由咪唑二羧酸衍生物配体构筑的配位聚合物的合成、结构和性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用了六种咪唑二羧酸衍生作为有机桥连配体,包括三种刚性配体(2–(4–吡啶基)–4,5–咪唑二羧酸,2–(4–羧苯基)–4,5–咪唑二羧酸和2,4'–双咪唑–4,5–二羧酸)和三种柔性配体(1,2–双(4,5–咪唑二羧酸)乙烷,1,3–双(4,5–咪唑二羧酸)丙烷和1,4–双(4,5–咪唑二羧酸)丁烷)与d~(10)过渡金属离子和镧系金属离子合成新型的配位聚合物,研究这类化合物的合成条件及规律,分析网络所属的拓扑类型,考察分子间作用力,配体的几何构型,辅助配体对于整个结构的影响等规律,探究分子自组装原理,探索新类型的拓扑结构,寻找拓扑类型和结构的内部联系,预言新型拓扑和新结构的形成、以及新物质结构和性能间的关系。
     利用水热合成和溶剂热合成技术,合成了31种新型的金属–有机配位聚合物,通过元素分析,IR,PXRD,TG和单晶X–射线衍射对晶体结构进行了表征,对化合物的热稳定性、光致发光性质进行了初步研究。
     1.利用2–(4–吡啶基)–4,5–咪唑二羧酸(H_3PIDC)和不同构型的含N和羧酸共配体与d~(10)过渡金属,以及镧系金属离子在水热条件下反应,成功得到7个不同维数的配位化合物,其中包括5个由过渡金属构筑的二维和三维化合物[Cd_2(HPIDC)_2(bipy)]_n(1),{[Cd_3(HPIDC)_2(btc)(H_2O)]·2H_2O}_n(2),{[Cd_2(HPIDC)_2(bdc)_(1/2)(H_2O)Cl]·H_2O}_n(3),{[Cd_2(PIDC)(Ac)(H_2O)]·H_2O}_n(4),[Zn2(HPIDC)(ox)(H_2O)_2]n(5),2个由镧系金属构筑的三维骨架结构{[Eu(HPIDC)(ox)1/2H_2O]·2H_2O}_n(6),{[Tb(HPIDC)(ox)1/2H_2O]·2H_2O}_n(7),并且考察了辅助配体的引入对最终化合物网络结构的影响。螯合配体bipy的引入钝化了金属中心,化合物1只形成了由左右手螺旋链连接所构成二维层状结构。化合物2是一个(4,4)格子状的二维层状结构,尽管多齿的btc配体被使用,但仍然没能使骨架向高维扩展。化合物3和4都是由配体连接柱状的次级构筑单元所构成,分别拥有(3,4)-连接和(3,4,5)-连接的三维骨架结构。化合物5则是一个由H_3PIDC,草酸和d~(10)金属共同构筑的三维CdSO4网络。同构的化合物6和7均是由H_3PIDC和草酸共同连接镧系金属离子所构成,在骨架中两种配体均以线性方式连接金属离子,整个骨架展示了三维α-Po网络。对7个化合物的固态荧光性质进行了研究。
     2.合成了两种新的咪唑二羧酸衍生配体,2–(4–羧苯基)–4,5–咪唑二羧酸(H_4CpIDC)和2,4'–双咪唑–4,5–二羧酸(H_4BIDC)配体,利用它们与不同的含N共配体和d~(10)过渡金属离子在水热条件和低温混合溶剂热条件作用,成功得到了9个化合物,其中包括5个由H_4CpIDC配体构筑的化合物[Cd_3(HCpIDC)_2(H_2O)6]n(8),[Cd(H_2CpIDC)(H_2O)]n(9),{[Cd_2(CpIDC)(2,2'–bpy)_2]·2H_2O}_n(10),{[Zn3(HCpIDC)_2(4,4'–bipy)(H_2O)]·4H_2O}_n(11),{[Zn2(CpIDC)(BIMB)]·H_2O}_n(12),4个由H_4BIDC配体构筑的化合物,{[Cd_2(H_2BIDC)_2(H_2O)_2]·5H_2O}_n(13),[Cd(H_2BIDC)]n(14),[Zn3(BIMB)_2(HBIDC)_2]n(15),{[Cd4(BIMB)_4(H_2BIDC)_4]·6H_2O]}_n(16)。化合物8是由H_4CpIDC连接金属CdII离子形成的一维Z字型链状结构。化合物9是由双核过渡金属和H_4CpIDC构筑的(3,3)连接的二维层状结构。化合物10是H_4CpIDC和辅助的2,2'-bipy共同连接CdII离子形成的具有(4,4)格子拓扑的二维层状结构。化合物11和12由H_4CpIDC和不同长度的线性桥连共配体连接金属ZnII离子所形成的(4,4)-连接和(3,4,6)-连接的三维网络。化合物13和14都是由H_4BIDC配体和金属CdII离子所构筑,但是不同反应溶剂导致了不同骨架结构。化合物13是的二维(4,4)格子结构,而化合物14是一个三维(3,3)-混连接骨架结构。化合物15和16是由H_4BIDC配体,BIMB共配体和d~(10)金属离子共同构筑的化合物。但是不同金属中心导致了两种截然不同三维骨架。化合物15展示了(3,4)-混连接的三维柱撑型骨架。化合物16则是一个三维(6,6)-连接骨架结构。同时对这些化合物的热稳定性和荧光性质进行了研究。
     3.通过在两个咪唑二羧酸基团之间引入烷基链,成合了一个柔性配体1,2–双(4,5–咪唑二羧酸)乙烷(H_4EBIDC)。利用其和不同的含N有机共配体与ZnII离子在水热条件下反应得到5个从一维到三维的配位化合物,{[Zn_4(EBIDC)_2(bbi)_3/2(H_2O)]·7H_2O}_n(17),{[Zn_4(EBIDC)_2(bix)_2]·7H_2O}_n(18),{[Zn_8(EBIDC)_4(bpb)_3(H_2O)_2]·7H_2O}_n(19),{[Zn2(EBIDC)(BIMB)]·H_2O}_n(20),{[Zn_8(EBIDC)_4(bbi)_3]·7H_2O}_n(21)。在化合物17~21中,H_4EBIDC配体连接ZnII离子都形成笼状的[Zn_4(EBIDC)_2]次级构筑单元,次级构筑单元被不同的中性辅助配体连接形成不同的骨架结构。化合物17展示了一维梯状结构,而化合物18同样是一维链状结构,但是链与链之间进一步互锁成了三维骨架结构。化合物19是一个三重互穿的二维层状结构。化合物20展示了一个具有八重互穿的金刚石网络结构。化合物21与化合物17采用了相似的合成方法,但是不同金属锌盐,导致了不同的骨架。化合物21是一个三维(4,6)-连接的网络结构。对化合物和配体的荧光性质进行了研究。
     4.通过延长烷基链的长度,合成了两个新的带有双咪唑二羧酸基团的柔性配体,1,3–双(4,5–咪唑二羧酸)丙烷(H_4PBIDC)和1,4–双(4,5–咪唑二羧酸)丁烷(H_4BBIDC)。利用H_4PBIDC配体与过渡金属离子和镧系金属离子成功构筑了4个二维和三维化合物,[Zn(H_2PBIDC)(H_2O)]n(22),{[Zn2(H_2PBIDC)_2(H_2O)_2]·H_2O}_n(23),[Cd(H_2PBIDC)(BIMB)]n(24)和{[Ce(HPBIDC)(H_2O)_2]·H_2O}_n(25)。利用H_4BBIDC和不同的含N共配体与d~(10)金属作用得到了6个三维柱撑型化合物,{[Cd_3(BBIDC)_3]·H_2O}_n(26),{[Zn(BBIDC)1/2(BIMB)1/2]·H_2O}_n(27),{[Zn(BBIDC)1/2(bix)1/2]·H_2O}_n(28),{[Zn2(BBIDC)1/2(bytz)_2]·H_2O}_n(29),{[Cd_2(BBIDC)1/2(bytz)_2]·3H_2O}_n(30)和{[Cd_2(BBIDC)1/2(tmpt)_2]·3H_2O}_n(31)。化合物22和23均是由H_4PBIDC配体和ZnII离子所构筑,但是不同阴离子导致两种不同的二维层状结构。尽管辅助的BIMB配体被使用,化合物24仍然只展示了一个二维结构。当具有较高配位数CeIII离子被使用时,一个三维(4,4)-混连接化合物25被获得。化合物26~31均为三维柱撑骨架结构,其中在26结构中,柱和层是由两种不同配位构型的H_4BBIDC配体所承担。而在其它的化合物中用于支撑的柱都为辅助的含N配体。对由d~(10)金属构筑的化合物的荧光性质进行了研究。
The target of this thesis is to construct novel coordination polymers on the basis of sixdifferent kinds of imidazole-4,5-dicarboxylic acid derivative ligands(2-(pyridin-4-yl)-1H-imidazole-4,5-dicarboxylic acid,2-(4-carboxyphenyl)-1H-imidazole-4,5-dicarboxylic acid,2,4'-bi(1H-imidazole)-4,5-dicarboxylic acid,1,1'-(ethane-1,2-diyl)bis(1H-imidazole-4,5-dicarboxylic acid),1,1'-(propane-1,3-diyl)bis(1H-imidazole-4,5-dicarboxylic acid),1,1'-(butane-1,4-diyl)bis(1H-imidazole-4,5-dicarboxylic acid)) and d~(10)transition metal ions aswell as lanthanide ions. The study on synthetic conditions and rules for these new compounds,topological analyses, and the exploration of relationships between structures and propertiesfor these new compounds are also carried out.
