jin YX. Inhibition of genes expression of SARS coronavirus by synthetic small interfering RNAs. Cell Res 2005; 15(3): 193-200.
    [365] Li BJ, Tang Q, Cheng D, Qin C, Xie FY, Wei Q, Xu J, Liu Y, Zheng BJ, Woodle MC, Zhong N, Lu PY. Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat Med 2005; [Epub ahead of print] doi:10.1038.nm1280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700