     Thirty-one new coordination compounds have been synthesized on the basis ofhydrothermal and solvothermal synthesis methods, and structurally characterized byelemental analyses, IR, PXRD, TG and single crystal X-ray diffractions. The thermalstabilities and fluorescent activity of these compounds have been studied.
     1. Eight new compounds on the basis of2-(pyridin-4-yl)-1H-imidazole-4,5-dicarboxylicacid (H_4PIDC) ligand, N-containing and carboxylate coligands with different configurationshave been hydrothermally synthesized and structurally characterized including five2D and3D complexes,[Cd_2(HPIDC)_2(bipy)]_n(1),{[Cd_3(HPIDC)_2(btc)(H_2O)]·2H_2O}_n(2),{[Cd_2(HPIDC)_2(bdc)_(1/2)(H_2O)Cl]·H_2O}_n(3),{[Cd_2(PIDC)(Ac)(H_2O)]·H_2O}_n(4) and[Zn2(HPIDC)(ox)(H_2O)_2]n(5) constructed by transition metals, and two3D frameworks,{[Eu(HPIDC)(ox)1/2H_2O]·2H_2O}_n(6) and {[Tb(HPIDC)(ox)1/2H_2O]·2H_2O}_n(7) built bylanthanide metals. Owing to the chelating bipy ligand passivate the metal centers, socompound1only exhibits a2D layer structure formed by the inter-linking left-andright-handed helices. Compound2is a2D layer structure with the (4,4) grid topology.Compound3and4display3D (3,4)–connected and (3,4,5)–connected frameworksconstructed from ligands connecting rod-shaped SBUs. Compound5demonstrates aCd(SO4)_2network, which constructed by H_4PIDC, H_2ox and d~(10)metal. Compound6and7areisomorphic and exhibits classical α–Po network. In addition, the luminescent properties ofthese compounds are also investigated.
     2. We have successfully synthesized two new ligands, namely2-(4-carboxyphenyl)-1H-imidazole-4,5-dicarboxylic acid (H_4CpIDC) and2,4'-bi(1H-imidazole)-4,5-dicarboxylic acid (H_4BIDC). Five new compounds, [Cd_3(HCpIDC)_2(H_2O)6]n(8),[Cd(H_2CpIDC)(H_2O)]n(9),{[Cd_2(CpIDC)(2,2'–bpy)_2]·2H_2O}_n(10),{[Zn3(HCpIDC)_2(4,4'–bipy)(H_2O)]·4H_2O}_n(11) and {[Zn2(CpIDC)(BIMB)]·H_2O}_n(12)were obtained by using H_4CpIDC as ligand. Four new compounds,{[Cd_2(H_2BIDC)_2(H_2O)_2]·5H_2O}_n(13),[Cd(H_2BIDC)]n(14),[Zn3(BIMB)_2(HBIDC)_2]n(15)and {[Cd4(BIMB)_4(H_2BIDC)_4]·6H_2O]}_n(16) were constructed by H_4BIDC ligand. Compound8is a1D zig-zag chain formed by H_4CpIDC linking CdIIions. Compound9and10exhibitsthe2D (3,3)-connected and (4,4)-connected layer structure, which built by H_4BIDC linkingbinuclear and mononuclear CdII, respectively. Compound11and12are formed fromH_4CpIDC and different linear coligands bridging ZnIIions, and they possess (4,4)-connectedand (3,4,6)-connected3D network. Compounds13and14are formed by H_4BBIDC linkingCdIIions. Different reaction solvents lead to the different structure of compounds13and14.Compound13is2D (4,4) network, while compound14displays a3D (3,3)-connectedframework. Both compound15and16constructed by H_4BBIDC and BIMB connecting d~(10)metal centers, but different metal centers result in two different framework. They are3Dpillared (3,4)-connected and (6,6)-connected networks, respetively. Furthermore, thethermostability and luminescent properties of these compounds have been studied.
     3. A flexible ligand,1,1'-(ethane-1,2-diyl)bis(1H-imidazole-4,5-dicarboxylic acid)(H_4EBIDC), was synthesized by introducing the alkyl chain between the twoimidazole-4,5-carboxylic acid groups. Five new compounds,{[Zn_4(EBIDC)_2(bbi)_3/2(H_2O)]·7H_2O}_n(17),{[Zn_4(EBIDC)_2(bix)_2]·7H_2O}_n(18),{[Zn_8(EBIDC)_4(bpyb)_3(H_2O)_2]·7H_2O}_n(19),{[Zn2(EBIDC)(BIMB)]·H_2O}_n(20) and{[Zn_8(EBIDC)_4(bbi)_3]·7H_2O}_n(21) were hydrothermally synthesized based on H_4EBIDCligand, divers neutral N-containing coligands and ZnIIions. In these compounds, H_4EBIDCligands links ZnIIions generating a cage-like [Zn_4(EBIDC)_2] SBU. Different secondaryligands further connects the [Zn_4(EBIDC)_2] SBUs leading to the different structures.Compound17displays a1D ladder-like structure. Compound18possesses a3D frameworkconstructed from inter-locking1D chains. Compounds19exhibits a2D three-foldinterpenetrating (3,3)-connected net. Compound20and21are3D eight-fold interpenetratingdiamond net and non-interpenetrating (4,6)-connected net, respectively. The luminescentproperties of these compounds and ligand have been investigated.
     4. Two new flexible organic ligands,1,1'-(propane-1,3-diyl)bis(1H-imidazole-4,5-dicarboxylic acid)(H_4PBIDC) and1,1'-(butane-1,4-diyl)bis(1H-imidazole-4,5-dicarboxylic acid)(H_4BBIDC) were synthesizedby extending the length of the alkyl chain. We have successfully construced ten newcompounds by employing the two ligands with different coligand and metals (transition metaland lanthanide metal) under hydrothermal condition including four2D and3D complexes,[Zn(H_2PBIDC)(H_2O)]n(22),{[Zn2(H_2PBIDC)_2(H_2O)_2]·H_2O}_n(23),[Cd(H_2PBIDC)(BIMB)]n (24) and {[Ce(HPBIDC)(H_2O)_2]·H_2O}_n(25) formed by H_4PBIDC, and six3D pillared-typecomplexes,{[Cd_3(BBIDC)3]·H_2O}_n(26),{[Zn(BBIDC)1/2(BIMB)1/2]·H_2O}_n(27),{[Zn(BBIDC)1/2(bix)1/2]·H_2O}_n(28),{[Zn2(BBIDC)1/2(bytz)_2]·H_2O}_n(29),{[Cd_2(BBIDC)1/2(bytz)_2]·3H_2O}_n(30) and {[Cd_2(BBIDC)1/2(tmpt)_2]·3H_2O}_n(31) constructedby H_4BBIDC. Both compounds22and23are formed by H_4PBIDC ligands linking ZnII, butthey exhibits two different2D layer structure. Although the assistant ligand BIMB was used,the framework of24still dispalys a2D structure. When using CeIIIas the metal centers, a3D(4,4)-connected compound25was obtained. Compound26~31are3D pillared-typecomplexes. In the framework of26, H_4BBIDC ligands with two different coordinationconfigurations can be viewed as the layer-like and pillar-like building units, respectively. Incompounds27~31, layer-like building units were built from H_4BBIDC bridging metals andthe N-containing coligands play the supporting role in the whole framework. The fluorescentstudies on those compounds based on d~(10)metals are also discussed.
引文
[1] Chanpness N R, Schr der M. Extended networks formed by coordination polymers in thesolid state[J]. Current Option in Solid State&Materials Science,1998,3:419-424.
    [2] Gandara F, Gomez L B, Monge A, et al. A new scandium metal organic framework builtup from octadecasil zeolitic cages as heterogeneous catalyst[J]. Chem. Commun.2009,2393-2393.
    [3] Brown K, Zolezzi S, Spodine E, et al.[Cu(H2btec)(bipy)]∞: a novel metal organicframework (MOF) as heterogeneous catalyst for the oxidation of olefins[J]. Dalton Trans,2009,1422-1427.
    [4] Wu C D, Lin W B. Heterogeneous Asymmetric Catalysis with Homochiral Metal–OrganicFrameworks: Network-Structure-Dependent Catalytic Activity[J]. Angew Chem Int Ed,2007,46:1075-1078.
    [5] Wu C D, Hu A, Lin W B, et al. A Homochiral Porous Metal Organic Framework forHighly Enantioselective Heterogeneous Asymmetric Catalysis[J]. J Am Chem Soc,2005,127:8940-8941.
    [6] Maksimchuk N V, Timofeeva M N, Kholdeeva O A, et al. Heterogeneous selectiveoxidation catalysts based on coordination polymer MIL-101and transition metal-substitutedpolyoxometalates[J]. J Catal,2008,257:315-323.
    [7] Hasegawa S, Horike S, Kitagawa S, et al. Three-Dimensional Porous CoordinationPolymer Functionalized with Amide Groups Based on Tridentate Ligand: Selective Sorptionand Catalysis[J]. J Am Chem Soc,2007,129:2607-2614.
    [8] Dang D B, Wu P Y, He C, et al. Homochiral Metal Organic Frameworks forHeterogeneous Asymmetric Catalysis[J]. J Am Chem Soc,2010,132:14321-14323.
    [9] Fujita M, Kwon Y J, Ogura K, et al. Preparation, Clathration Ability, and Catalysis of aTwo-Dimensional Square Network Material Composed of Cadmium(II) and4,4'-Bipyridine[J]. J Am Chem Soc,1994,116:1151-1152.
    [10] Seo J S, Whang D, Kim K, et al. A homochiral metal-organic porous material forenantioselective separation and catalysis[J]. Nature,2000,404:982-986.
    [11] Hang J W, Hill C L. A Coordination Network That Catalyzes O2-Based Oxidations[J]. JAm Chem Soc,2007,129:15094-15095.
    [12] Tanaka K, Oda S, Shiro M. A novel chiral porous metal–organic framework: asymmetricring opening reaction of epoxide with amine in the chiral open space[J]. Chem Commun,2008,820-822.
    [13] Ma L, Abney C, Lin W B. Enantioselective catalysis with homochiral metal–organicframeworks[J]. Chem Soc Rev,2009,38:1248-1256.
    [14] Allendorf, M D, Bauer C A, Houk R J T, et al. Luminescent metal–organicframeworks[J]. Chem Soc Rev,2009,38:1330-1352.
    [15] Wang M S, Guo S P, Guo G C, et al. A Direct White-Light-Emitting Metal OrganicFramework with Tunable Yellow-to-White Photoluminescence by Variation of ExcitationLight[J]. J Am Chem Soc,2009,131:13572-13573.
    [16] Liu X, Huang K L. A12-Connected Dodecanuclear Copper Cluster with YellowLuminescence[J]. Inorg Chem,2009,48:8653-8655.
    [17] Xue M, Zhu G, Qiu S, et al. Structure, Hydrogen Storage, and Luminescence Propertiesof Three3D Metal Organic Frameworks with NbO and PtS Topologies[J]. Cryst Growth Des,2008,8:2478-2483.
    [18] Qin Y Y, Zhang J, Yao Y G, et al. Organically templated metal–organic framework with2-fold interpenetrated {33.59.63}-lcynet[J]. Chem Commun,2008,2532-2534.
    [19] Hou L, Lin Y Y, Chen X M. Porous Metal Organic Framework Based on μ4-oxoTetrazinc Clusters: Sorption and Guest-Dependent Luminescent Properties[J]. Inorg Chem,2008,47:1346-1351.
    [20] Harbuzaru B V, Corma A, Rocha J, et al. A Miniaturized Linear pH Sensor Based on aHighly Photoluminescent Self-Assembled Europium(III) Metal–Organic Framework[J].Angew Chem Int Ed,2009,48:6476-6479.
    [21] Jayaramulu K, Kanoo P, George S J, et al. Tunable emission from a porousmetal–organic framework by employing an excited-state intramolecular proton transferresponsive ligand[J]. Chem Commun,2010,7906-7908
    [22] Tian Y Q, Xu H J, You X Z, et al.[CuI(im)]∞: Is this Air-Stable Copper(I) Imidazolate(82,10)-Net Polymer the Species Responsible for the Corrosion-Inhibiting Properties ofImidazole with Copper Metal?[J]. Eur J Inorg Chem,2004,9:1813-1816.
    [23] Halder G J, Kepert C J, Cashion J D, et al. Guest-Dependent Spin Crossover in aNanoporous Molecular Framework Material[J]. Science,2002,298:1762-1765.
    [24] Maspoch D,Ruiz-Molina D, Veciana J,et al. A nanoporous molecular magnet withreversible solvent-induced mechanical and magnetic properties[J]. Nat Mater,2003,2:190-195.
    [25] Lopez N, Zhao H, Dunbar K R, et al. Conversion of a porous material based on aMnII–TCNQF4honeycomb net to a molecular magnet upon desolvation[J]. Chem Commun,2007,4611-4613.
    [26] Aijaz A, Sa udo E C, Bharadwaj P K. A dicarboxylate with asymmetric coordinationability: Characterization of a two dimensional coordination polymer of copper(II) exhibitingspin canting[J]. Inorg Chem Acta,2009,362:4246-4250.
    [27] Kou H Z, Wang Y T, Shen D Z, et al. One-Dimensional Mn(III) Coordination PolymerExhibiting Ferromagnetic Coupling[J]. Cryst Growth Des,2008,8:3908-3910.
    [28] Delgado S, Sanz Miguel P J, Zamora F, et al. A Conducting Coordination Polymer Basedon Assembled Cu9Cages[J]. Inorg Chem,2008,47:9128-9130.
    [29] Zheng Y Z, Xue W, Chen X M, et al. A Two-Dimensional Iron(II) Carboxylate LinearChain Polymer that Exhibits a Metamagnetic Spin-Canted Antiferromagnetic to Single-ChainMagnetic Transition[J]. Inorg Chem,2008,47:4077-4087.
    [30] Ye Q, Fu D W, Xiong R G, et al. Multiferroic Homochiral Metal Organic Framework[J].Inorg Chem,2008,47:772-774.
    [31] Miyasaka H, Julve M, Clerac R, et al. Slow Dynamics of the Magnetization inOne-Dimensional Coordination Polymers: Single-Chain Magnets[J]. Inorg Chem,2009,48:3420-3437.
    [32] Zeng Y F, Zhao J P, Bu X H, et al. Structures with Tunable Strong FerromagneticCoupling: from Unordered (1D) to Ordered (Discrete)[J]. Chem Eur J,2007,13:9924-9930.
    [33] Murray K S. Recent Advances in Molecular Magnetic Materials[J]. Aus J Chem,2009,62:1081-1101.
    [34] Hong S, Park M, Lah M S, et al. Large H2storage capacity of a new polyhedron-basedmetal–organic framework with high thermal and hygroscopic stability[J]. Chem Commun,2009,5397-5399.
    [35] Xiang S, Liu Y, Chen B, et al. Exceptionally High Acetylene Uptake in a MicroporousMetal Organic Framework with Open Metal Sites[J]. J Am Chem Soc,2009,131:12415-12419.
    [36] Yang S, Champness N R, Schroder M, et al. Enhancement of H2Adsorption inCoordination Framework Materials by Use of Ligand Curvature[J]. Chem Eur J,2009,15:4829-4835.
    [37] Murray L J, Dinca M, Long J R. Hydrogen storage in metal–organic frameworks[J].Chem Soc Rev,2009,38:1294-1314.
    [38] Wu T, Zhang J, Feng P, et al. Zeolite RHO-Type Net with the Lightest Elements[J]. J AmChem Soc,2009,131:6111-6113.
    [39] Ma L, Mihalcik D J, Lin W. Highly Porous and Robust4,8-Connected Metal OrganicFrameworks for Hydrogen Storage[J]. J Am Chem Soc,2009,131:4610-4612.
    [40] Edda oudi M, O’Keeffe M, Yaghi O M, et al. Systematic Design of Pore Size andFunctionality in Isoreticular MOFs and Their Application in Methane Storage[J]. Science,2002,295:469-472.
    [41] Ma S, Yuan D, Zhou H C, et al. Metal-Organic Framework from an AnthraceneDerivative Containing Nanoscopic Cages Exhibiting High Methane Uptake[J]. J Am ChemSoc,2008,130:1012-1016.
    [42] Wong-Foy A G, Matzger A J, Yaghi O M, et al. Exceptional H2Saturation Uptake inMicroporous Metal Organic Frameworks[J]. J Am Chem Soc,2006,128:3494-3495.
    [43] Chae H K, O’Keeffe M, Yaghi O M, et al. A route to high surface area, porosity andinclusion of large molecules in crystals[J]. Nature,2004,427:523-527.
    [44] Kunhao L, Lee J Y, Li J, et al. Unique gas and hydrocarbon adsorption in a highly porousmetal-organic framework made of extended aliphatic ligands[J]. Chem Commun,2008,6123-6125.
    [45] Kitaura R, Suzuki M, Takata M, et al. Formation of a One-Dimensional Array of Oxygenin a Microporous Metal-Organic Solid[J]. Science,2002,298:2358-2361.
    [46] Yang C, Wang X P, Omary M A. Fluorous Metal Organic Frameworks for High-DensityGas Adsorption[J]. J Am Chem Soc,2007,129:15454-15455.
    [47]宋银柱,王耕霖等译.配位化学[M].北京:北京大学出版社,1982.
    [48] Werner A. Platinum complexes of sucrose derivatives[J]. Z Anorg Chem,1893,3267.
    [49] Iwamoto T. Comprehensive Supramolecular Chemistry, Oxford,1996,6,643.
    [50] Wells A F. Three Dimensional Nets and Polyhedra[M]. New York: Bull Amer Math Soc,1978,84:466-470.
    [51] Wells A F. Structural Inorganic Chemistry,5th Ed, Oxford Univ Press,1983.
    [52] Hosking B F, Robson R. Infinite polymeric frameworks consisting of threedimensionally linkedrod-like segments[J]. J Am Chem Soc,1989,111:5962-5964.
    [53] Neels A, Neels B M, Stoeckli-Evans H, et al. Synthesis and X-ray Powder Structures ofNickel(II) and Copper(II) Coordination Polymers with2,5-Bis(2-pyridyl)pyrazine[J]. InorgChem,1997,36:3402-3409.
    [54] Wang Q M, Guo G C, Mak T C W. A coordination polymer based on twofoldinterpenetrating three-dimensional four-connected nets of42638topology,[CuSCN(bpa)][bpa=1,2-bis(4-pyridyl)ethane][J]. Chem Commu,1999,1849-1850.
    [55] Withersby M A, Blake A J, Champness N R, et al. Assembly of a Three-DimensionalPolyknotted Coordination Polymer[J]. J Am Chem Soc,2000,122:4044-4046.
    [56] Barnett S A, Blake A J, Champness N R, et al. Synthesis and structural characterizationof cadmium(II) and zinc(II) coordination polymers with an angular dipyridyl bridging ligand:parallel interpenetration of two-dimensional sheets with4.82topology[J]. J Chem Soc DaltonTrans,2001,567-573.
    [57] Chen W Z, Liu F H, You X Z.[Pt(CN)2·2Me3SnCN·2Me3SnOH·bpe]n(bpe=trans-1,2-bis(4-pyridyl)ethylene), the First Double-Sinusoidal Platinum-TinCoordination Polymer[J]. Chem Lett,2002,734-735.
    [58] Vallat O, Neels A, Stoeckli-Evans H. AgI, CdII, and HgII: complexes with2,5-bis(pyridyl)pyrazine ligands: syntheses, spectral analyses, single crystal, and powderX-ray analyses[J]. J Chem Cryst,2003,33:39-50.
    [59] Almeida Paz F A, Klinowski J. Supramolecular architecture of a novel salt of trimesicacid and1,2-bis(4-pyridyl)ethane[J]. CrystEngComm,2003,5:238-244.
    [60] Zhao Y J, Hong M C, Sun D F, et al. A novel coordination polymer containing puckeredrhombus grids[J]. J Chem Soc Dalton Trans,2002,1354-1357.
    [61] Murugavel R, Bahet K, Anantharaman C. Reactions of2-mercaptobenzoic acid withdivalent alkaline earth metal ions: Synthesis,spectral studies, and single-crystal X-raystructures of calcium, strontium, and barium complexes of2,2'-Dithiobis(benzoic acid)[J].Inorg Chem,2001,40:6870-6878.
    [62] Platers M J, Howie R A, Robert A J. Hydrothermal synthesis and X-ray structuralcharacterisation of calcium benzene-1,3,5-tricarboxylate[J]. Chem Commu,1997,893-894.
    [63] Aukauloo A, Ottenwqaelder X, Ruiz R, et al. An Na8cluster in the structure of a novel20oxamato-bridged NaICuIIthree-dimensional coordination polymer[J]. Eur J Inorg Chem,1999,209-212.
    [64] Ren Y P, Long L S, Mao B W, et al. Nanoporous lanthanide-copper(II) coordinationpolymers: syntheses and crystal structures of [{M2(Cu3(iminodiacetate)6)}8H2O]n(M=La, Nd,Eu)[J]. Angew Chem Int Ed,2003,42:532-535.
    [65] Almeida Paz F A and Klinowski J. Hydrothermal synthesis of a novel thermally stablethree-dimensional ytterbium–organic framework[J]. Chem Commu,2003,1484-1485.
    [66] Spandl J, Brüdgam I, Hartl H. Solvothermal synthesis of a24-nuclear, cube-shapedsquarato-oxovanadium(IV) framework:[N(nBu)4]8[V24O24(C4O4)12(OCH3)32][J]. AngewChem Int Ed,2001,40:4018-4020.
    [67] Feng S H, Xu R R. New materials in hydrothermal synthesis[J]. Acc Chem Res,2001,34:239-247.
    [68] Hosseini M W. Molecular tectonics: From simple tectons to complex molecularnetworks[J]. Acc Chem Res,2005,38:313-323.
    [69] Erxleben A. Structures and properties of Zn(II) coordination polymers[J]. Coord ChemRev,2003,246:203-228.
    [70] Batten S R, Robson R. Interpenetrating Nets: Ordered, Periodic Entanglement[J]. AngewChem Int Ed Engl,1998,37:1460-1494.
    [71] Hoskins F B, Robson R, Damian A. Slizys an infinite2D polyrotaxane network inAg2(bix)3(NO3)2(bix=1,4-bis(imidazol-1-ylmethyl)benzene)[J]. J Am Chem Soc,1997,119:2952-2953.
    [72] Biradha K, Hongo Y, Fjita M. Open square-grid coordination polymers of thedimensions20×20: Remarkably stable and crystalline solids even after guest removal[J].Angew Chem Int Ed,2000,39:3843-3846.
    [73] Biradha K, Fujita M. A spring-like3D-coordination network that shrinks or swells in acrystal-to-crystal manner upon guest removal or readsorption [J]. Angew Chem Int Ed,2002,41:3392-3395.
    [74] Zheng N F, Bu X H, Feng P Y. Self-assembly of novel dye molecules and [Cd8(SPh)12]4+cubic clusters into three-dimensional photoluminescent superlattice[J]. J Am Chem Soc,2002,124:9688-9689.
    [75] Huang X C, Zhang J P, Lin Y Y, et al. Triple-stranded helices and zigzag chains ofcopper(I)2-ethylimidazolate: solvent polarity-induced supramolecular isomerism[J]. ChemCommun,2005.2232-2234.
    [76] Zhang J P, Lin Y Y, Zhang W X, et al. Temperature-or guest-induced drasticsingle-crystal-to-single-crystal transformations of a nanoporous coordination polymer[J]. JAm Chem Soc,2005,127:14162-14163.
    [77] Park K S, Ni Z, A P. C té, et al. Exceptional chemical and thermal stability of zeoliticimidazolate frameworks[J]. PNAS,2006,103:10186-10191.
    [78] Han L, Valle H, Bu X H. Homochiral coordination polymer with infinite double-strandedhelices[J]. Inorg Chem,2007,46:1511-1513.
    [79] Dincǎ M, Han W Sk, Liu Y, et al. Observation of Cu2+–H2interactions in a fullydesolvated sodalite-type metal-organic framework[J]. Angew Chem Int Ed,2007,46:1419-1422.
    [80] Lan Y Q, Li S L, Su Z M, et al. Spontaneous resolution of a3D chiralpolyoxometalate-based polythreaded framework consisting of an achiral ligand[J]. ChemCommun,2007,1-4.
    [81] Qin C, Wang X L, Yuan L, et al. Chiral self-threading frameworks based onpolyoxometalate building blocks comprising unprecedented tri-flexure helix[J]. Cryst GrowthDes,2008,8:2093-2095.
    [82] Li H, Eddaoudi M, Yaghi O M, et al. Design and synthesis of an exceptionally stable andhighly porous metal-organic framework[J]. Nature,1999,402:276-279.
    [83] Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionality inisoreticular MOFs and their application in methane storage[J]. Science,2002,295:469-472.
    [84] Chun H, Kim D, Dybtsev D N, et al. Metal-organic replica of fluorite built with aneight-connecting tetranuclear cadmium cluster and a tetrahedral four-connecting ligand[J].Angew Chem Int Ed,2004,43:971-974.
    [85] Chae H K, Siberio-Pérez D Y, Kim J, et al. A route to high surface area, porosity andinclusion of large molecules in crystals[J]. Nature,2004,523-527.
    [86] Wang X L, Qin C, Wang E B, et al. Entangled coordination networks with inherentfeatures of polycatenation, polythreading, and polyknotting[J]. Angew Chem Int Ed,2005,44:5824-5827.
    [87] Liu Y L, Eubank J F, Cairns A J, et al. Assembly of metal-organic frameworks (MOFs)based on indium-trimer building blocks: A porous MOF with soc topology and high hydrogenstorage[J]. Angew Chem Int Ed,2007,46:3278-3283.
    [88] Hao X R, Wang X L, Qin C, et al. A3D chiral nanoporous coordination frameworkconsisting of homochiral nanotubes assembled from octuple helices[J]. Chem Commun,2007,4620-4622.
    [89] Ma L Q, Lee J Y, Li J, et al.3D netal-organic frameworks based on elongatedtetracarboxylate building blocks for hydrogen storage[J]. Inorg Chem,2008,47:3955-3957.
    [90] Hou L, Zhang J P, Chen X M. Two metal-carboxylate frameworks featuring uncommon2D+3D and3-fold-interpenetration:(3,5)-connected isomeric hms and gra Nets[J]. CrystGrowth Des,2009,9:2415-2419.
    [91] Wang X S, Ma S Q, Yuan D Q, et al. Large-surface-area boracite-network-topologyporous MOF constructed from a conjugated ligand exhibiting a high hydrogen uptakecapacity[J]. Inorg Chem,2009,48:7519-7521.
    [92] Jeong K S, Go Y B, Shin S M, et al. Asymmetric catalytic reactions by NbO-type chiralmetal–organic frameworks[J]. Chem Sci,2011,2:877-882.
    [93] Lu W G, Yuan D Q, Trevor A, et al. A Highly Porous and Robust (3,3,4)-ConnectedMetal–Organic Framework Assembled with a908-Bridging-Angle EmbeddedOctacarboxylate Ligand[J]. Angew Chem Int Ed,2012,124:1-6.
    [94] Sun Y Q, Zhang J, Chen Y M, and Yang G Y. Porous Lanthanide-Organic OpenFrameworks with Helical Tubes Constructed from Interweaving Triple-Helical andDouble-Helical Chains[J]. Angew Chem Int Ed,2005,44:2-5.
    [95] Tian G, Zhu G S, Yang X Y, et al. A chiral layered Co(II) coordination polymer withhelical chains from achiral materials[J]. Chem Commun,2005,1396-1398.
    [96] Zhang M, Zhang, Zheng S, et al. A3D Coordination Framework Based on Linkages ofNanosized Hydroxo Lanthanide Clusters and Copper Centers by Isonicotinate Ligands[J].Angew Chem Int Ed,2005,44:1385-1388.
    [97] Lu W G, Su C Y, Lu T B, et al. Two Stable3D Metal-Organic Frameworks Constructedby Nanoscale Cages via Sharing the Single-Layer Walls[J]. J Am Chem Soc,2006,128:34-35.
    [98] Zhang X M, Hao Z M, Zhang W X, et al. Dehydration-Induced Conversion from aSingle-Chain Magnet into a Metamagnet in a Homometallic Nanoporous Metal–OrganicFramework[J]. Angew Chem Int Ed,2007,46:3456-3459.
    [99] Alkordi M H, Brant J A, Wojtas Lukasz, et al. Zeolite-like Metal-Organic Frameworks(ZMOFs) Based on the Directed Assembly of Finite Metal-Organic Cubes (MOCs)[J]. J AmChem Soc,2009,131:17753-17755.
    [100] Hou L, Zhang W X, Zhang J P, et al. An octacobalt cluster based,(3,12)-connected,magnetic, porous coordination polymer[J]. Chem Commun,2010,46:6311-6313.
    [101] Zhong D C, Zhang W X, Cao F L, et al. A three-dimensional microporousmetal–organic framework with large hydrogen sorption hysteresis[J]. Chem Commun,2011,47:1204-1206.
    [102] Ye B H, Tong M L, Chen X M. Metal-organic molecular architectures with2,2’-bipyridyl-like and carboxylate ligands[J]. Coord Chem Rev,2005,249:545-565.
    [103] Chen K, Sun Z G, Zhu Y Y, et al. Syntheses, Crystal Structures, and LuminescenceProperties of Three Novel Lead Carboxyphosphonates with3D Framework Structures UsingRigid Aromatic Carboxylic Acids as Second Organic Ligands[J].2011,11:4623-4631.
    [104] Yan X H, Cai Z H, Yi C L, et al. Anion-Induced Structures and Luminescent Propertiesof Chiral Lanthanide-Organic Frameworks Assembled by an Achiral Tripodal Ligand[J].Inorg Chem,2011,50:2346-2353.
    [105] Liu F J, Sun D, Hao H J, et al. Anion-Controlled Assembly ofSilver(I)/Aminobenzonitrile Compounds: Syntheses, Crystal Structures, andPhotoluminescence Properties[J]. Cryst Growth Des,2012,12:354-361.
    [106] Yang J X, Zhang X, Cheng J K, et al. pH Influence on the Structural Variations of4,4′-Oxydiphthalate Coordination Polymers[J]. Cryst Growth Des,2012,12:333-345.
    [1] Su C Y, Goforth A M, Smith M D S, et al. Assembly of large simple1D and rarepolycatenated3D molecular ladders from T-shaped building blocks containing a new, long N,N′-bidentate ligand[J]. Chem Commun,2004,2158-2159.
    [2] Wang X L, Qin C, Wang E B, et al. An unprecedented fivefoldinterpenetrated lvt networkcontaining the exceptional racemic motifs originated from nine interwoven helices[J]. ChemCommun,2005,5450-5452.
    [3] Wu C D, Lin W. Heterogeneous Asymmetric Catalysis with Homochiral Metal–OrganicFrameworks: Network-Structure-Dependent Catalytic Activity[J]. Angew Chem Int Ed,2007,119:1093-1096.
    [4] O’Keeffe M, Peskov M A, Ramsden S J, et al. The Reticular Chemistry StructureResource (RCSR) database of, and symbols for, crystal nets[J]. Acc Chem Res,2008,41:1782-1789.
    [5] Perry J J, Perman J A, Zaworotko M J. Design and synthesis of metal-organic frameworksusing metal-organic polyhedra as supermolecular building blocks[J]. Chem Soc Rev,2009,38:1400-1417.
    [6] Delgado S, Sanz Miguel P J, Priego J L, et al. A conducting coordination polymer basedon assembled Cu9cages[J]. Inorg Chem,2008,47:9128-9130.
    [7] Hu S, He K H, Zeng M H, et al. Crystalline-state guest-exchange and gas-adsorptionphenomenon for a "soft" supramolecular porous framework stacking by a rigid linearcoordination polymer[J]. Inorg Chem,2008,47:5218-5224.
    [8] Xiang S C, Zhou W, Gallegos J M, et al. Exceptionally high acetylene uptake in amicroporous metal-organic framework with open metal sites[J]. J Am Chem Soc,2009,131:12415-12419.
    [9] Ma L, Mihalcik D J, Lin W. Highly porous and robust4,8-connected metal-organicframeworks for hydrogen storage[J]. J Am Chem Soc,2009,131:4610-4612.
    [10] Harbuzaru B V, Corma A, Rey F, et al. A miniaturized linear ph sensor based on a highlyphotoluminescent self-assembled Europium(III) metal-organic framework[J]. Angew ChemInt Ed,2009,48:6476-6479.
    [11] Dybtsev D N, Chun H, Yoon S H, et al. Microporous Manganese Formate: A SimpleMetal-Organic Porous Material with High Framework Stability and Highly Selective GasSorption Properties[J]. J Am Chem Soc,2004,126:32-33.
    [12] Wu C D, Hu A, Zhang L, et al. A homochiral porous metal-organic framework for highlyenantioselective heterogeneous asymmetric catalysis[J]. J Am Chem Soc,2005,127:8940-8941.
    [13] Chen W T, Wang M S, Liu X, et al. Investigations of group12(IIB) metalhalide/pseudohalide-bipy systems: Syntheses, structures, properties, and TDDFT calculations(bipy=2,2′-bipyridine or4,4′-bipyridine)[J]. Cryst Growth Des,2006,6:2289-2300.
    [14] Lin J G, Xu Y Y, Qiu L, et al. Ligand-to-metal ratio controlled assembly of nanoporousmetal-organic frameworks[J]. Chem Commun,2008,2659-2661.
    [15] Fang Q R, Zhu G S, Jin Z, et al. Mesoporous metal-organic framework with rare etbtopology for hydrogen storage and dye assembly[J]. Angew Chem Int Ed,2007,46:6638-6642.
    [16] Ma L F, Wang L Y, Lu D H, et al. Two coordination polymers involving triangular andlinear trinuclear co(II) clusters created via in situ ligand synthesis[J]. Cryst Growth Des,2009,9:2036-2038.
    [17]Scott S M, Gordon K C and Burrell A K. Structure, Spectroscopic and ElectrochemicalProperties of Novel Binuclear Ruthenium(II) Copper(I) Complexes with Polypyridyl BridgingLigands[J]. J Chem Soc Dalton Trans,1999,2669-2673.
    [18] Venkataraman D, Gardner G B, Lee S, et al. Zeolite-like Behavior of a CoordinationNetwork[J]. J Am Chem Soc,1995,117:11600-11601.
    [19] Li H, Eddaoudi M, Yaghi O M, et al. Design and synthesis of an exceptionally stable andhighly porous metal-organic framework[J]. Nature,1999,402:276-279.
    [20] Eddaoudi M, Kim J, Rosi N, et al. Systematic design of pore size and functionality inisoreticular MOFs and their application in methane storage[J]. Science,2002,29:469-472.
    [21] Aakeroy C B, Beatty A M, Leinen D S. A versatile route to porous solids:Organic-inorganic hybrid materials assembled through hydrogen bonds[J]. Angew Chem IntEd,1999,38:1815-1819.
    [22] Evans O R, Xiong R G, Wang Z Y, et al. Crystal engineering of acentric diamondoidmetal-organic coordination networks[J]. Angew Chem Int Ed,1999,38:536-538.
    [23] Chapman M E, Ayyappan P, Foxman B M, et al. Synthesis, X-ray Structures, andMagnetic Properties of Copper(II) Pyridinecarboxylate Coordination Networks[J]. CrystGrowth Des,2001,1:159-163.
    [24] Zhang J, Kang Y, Zhang Z J, et al. Syntheses, structures and characterisation of two CuIIpolymers with8-connected topologies based on highly connected SBUs[J]. Eur J Inorg Chem,2006,11:2253-2258.
    [25] Fang R Q, Zhang X M. Diversity of coordination architecture of metal4,5-dicarboxyimidazole[J]. Inorg Chem,2006,45:4801-4810.
    [26] Wang X L, Qin C, Wang E B, et al. An unusual3D interdigitated architectureself-assembled from sidearm-containing2D bilayer motifs with a cuboidal framework[J]. JMol Struct,2005,17:3418-3421.
    [27] Liu Y L, Kravtsov V C, Larsen R, et al. Molecular building blocks approach to theassembly of zeolite-like metal–organic frameworks (ZMOFs) with extra-large cavities[J].Chem Commun,2006,1488-1490.
    [28] Lu J Y, Ge Z H. Synthesis and structures of two new metal-organic polymers containingimidazoldicarboxylate ligands for hydrogen bonding networks, one with a covalent pleatedsheet conformation[J]. Inorg Chim Acta,2005,358:828-833.
    [29] Shi W, Chen X Y, Xu N, et al. Synthesis, crystal structures, and magnetic properties of2D manganese(II) and1D gadolinium(III) coordination polymers with1H-1,2,3-triazole-4,5-dicarboxylic acid[J]. Eur J Inorg Chem,2006,23:4931-4937.
    [30] Li X, Wu B L, Niu C Y, et al. Syntheses ofmetal-2-(pyridin-4-yl)-1h-imidazole-4,5-dicarboxylate networks with topological diversity:Gas adsorption, thermal stability and fluorescent emission properties[J]. Cryst Growth Des,2009,9:3423-3431.
    [31] Jing X M, Zhang L R, Ma T L, et al. Assembly of Two Metal Organic Frameworks withIntrinsic Chiral Topology from Achiral Materials[J]. Cryst Growth Des,2010,10:492-494.
    [32] Jing X M, Meng H, Li G H. Construction of three metal-organic frameworks based onmultifunctional T-shaped tripodal ligands, H3PyImDC[J]. Cryst Growth Des,2010,10:3489-3495.
    [33] Sun T, Ma J P, Huang R Q, et al. The inner salt4-carboxy-2-(pyridinium-4-yl)-1H-imidazole-5-carboxylate monohydrate[J]. Acta Crystallogr2006, E62: o2751-o2752.
    [1] Eddaoudi M, Moler, D B, Yaghi, O M, et al. Modular Chemistry: Secondary BuildingUnits as a Basis for the Design of Highly Porous and Robust Metal Organic CarboxylateFrameworks[J]. Acc Chem Res,2001,34:319-330.
    [2] Zhang, J P, Zheng, S L, Chen, X M, et al. Two Unprecedented3-ConnectedThree-Dimensional Networks of Copper(i) Triazolates: In Situ Formation of Ligands byCycloaddition of Nitriles and Ammonia[J]. Angew Chem Int Ed,2004,43:206-209.
    [3] Perry J J, Perman J A, Zaworotko, M J. Design and synthesis of metal–organicframeworks using metal–organic polyhedra as supermolecular building blocks[J]. Chem SocRev,2009,38:1400-1417.
    [4] An J, Shade C M, Chengelis-Czegan D A, et al. Zinc-Adeninate Metal-OrganicFramework for Aqueous Encapsulation and Sensitization of Near-infrared and VisibleEmitting Lanthanide Cations[J]. J Am Chem Soc,2011,133:1220–1223.
    [5] Ma L, Abney C, Lin W. Enantioselective catalysis with homochiral metal–organicframeworks [J]. Chem Soc Rev,2009,38:1248-1256.
    [6] Liu Q X, Ni L B, Wan H L, et al. pH and molar ratio dependent formation of monomeric,dimeric and tetrameric cobalt malate complexes[J]. Polyhedron,2009,28:917-922.
    [7] Cui F Y, Huang K L, Hu C W, et al. Structural variability of Cd(II) and Co(II)mixed-ligand coordination polymers: effect of ligand isomerism and metal-to-ligand ratio[J].CrystEngComm,2009,11:2757-2769.
    [8] Kim H J, Sultana K F, Lee S S, et al. Endo-and/or exocyclic silver(I) and mercury(II)complexes of an NO2S2-macrocycle: effect of ligand ratio and anion[J]. CrystEngComm,2010,12:1494-1500.
    [9] Kanoo P, Gurunatha K L, Maji T K. Temperature-Controlled Synthesis of Metal-OrganicCoordination Polymers: Crystal Structure, Supramolecular Isomerism, and Porous Property[J].Cryst Growth Des,2009,9:4147-4156.
    [10] Ma L F, Wang L Y, Wang J G, et al. Structural Variation from1D to3D: Effects ofTemperature and pH Value on the Construction of Co(II)-H2tbip/bpp Mixed LigandsSystem[J]. Cryst Growth Des,2009,9:1741-1749.
    [11] Mahata P, Prabu M, Natarajan S. Time-and Temperature-Dependent Study in theThree-Component Zinc-Triazolate-Oxybis(benzoate) System: Stabilization of NewTopologies[J]. Cryst Growth Des,2009,9:3683-3691.
    [12] Su Z, Fan J, Ueyama N, et al. Ligand-Directed and pH-Controlled Assembly of Chiral3d-3d Heterometallic Metal-Organic Frameworks[J]. Cryst Growth Des,2010,10:3515-3521.
    [13] Li S L, Tan K, Su Z M, et al. pH-Dependent Binary Metal-Organic CompoundsAssembled from Different Helical Units: Structural Variation and Supramolecular Isomers[J].Cryst Growth Des,2010,10:1699-1705.
    [14] Zhang W H, Dong Z, Shi Q Z, et al. Interaction of1,3-Adamantanediacetic Acid(H2ADA) and Ditopic Pyridyl Subunits with Cobalt Nitrate under Hydrothermal Conditions:pH Influence, Crystal Structures, and Their Properties[J]. Cryst Growth Des,2010,10:76-84.
    [15] Yeh C W, Chen T R, Wang J C. Roles of Anion and Solvent in the Self-Assembly ofSilver(I) Complexes Containing2,3-Diphenylquinoxaline[J]. Cryst Growth Des,2009,9:2595-2603.
    [16] Tzeng B C, Yeh H T, Lee G H, et al. Novel Coordinated-Solvent Induced Assembly ofCd(II) Coordination Polymers Containing4,4′-Dipyridylsulfide[J]. Cryst Growth Des,2009,9:2552-2555.
    [17] Rajendiran T M, Kirk M L, Pecoraro V L, et al. Isolation of the first ferromagneticallycoupled Mn(III/IV) complex[J]. Chem Commun,2003,824-825.
    [18] Maji T K, Mostafa G, Kitagawa S, et al. Porous lanthanide–organic framework withzeolite-like topology[J]. Chem Commun,2005,2436-2438.
    [19] Sun Y Q, Chen Y M, Yang G Y, et al. Porous Lanthanide–Organic Open Frameworkswith Helical Tubes Constructed from Interweaving Triple-Helical and Double-HelicalChains[J]. Angew Chem Int Ed,2005,44:5814-5817.
    [20] Sun Y Q, Zhang J, Yang G Y. A series of luminescent lanthanide–cadmium–organicframeworks with helical channels and tubes[J]. Chem Commun,2006,4700-4702.
    [21] Liu Y L, Kravtsov V C, Eddaoudi M. Template-Directed Assembly of Zeolite-likeMetal–Organic Frameworks (ZMOFs): A usf-ZMOF with an Unprecedented ZeoliteTopology[J]. Angew Chem Int Ed,2008,47:8446-8449.
    [22] Alkordi M H, Eubank J F, Eddaoudi M, et al. Zeolite-like Metal Organic Frameworks asPlatforms for Applications: On Metalloporphyrin-Based Catalysts[J]. J Am Chem Soc,2008,130:12639-12641.
    [23] Nouar F, Forster P, Eddaoudi M, et al. Zeolite-like Metal Organic Frameworks (ZMOFs)as Hydrogen Storage Platform: Lithium and Magnesium Ion-Exchange and H2-(rho-ZMOF)Interaction Studies[J]. J Am Chem Soc,2009,131:2864-2870.
    [24] Wang S, Eddaoudi M, Liu Y L, et al. From Metal Organic Squares to Porous Zeolite-likeSupramolecular Assemblies[J]. J Am Chem Soc,2010,132:18038-18041.
    [25] Gao Y C, Wang W Y, Lu H, et al. Three main group metal coordination polymersbearing imidazole-based dicarboxylates: Hydro(solvo)thermal syntheses, crystal structuresand properties[J]. Polyhedron,2011,30:1-8.
    [26] Wang S, Zhang L, Liu Y, et al. Assembly of two3-D metal–organic frameworks fromCd(II) and4,5-imidazoledicarboxylic acid or2-ethyl-4,5-imidazoledicarboxylic acid[J].CrystEngComm,2008,10:1662-1666.
    [27] Meng C X, Tang L, Wang Y Y, et al. A novel CdIIcoordination polymer with helicalunits and mix-connected network topology constructed form2-propyl-4,5-imidazoledicarboxylate and N-donor co-ligands[J]. Inorg Chem Commun,2009,12:793-795.
    [28] Feng X, Wang L Y, Shi X G, et al. Series of anion-directed lanthanide-rigid-flexibleframeworks: syntheses, structures, luminescence and magnetic properties[J]. CrystEngComm,2010,12:774-783.
    [29] Feng X, Shi X, Liu Y, et al. A Series of Lanthanide-Organic Frameworks Based on2-Propyl-1H-imidazole-4,5-dicarboxylate and Oxalate: Syntheses, Structures, Luminescence,and Magnetic Properties[J]. Cryst Growth Des,2010,10:1399-1408.
    [30] Zeng R R, Jiang Y C, Hu M C, et al. An unusual (3,6)-connected microporousmetal–organic framework based on tetrahedral Zn4clusters with selective adsorption of CO2[J]. CrystEngComm,2011,13:4823-4826.
    [31] Wang W, G Lu H, Tang M, et al. One Chiral and Two Achiral3-D CoordinationPolymers Constructed by2-Phenyl Imidazole Dicarboxylate[J]. Cryst Growth Des,2010,10:4050-4059.
    [32] Zhu Y, Li G, Lu H, et al. An unprecedented1-D mixed-valence Cu(II)/Cu(I)metal-organic framework bearing2-phenyl imidazole dicarboxylates[J]. Inorg ChemCommun,2011,14:1432-1435.
    [33] Li X, Wu B L, Wang R Y, et al. Hierarchical Assembly of Extended CoordinationNetworks Constructed by Novel Metallacalix[4]arenes Building Blocks[J]. Inorg Chem,2010,49:2600-2613.
    [34] Jing X M, Eddaoudi M, Liu Y L, et al. Construction of Three Metal-OrganicFrameworks Based on Multifunctional T-Shaped Tripodal Ligands, H3PyImDC[J]. CrystGrowth Des,2010,10:3489-3495.
    [35] Zhou R S, Xu C. Y, Yang X F, et al. Two New Silver(i) Ammine Complexes byDisplacement Reaction Between [Ag(NH3)2]+Ions and DifferentPyridine-4,5-Imidazoledicarboxylic Acids[J]. Z Anorg Allg Chem,2011,637:251-256.
    [36] Jing X, Huo Q, Liu Y, et al. Construction of a cadmium supermolecular compound from2-(pyridine-3-yl)-1H-4,5-imidazoledicarboxylic acid[J]. Inorg. Chem. Commun.2011,14:22-25.
    [37] Li X, Niu Y Y, Zhang H Y, et al. Syntheses of Metal2-(Pyridin-4-yl)-1H-imidazole-4,5-dicarboxylate Networks with Topological Diversity: GasAdsorption, Thermal Stability and Fluorescent Emission Properties[J]. Cryst Growth Des,2009,9:3423-3431.
    [38] Jing X, Zhang L, Liu Y, et al. Assembly of Two Metal-Organic Frameworks withIntrinsic Chiral Topology from Achiral Materials[J]. Cryst Growth Des,2010,10:492-494.
    [39] Wang J J, Liu C S, Hu T L, et al. Zinc(II) coordination architectures with two bulkyanthracene-based carboxylic ligands: crystal structures and luminescent properties[J].CrystEngComm,2008,10:681-692.
    [40] Wang J J, Gou L, Hu H M, et al. Ligand and pH-Controlled ZnII Bilayer CoordinationPolymers Based on Biphenyl-3,3',4,4'-tetracarboxylate[J]. Cryst Growth Des,2007,7:1514-1521.
    [41] Xu J, Bai Z S, Chen M S, et al. Metal–organic frameworks with six-and four-foldinterpenetration and their photoluminescence and adsorption property[J]. CrystEngComm,2009,11:2728-2733.
    [1] Bai H Y, Ma J F, Yang J, et al. Effect of Anions on the Self-Assembly ofCd(II)-Containing Coordination Polymers Based on a Novel Flexible Tetrakis(imidazole)Ligand[J]. Cryst Growth Des,2010,10:995-1016.
    [2] Xu J, Su W P, Hong M C.3D lanthanide–transition-metal–organic frameworksconstructed from tetranuclear {Ln4} SBUs and Cu centres with fsc net[J]. CrystEngComm,2011,13:3998-4004.
    [3] Xu J, Bai Z S, Chen M S, et al. Metal–organic frameworks with six-and four-foldinterpenetration and their photoluminescence and adsorption property[J]. CrystEngComm,2009,11:2728–2733.
    [4] Yang Y T, Luo F, Che Y X, et al. Employing An Unprecedented Ferromagnetic MolecularBuilding Block (MBB) of [Co2Ln(μ3-OH)(CO2)5(N3)]2(Ln=Tb, Gd, Dy, Eu, Sm) toConstruct a6-Connected α-Po Net[J]. Cryst Growth Des,2008,8:3508-3510.
    [5] Wang X L, Qin C, Wang E B, et al. Syntheses, Structures, and Photoluminescence of aNovel Class of d10Metal Complexes Constructed from Pyridine-3,4-dicarboxylic Acid withDifferent Coordination Architectures[J]. Inorg Chem,2004,43:1850-1856.
    [6] Yang E C, Feng Y, Liu Z Y, et al. Diverse mixed-ligand metal complexes with in situgenerated5-(pyrazinyl)tetrazolate chelating-bridging ligand: in situ synthesis, crystalstructures, magnetic and luminescent properties[J]. CrystEngComm,2011,13:230-242.
    [7] Wang Y L, Zhang N, Liu Q Y, et al. Diversity of Architecture of Copper(I) CoordinationPolymers Constructed of Copper(I) Halides and4-Methyl-1,2,4-Triazole-3-Thiol (Hmptrz)Ligand: Syntheses, Structures, and Luminescent Properties[J]. Cryst Growth Des,2011,11:130-138.
    [8] Chai X C, Sun Y Q, Lei R, et al. A Series of Lanthanide Frameworks with a FlexibleLigand, N,N'-Diacetic Acid Imidazolium, in Different Coordination Modes[J]. Cryst GrowthDes,2010,10:658-668.
    [9] Liu C M, Hou Y L, Zhang J. Synthesis, Crystal Structure and Characterisation of a NovelChiral Mixed-Valence Vanadium Oxide Hybrid,[V5O11(dien)3][J]. Eur J Inorg Chem,2005,3104-3108.
    [10] Liu C M, Gao S. Hydrothermal Synthesis and Crystal Structure of a NovelTwo-Dimensional Vanadium Oxide Complex with a6,14-Net Sinusoidal Ruffling AnionicLayer:[Ni(phen)2V4O11](phen=1,10-Phenanthroline)[J]. Inorg Chem,2002,41:140-143.
    [11] Wu C D, Lu C Z, Zhuang H H, et al. Hybrid Coordination Polymer Constructed fromβ-Octamolybdates Linked by Quinoxaline and Its Oxidized Product BenzimidazoleCoordinated to Binuclear Copper(I) Fragments[J]. Inorg Chem,2002,41:5636-5637.
    [12] Sha J Q, Peng J, Lan Y Q, Su Z M, et al. pH-Dependent Assembly of Hybrids Based onWells-Dawson POM/Ag Chemistry[J]. Inorg Chem,2008,47:5145-5153.
    [13] Ren Y P, Kong X J, Zheng L S, et al. Anion-Dependent Assembly of Cyclic Structure[J].Cryst Growth Des,2006,6:572-576.
    [14] Pavani K, Lofland S E, Ramanan A, et al.1H NMR Direct Observation of EnantiomericExchange in Palladium(II) and Platinum(II) Complexes Containing N,N'-BidentateAryl-pyridin-2-ylmethyl-amine Ligands[J]. Eur J Inorg Chem.2007,568-578.
    [15] Hagrman P J, Zubieta J. Hydrothermal Syntheses and Structural Characterizations ofOrganic Inorganic Hybrid Materials of the M(II) Ligand/Vanadium Oxide System(M(II)=Cu(II) and Zn(II); Ligand=2,2'-Bipyridine and2,2',6',2'-Terpyridine)[J]. Inorg Chem,2001,40:2800-2809.
    [16] Zhai Q G, Wu X Y, Lu C Z, et al. Construction of Ag/1,2,4-Triazole/PolyoxometalatesHybrid Family Varying from Diverse Supramolecular Assemblies to3-D Rod-PackingFramework[J]. Inorg Chem,2007,46:5046-5058.
    [17] Zhai Q G, Wu X Y, Lu C Z, et al. Keggin polyoxometalates-supported assembly of2Dsupramolecular isomers: Synthesis, crystal structures and characteristics of two novel hybridhost–guest complexes[J]. Inorg Chim Acta,2007,360:3484-3492.
    [18] Ouellette W, Hudson B S, Zubieta J. Hydrothermal and Structural Chemistry of theZinc(II)-and Cadmium(II)-1,2,4-Triazolate Systems[J]. Inorg Chem,2007,46:4887-4904.
    [19] Hagrman P J, Hagrman D, Zubieta J. Organic–Inorganic Hybrid Materials: From“Simple” Coordination Polymers to Organodiamine-Templated Molybdenum Oxides[J].Angew Chem Int Ed,1999,38:2638-2684.
    [20] Li H, Eddaoudi M, O’Keeffe M, et al Supertetrahedral Sulfide Crystals with GiantCavities and Channels[J]. Science,1999,283:1145-1147.
    [21] Moulton B, Aworotko M. From Molecules to Crystal Engineering: SupramolecularIsomerism and Polymorphism in Network Solids[J]. Chem Rev,2001,101:1629-1658.
    [22] O’Keefe M, Yaghi O M. Modular Chemistry: Secondary Building Units as a Basis forthe Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks[J]. AccChem Res,2001,34:319-330.
    [23] Janiak C. Engineering coordination polymers towards applications[J]. Dalton Trans,2003,2781-2804.
    [24] Kitagawa S, Kitaura R, Noro S. Functional Porous Coordination Polymers[J]. AngewChem Int Ed,2004,43:2334-2375.
    [25] Kurmoo M. Magnetic metal-organic frameworks[J]. Chem Soc Rev,2009,38:1353-1379.
    [26] Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organicframeworks[J]. Chem Soc Rev,2009,38:1477-1504.
    [27] Czaja A U, Trukhan N, Müller U. Industrial applications of metal-organic frameworks[J].Chem Soc Rev,2009,38:1284-1293.
    [28] Halder G J, Kepert C J, Moubaraki B, et al. Guest-dependent spin crossover in ananoporous molecular framework material[J]. Science,2002,298:1762-1765.
    [29] Hoskins B F, Robson R. Infinite polymeric frameworks consisting of three dimensionallylinked rod-like segments[J]. J Am Chem Soc,1989,111:5962-5964.
    [30] Biradha K, Hongo Y, Fujita M. Open Square-Grid Coordination Polymers of theDimensions20×20: Remarkably Stable and Crystalline Solids Even after Guest Removal[J].Angew Chem Int Ed,2000,39:3843-3845.
    [31] Chae H K, Siberio-Perez D Y, Kim J, et al. A route to high surface area, porosity andinclusion of large molecules in crystals[J]. Nature,2004,427:523-527.
    [32] Férey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate-based solid withunusually large pore volumes and surface area[J]. Science,2005,309:2040-2042.
    [1] Zang S, Su Y, Duan C, et al. Coexistence of chiral hydrophilic and achiral hydrophobicchannels in one multi-helical-array metal–organic framework incorporating helical watercluster chains[J]. Chem Commun,2006,4997-4999.
    [2] Wang S N, Xing H, Li Y Z, et al. Unprecedented interweaving of single-helical andunequal double-helical chains into chiral metal–organic open frameworks with multiwalledtubular structures[J]. Chem Commun,2007,2293-2295.
    [3] Lloyd G O, Atwood J L, Barbour L J. Water-assisted self-assembly of harmonic singleand triple helices in a polymeric coordination complex[J]. Chem Commun,2005,1845-1847.
    [4] Sun Y Q, Zhang J, Chen Y M, et al. Porous Lanthanide–Organic Open Frameworks withhelical tubes constructed from interweaving triple-helical and double-helical chains[J].Angew Chem Int Ed,2005,44:5814-5817.
    [5] Urban V, Pretsch T, Hartl H. From AgCN chains to a fivefold helix and a fishnet-shapedframework structure[J]. Angew. Chem Int Ed,2005,44:2794-2797.
    [6] Uemura K, Saito K, Kitagawa S, et al. Hydrogen-bonded porous coordination polymers:Structural transformation, sorption properties, and particle size from kinetic studies[J]. J AmChem Soc,2006,128:16122-16130.
    [7] Wu C D, Lin W B. Highly porous, homochiral metal–organic frameworks:Solvent-exchange-induced single-crystal to single-crystal transformations[J]. Angew ChemInt Ed,2005,44:1958-1961.
    [8] Dikarev E V, Li B, Chernyshev V V, et al. Coordination polymers formed in solution andin solvent-free environment. Structural transformation due to interstitial solvent removalrevealed by X-ray powder diffraction[J]. Chem Commun,2005,3274-3276.
    [9] Chen C Y, Cheng P Y, Wu H H, et al. Conformational effect of2,6-bis(imidazol-1-yl)pyridine on the self-assembly of1D coordination chains: Spontaneousresolution, supramolecular isomerism, and structural transformation[J]. Inorg Chem,2007,46:5691-5699.
    [10] Kim Y, Paskow H C, Rousseau R W. Propagation of solid-state transformations bydehydration and stabilization of pseudopolymorphic crystals of sodium naproxen[J]. CrystGrowth Des,2005,5:1623-1632.
    [11] Wang X Y, Scancella M, Sevov S C. Studies of the mechanism of asingle-crystal-to-single-crystal reversible dehydration of a copper carboxylate framework[J].Chem Mater,2007,19:4506-4513.
    [12] Zeng M H, Feng X L, Zhang W X, et al. A robust microporous3D cobalt(II)coordination polymer with new magnetically frustrated2D lattices: single-crystaltransformation and guest modulation of cooperative magnetic properties[J]. Dalton Trans,2006,5294-5303.
    [13] Wu A Q, Li Y, Zheng F K, et al. Different molecular frameworks of zinc(II) andcadmium(II) coordination polymers constructed by flexible double betaine ligands[J]. CrystGrowth Des,2006,6:444-450.
    [14] Wang Y T, Tong M L, Fan H H, et al. Homochiral crystallization of helical coordinationchains bridged by achiral ligands: can it be controlled by the ligand structure[J]. Dalton Trans,2005,424-426.
    [15] Dong Y B, Zhao X, Huang R Q, et al. New Ag(I)-containing coordination polymersgenerated from multidentate schiff-base ligands[J]. Inorg Chem,2004,43:5603-5612.
    [16] Niu C Y, Wu B L, Zheng X F, et al. Coordination polymers with the angular dipyridylligand1,3,4-thiadiazole-2,5-di-3-pyridyl: Influence of analogue dipyridyl ligands andbridging anions on structural diversity[J]. Cryst Growth Des,2008,8:1566-1574.
    [17] Patra G K, Goldberg I. Supramolecular Design of coordination complexes of silver(I)with polyimine ligands: Synthesis, materials characterization, and structure of new polymericand oligomeric materials[J]. Cryst Growth Des,2003,3:321-329.
    [18] Mondal R, Bhunia M K, Dhara K. Crystal engineering of zinc(II) metal-organicframeworks: role of steric bulk and angular disposition of coordinating sites of the ligands[J].CrystEngComm,2008,10:1167-1174.
    [19] Legrand Y M, van der Lee A, Masquelez N, et al. Temperature inducedsingle-crystal-to-single-crystal transformations and structure directed effects on magneticproperties[J]. Inorg Chem,2007,46:9083-9089.
    [20] N ther C, Bhosekar G, Jess I. Preparation of stable and metastable coordinationcompounds: Insight into the structural, thermodynamic, and kinetic aspects of the formationof coordination polymers[J]. Inorg Chem,2007,46:8079-8087.
    [21] Laskar I R, Das D, Mostafa G, et al. First report on thermally induced nitro→nitrito(O,O) linkage isomerization in diamine complexes of nickel(II) in the solid state: X-raysingle crystal structural analyses of nitro and nitrito isomers[J]. New J Chem,2001,25:764-768.
    [22] Ma J P, Dong Y B, Huang R Q, et al. Spontaneously resolved chiral three-foldinterpenetrating diamondoidlike Cu(II) coordination polymers with temperature-drivencrystal-to-crystal transformation[J]. Inorg Chem,2005,44:6143-6145.
    [23] Chen P K, Che Y X, Zheng J M, et al. Heteropolynuclear metamagnet showing spincanting and single-crystal to single-crystal phase transformation[J]. Chem Mater,2007,19:2162-2167.
    [24] Nakaya M, Kanehara M, Yamauchi M, et al. Hydrogen-induced crystal structuraltransformation of FePt nanoparticles at low temperature[J]. J Phys Chem C,2007,111:7231-7234.
    [25] Hagrman P J, Hagrman D, Zubieta J. Organic-inorganic hybrid materials: from “simple”coordination polymers to organodiamine-templated molybdenum oxides[J]. Angew Chem IntEd Engl,1999,38:2638-2684.
    [26] Barnett S A, Champness N R. Structural diversity of building-blocks in coordinationframework synthesis-combining M(NO3)2junctions and bipyridyl ligands[J]. Coord ChemRev,2003,246:145-168.
    [27] Roesky H W, Andruh M. The interplay of coordinative, hydrogen bonding and π–πstacking interactions in sustaining supramolecular solid-state architectures: a study case ofbis(4-pyridyl)-and bis(4-pyridyl-N-oxide) tectons[J]. Coord Chem Rev,2003,236:91-119.
    [28] Wang X Y, Wang L, Wang Z M, et al. Solvent-tuned azido-bridged Co2+layers: square,honeycomb, and Kagome[J]. J Am Chem Soc,2006,128:674-675.
    [39] Mulfort K L, Farha O K, Stern C L, et al. Post-synthesis alkoxide formation withinmetal-organic framework materials: a strategy for incorporating highly coordinativelyunsaturated metal ions[J]. J Am Chem Soc,2009,131:3866-3888.
    [30] Kitaura R, Fujimoto K, Noro S, et al. A pillared-layer coordination olymer networkdisplaying hysteretic sorption:[Cu2(pzdc)2(dpyg)]n(pzdc=pyrazine-2,3-dicarboxylate;dpyg=1,2-Di(4-pyridyl)-glycol)[J]. Angew Chem Int Ed,2002,41:133-135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700